High-quality antiferromagnetic EuTiO$_3$ epitaxial thin films on SrTiO$_3$ prepared by pulsed laser deposition and postannealing

Fujita, Koji; Wakasugi, Naoki; Murai, Shunsuke; Zong, Yanhua; Tanaka, Katsuhisa

APPLIED PHYSICS LETTERS (2009), 94(6)

Copyright 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in APPLIED PHYSICS LETTERS 94, 062512 (2009) and may be found at http://link.aip.org/link/APPLAB/v94/i6/p062512/s1
High-quality antiferromagnetic EuTiO$_3$ epitaxial thin films on SrTiO$_3$ prepared by pulsed laser deposition and postannealing

Koji Fujita,a Naoki Wakasugi, Shunsuke Murai, Yanhua Zong, and Katsuhiisa Tanaka
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

(Received 26 September 2008; accepted 22 December 2008; published online 13 February 2009)

We report on epitaxial growth and magnetic properties of EuTiO$_3$ thin films with a perovskite structure. Single crystalline EuTiO$_3$ films with atomically flat surface are grown on (001) surface of SrTiO$_3$ by pulsed laser deposition (PLD) and subsequent annealing in reducing atmosphere. The as-deposited films possess the crystal structure with an elongated c-axis and tend to stabilize ferromagnetically ordered Eu$^{2+}$ spins at low temperatures. Postannealing at 1000 °C relaxes the out-of-plane lattice strain, and brings about a drastic change in magnetic structure; the annealed film becomes an antiferromagnet below Néel temperature of 5.1 K. The change in magnetic properties accompanied by the modification in lattice constant is discussed. © 2009 American Institute of Physics. [DOI: 10.1063/1.3072598]

An interest in multiferroics, where ferroelectric and ferromagnetic (FM) or antiferromagnetic (AFM) orderings co-exist, has been recently revived because of their potential applications to multifunctional magnetoelectric and magneto-optical devices. In particular, the discovery of new multiferroics such as TbMnO$_3$, BiFeO$_3$, and BiMnO$_3$ triggered rapid developments in the exploration of materials with a strong dielectric-magnetic coupling so that a small modulation in magnetic (electric) field can induce a large change in electric polarization (magnetization). One strategy to achieve the strong dielectric-magnetic coupling is to select a system where magnetization couples to a specific infrared-allowed optical phonon mode with low frequency, i.e., a soft phonon mode. In such a case, a gigantic change in dielectric constant is expected to occur by an ordering of magnetic moments, since the energy scale of soft mode is comparable to that of magnetic interaction.

EuTiO$_3$ is a unique material having a strong coupling between magnetic ordering and soft phonon mode. Bulk EuTiO$_3$ adopts a cubic perovskite structure (Eu$^{2+}$Ti$^{4+}$O$_3$, space group $Pm\bar{3}m$) at room temperature. The absence of electrons in Ti 3d orbital means that EuTiO$_3$ is a band insulator. Large magnetic moments localized on Eu sites ($J=5/2$) order below the Néel temperature ($T_N=5.5$ K) to form a G-type antiferromagnet. Interestingly, the dielectric constant varies in response to the ordering states of Eu spins due to the coupling between the localized spins and a soft phonon mode.

Another important aspect of the coupling between phonon and magnetic moments appears when a soft phonon mode is sensitive to lattice strains. This effect can be the most prominent in the form of thin film; an epitaxial strain due to the lattice mismatch between film and substrate has a great impact on the dielectric and magnetic properties. Recently, Fennie and Rabe calculated the dielectric properties of EuTiO$_3$ in FM or AFM phases under biaxial compressive strain and showed that the most stable magnetic phase can be tuned by experimentally attainable lattice strain. A similar attempt was performed by Ranjan et al. to calculate the stability of several magnetic phases as a function of lattice volume.

In spite of such interesting theoretical predictions and of practical importance in making devices, the fabrication of EuTiO$_3$ epitaxial thin film has been rarely reported. Recently, we have fabricated the thin films of EuTiO$_3$ on SrTiO$_3$ (001) substrates by PLD under the different deposition conditions from those in Ref. 11 and reported their magnetic properties. Although the as-deposited films could be obtained as a single phase of EuTiO$_3$, the out-of-plane lattice constant was larger (typically ~2.6%) than the bulk value, and an FM-like behavior was observed at low temperatures, in contrast to the AFM behavior of bulk EuTiO$_3$, which is in good agreement with recent theoretical studies.

EuTiO$_3$ thin films were grown on atomically flat SrTiO$_3$ (001) substrates (Shinkosha Co. Ltd.) by PLD. A KrF excimer laser (248 nm, 5 Hz) was focused on a sintered Eu$_2$Ti$_2$O$_7$ ceramic target at a fluence of 2 J/cm2. The substrate temperature was maintained at 650 °C and the oxygen pressure was 1.0 × 10$^{-5}$ Pa. After the deposition, the film was annealed at 1000 °C under a flowing gas of 95 vol% Ar+5 vol% H$_2$ for 8.5 h to prevent the oxidation of Eu$^{2+}$. The thickness and chemical composition of films were characterized by the Rutherford backscattering using a 2.0 MeV He$^+$ beam. The analysis of the annealed film revealed a stoichiometric cation ratio (1:1) of Eu and Ti. The film thickness was evaluated to be about 200 nm.

The crystal structure of the films was estimated by high-resolution XRD measurements using Cu $K\alpha$ radiation. The 2θ-ω XRD patterns for as-deposited and annealed films are shown in Fig. 1(a). For the as-deposited film, sharp Bragg

aElectronic mail: fujita@dipole7.kuic.kyoto-u.ac.jp.
peaks for EuTiO$_3$ 00$_n$ ($n=1, 2, 3$) are observed together with SrTiO$_3$ 00$_n$ peaks, indicating the epitaxial growth of EuTiO$_3$ oriented along the c-axis. The out-of-plane lattice constant calculated from the 003 peak is 0.3993 nm, which is much larger than the reported bulk value of 0.3905 nm. Upon postannealing, EuTiO$_3$ peaks shift toward higher angle side and are superimposed on the SrTiO$_3$ peaks without yielding any impurity phases. Namely, the crystal lattice of the as-deposited film shrinks along the c-axis by postannealing so that the out-of-plane lattice constant (0.3900 nm) is almost the same as the bulk value.

To fully examine the strain states, x-ray reciprocal space mapping (RSM) was measured for the 301 diffraction using a four-circle XRD apparatus. Figures 1(b) and 1(c) show the RSMs for the as-deposited and annealed films, respectively. Two Bragg spots from film and substrate are observed for the as-deposited film. These two spots have the same Q_z, while Q_y of EuTiO$_3$ is smaller than that of SrTiO$_3$. This result indicates that the crystal lattice of the as-deposited film elongates unidirectionally along the c-axis, as implied by 2θ-ω scan. For the annealed film, in contrast, Q_x and Q_z of EuTiO$_3$ coincide well with those of SrTiO$_3$, meaning that the crystal structure of EuTiO$_3$ is relaxed by postannealing.

Surface morphology of the films was observed by an atomic force microscope. A stepped and terraced structure is clearly seen for the annealed film [Fig. 2(a)], the step height is approximately 0.4 nm [Fig. 2(b)], corresponding to the size of one unit cell of bulk EuTiO$_3$. The as-deposited film exhibited the characteristic of two-dimensional growth (not shown), reflecting the atomically flat surface of substrates. We believe that the postannealing of the as-deposited films on nearly perfectly lattice-matched SrTiO$_3$ substrates serves to reduce the lattice constant of c-axis without yielding defects such as grain boundaries and pits, leading to the single crystalline films with atomically flat and smooth surfaces.

Valence states of europium ions in the as-deposited and annealed films were characterized by room-temperature 151Eu CEMS spectra, as shown in Fig. 3(a), using 151Sm$_2$O$_3$ as a γ-ray source. Calibration of Doppler velocity was made by using a spectrum of α-Fe, which was also used as a standard for isomer shift. It is seen that the spectra are mainly composed of absorption due to Eu$^{2+}$ at around -13 mm s$^{-1}$, the fractions of the absorption area of Eu$^{2+}$ are estimated to be 0.96 and 0.98 for the as-deposited and annealed films, respectively. The remaining Eu$^{3+}$ ions in the as-deposited film are slightly reduced to Eu$^{2+}$ ions by postannealing. The impurity Eu$^{3+}$ ions are probably accompanied by the formation of Ti$^{3+}$ or interstitial O$^{2-}$ to compensate for the excess positive charge. In Fig. 3(b), the magnetization (M) of the as-deposited and annealed films is plotted as a function of temperature (T). Field cooling (FC) and zero field cooling (ZFC) were performed using a superconducting quantum interference device magnetometer, while a dc magnetic field (H_d) of 100 Oe was applied parallel to the film surface. One can see a large difference in magnetism between these two films; M of the as-deposited film increases monotonically with decreasing T, while the annealed film exhibits a distinct AFM transition at 5.1 K, in reasonable agreement with the value reported for bulk single-crystalline EuTiO$_3$. No divergence between ZFC and FC conditions was observed for both the as-deposited and annealed films.

Figure 4 compares the magnetic properties between the as-deposited and annealed films in more detail. Figure 4(a) depicted the M–T curves at varied H_d for the annealed film. The AFM transition is evident when H_d is low like 100 and 1000 Oe, whereas the FM behavior is observed when H_d = 20 kOe. In other words, the stable spin structure in the annealed film is converted from AFM to FM as H_d applied...
FIG. 4. (Color online) (a) M–T curves for annealed EuTiO$_3$ thin film at $H_{dc}=100$ (open squares), 1000 (open circles), and 20 000 Oe (open triangles) applied along the (100) direction. (b) χ–T curves for the as-deposited EuTiO$_3$ thin film at $H_{dc}=3$ Oe and $H_{dc}=0$ Oe. The ac frequencies are 1, 10, 100, and 300 Hz. The inset represents the low-temperature data of the M–T curve for as-deposited film as shown in Fig. 3(b). The arrow denotes an inflection point. (c) Magnetic field (μ_0H) dependence of M at 2 K for the as-deposited (closed circles) and annealed (open squares) EuTiO$_3$ thin films. (d) Enlarged view of (c).

The authors thank Y. Isozumi and M. Tosaki of Radioisotope Research Center, Kyoto University for the Mössbauer effect measurements. This research was financially supported by the Grant-in-Aid for Scientific Research from MEXT, Japan.

1S. W. Cheong and M. Mostovoy, Nature Mater. 6, 13 (2007).