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In condensed polymeric liquids confined in slit channels, the movement of chains is constrained by
two factors: entanglement among the chains and the excluded volume between the chains and the
wall. In this study, we propose a wall boundary �WB� model for the primitive chain network �PCN�
model, which describes the dynamics of polymer chains in bulk based on coarse graining upon the
characteristic molecular weight of the entanglement. The proposed WB model is based on the
assumptions that �i� polymers are not stuck but simply reflected randomly by the wall, and �ii�
subchains below the entanglement length scale behave like those in bulk even near the wall. Using
the WB model, we simulate the dynamics of entangled polymer chains confined in slit channels. The
results show that as the slit narrows, the chains are compressed in the direction normal to the wall,
while they are expanded in the parallel direction. In addition, the relaxation time of the end-to-end
vector increases, and the diffusivity of the center of mass decreases. The compression in the normal
direction is a natural effect of confinement, while the expansion is introduced by a hooking process
near the wall. The trends revealed that the relaxation time and diffusivity depend on the increase in
friction due to an increased number of entanglements near the wall, which is also associated with the
hooking process in the PCN model. These results are expected within the assumptions of the PCN
model. Thus, the proposed WB model can successfully reproduce the effects of wall confinement on
chains. © 2009 American Institute of Physics. �DOI: 10.1063/1.3140941�

I. INTRODUCTION

The dynamics of condensed polymeric liquids in con-
fined geometries has been increasingly important for scien-
tific and technological areas such as molding
manufacturing,1 DNA sequence analysis,2 and synthetic
biology.3 In confined geometries, it is well known that rheo-
logical properties of condensed polymeric liquids are dra-
matically changed due to interactions between polymers and
walls. For example, conformation and mobility near walls
are reported to be different from those in bulk.4

To clarify the mechanism of these peculiar behaviors,
theoretical and experimental studies of the dynamics of
chains in dilute polymeric liquids confined in slit channels
have been performed in the past few decades, revealing that
the confinement effect of the wall changes the equilibrium
conformation of the chain and reduces its diffusivity. The
scaling theory of Brochard and de Gennes5 and a self-
consistent mean field theory with the Kirkwood approxima-
tion by Harden and Doi6 predicted a power law of the diffu-
sivity with respect to the channel width. Their predictions are
also consistent with recent multiscale modeling studies7 us-
ing a Brownian dynamics method with hydrodynamic inter-
actions, which have improved our understanding of the dy-
namics of chain molecules confined to channels.

On the other hand, in the case of condensed polymeric
liquids in a confined geometry, there has been no report
about the dynamics of the polymer molecules. It is known

that the motions of polymer chains in condensed polymeric
liquids are constrained by so-called entanglements.8 In the
tube theory,8 entanglement is regarded as a geometrical con-
straint similar to a solid wall, although it has a completely
different nature; constraint by an entanglement is dynamic,
while that of the wall is static. Therefore, the coexistence of
these two effects may introduce physical situations different
from those of either effect alone. For example, the confine-
ment effect of a wall on polymer chains may change the state
of entanglements, which in turn can change the dynamics of
the polymer chain. Thus, the dynamics of entangled polymer
chains in confined geometries remains a challenging prob-
lem.

To investigate polymer dynamics and rheological prop-
erties numerically, particulate models such as coarse-grained
molecular dynamics9 �MD� and dissipative particle
dynamics10 �DPD� have been employed. While DPD meth-
ods have made great contributions to analyzing the dynamics
of unentangled polymers such as short polymers or dilute
polymer solutions, they cannot handle entangled polymers
because the chains slip past each other due to soft repulsive
potentials. On the other hand, coarse-grained MD methods
which employ the repulsive Lennard-Jones potential and the
finite extensible nonlinear spring potential can successfully
simulate entangled polymers.9 The coarse-grained MD was
also used to study entangled polymers confined between
walls and achieved success in analyzing and predicting
physical properties of polymers such as the dependence of
the gyration tensor on the distance between walls, the normal
pressure, or the relaxation time.11 However, even by usinga�Electronic mail: inoue@me.kyoto-u.ac.jp.
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the coarse-grained MD methods, simulations of well-
entangled long polymer chains are numerically difficult be-
cause the longest relaxation time of such chains become
quite long compared to the characteristic time scale of the
coarse-grained MD. Thus to study well-entangled long poly-
mers with reasonable computational costs, we need more
coarse-grained mesoscopic models.

The primitive chain network �PCN� model,12 proposed
some years ago, describes the kinetics of the topological con-
straint effect of entanglement by handling interactions of the
entanglement between chains directly in three-dimensional
�3D� space based on the idea of the slip link. The resulting
dependence of mean-square radius of gyration, relaxation
time, and diffusivity on the molecular weight has been
shown to be consistent with the experimentally observed
scaling laws.12 The PCN model has been applied for several
polymers including the dynamics of linear polymers,12

branch polymers,13 and star polymers, to investigate the lin-
ear viscoelasticity. The PCN model has also been used for
simulations of blend polymers and block copolymers,13,14

which have shown that it can reasonably reproduce the mi-
crophase formation process and the phase diagram for well-
entangled copolymers. Thus, the PCN model is successful at
simulating polymer melts. However, all these applications
were limited to bulk because no wall boundary �WB� condi-
tion for the PCN model has been proposed yet. In this study,
to simulate the dynamics of condensed polymeric liquids
confined in slit channels, we develop a WB model for the
PCN model.

In Sec. II, we briefly explain the PCN model. The WB
model is proposed in Sec. III. In Sec IV, simulations using
the WB model are described. Section V discusses the results.
A summary of this paper is given in Sec. VI.

II. PRIMITIVE CHAIN NETWORK MODEL

Since minor differences exist among the several versions
of PCN model already described in literature, here we briefly
explain the model used in this study for clarity purposes. The
PCN model represents each chain as a sequence of sub-
chains, which connects consecutive entanglements. The en-
tanglements are modeled as entanglement nodes consisting
of two chains, each containing two subchains. The ends of
the chains are modeled as end nodes containing a single sub-
chain. Changes in the network topology are represented by
hooking and unhooking, which occur only from the end of
the chain.

Each entanglement node or chain-end node with the po-
sition vector, R, obeys the Langevin equation,

�Ṙ = �
j

�
3kT

njb
2r j − �� + F , �1�

where � j� means the sum over all subchains connected to the
node directly. Here, kT is the thermal energy, b is the Kuhn
monomer length, and nj s the number of monomers in the jth
subchain, respectively. r j is a bond vector of the jth subchain
defined as a vector from an entanglement node or chain-end
node to any one of the other connected nodes �see Fig. 1�.

The left-hand side of Eq. �1� is the friction force on the
node, where � indicates the friction coefficient of the node.
In the model, we assume that the friction coefficient is pro-
portional to the number of subchains connected to the node.
� is defined as

� = �2�s for entanglement

1

2
�s for chain end. � �2�

Here, �s is the friction coefficient of the subchain, which is
taken to be of the same magnitude for all subchains. The first
term on the right-hand side of Eq. �1� is the linear spring
force due to entropic elasticity of subchains. The second term
on the right-hand side of Eq. �1� is the field force introduced
to account for the incompressible condition. Here, � is the
chemical potential as a function of the number of monomers
derived from a free energy mentioned later. The third term,
F, on the right-hand side of Eq. �1� is a Gaussian random
force obeying the following fluctuation-dissipation relations:

�F�t�	 = 0, �F�t�F�t��	 = 2�kT��t − t��1 , �3�

where � . . . 	 indicates the statistical average.
The rate of monomers sliding from one subchain to the

next obeys the one-dimensional �1D� Langevin equation,

�s
a0

n0
ṅ =

3kT

b2 
 ri

ni
−

ri−1

ni−1
� − �� + f , �4�

where n0 and a0 are the equilibrium number of monomer
involved in subchain and equilibrium length of subchain re-
spectively. The first term on the right-hand side of Eq. �4� is
the elastic tension difference between the i−1th and ith sub-
chains, along the chain. The third term, f , on the right-hand
side of Eq. �4� is a Gaussian random force obeying the fol-
lowing fluctuation-dissipation relations in 1D,

�f�t�	 = 0, �f�t�f�t��	 = 2�skT��t − t�� . �5�

The chemical potential in Eqs. �1� and �4� is derived from a
free energy density, A, as �=�A /�n. The fee energy density
is defined as a function of the monomer density, �, as

���

���

1

1

2 3
4

FIG. 1. �Color online� Schematic illustrations of subchains connected to �a�
an entanglement node and �b� an end node. The entanglement node has four
subchains, j= �1,2 ,3 ,4, and the end node has a single subchain, j=1.
Closed circle indicates the entanglement node, and open circle the end node.
Solid segments indicate subchains connected to each node.
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A���
kT

=
1

2
���	
1 −

�

��	
�2

, �6�

where � is the phenomenological modulus for incompress-
ibility, and ��	 is the average monomer concentration in the
system. In the PCN model, the monomer density, �, is evalu-
ated on a discretized regular mesh with a mesh size a0. In
other words, we calculate the monomer density in the kth
mesh, �k, as the sum of all the monomers in the mesh such
that

�k =
1

a0
3 �

l�k
�
j�l

�
nj

2
, �7�

where the second summation in Eq. �7� is taken over the jth
subchain connected to the lth node, and the first summation
is taken over all the nodes in the kth mesh. To calculate the
thermodynamic forces, the monomer density, ��r�, at the
position, r, is approximated by �k of the kth mesh to which
r belongs.

The reconstruction of an entanglement network is repre-
sented by a rule for the addition and removal of entangle-
ment nodes at chain ends. The rule is adopted every �s

=�sa0
2 /3kT, which is the characteristic time of node diffu-

sion, by monitoring the number of monomers in the end
subchains. If this number falls below a certain lower thresh-
old, n /n0�1 /2, the entanglement next to the examined sub-
chain is removed. Conversely, if the number of monomers in
the end subchains exceeds an upper threshold, n /n0�3 /2, an
entanglement is newly created on the end subchain by hook-
ing one of the surrounding subchains. The addition and re-
moval events are dealt with in a way essentially similar to
that of previous version of the PCN model.12

III. WALL BOUNDARY MODEL

In this section, we present a WB model for the PCN
model. We focus on purely geometrical confinement effects
of the wall on the polymer; namely, we suppose that the wall
interacts with the polymers only in an excluded volume man-
ner. In addition, we assume that �1� near-wall subchains are
regarded as Gaussian, �2� near-wall nodes are thermally fluc-
tuated the same as those in bulk, �3� the local structure of a
subchain perturbed by reflection reaches equilibrium within
the Rouse time of the subchain, and �4� thermal fluctuation
dominates the movement of a reflected node within a certain
time much less than the Rouse time of the subchain. These
assumptions mean that polymer chains near the wall behave
like those in bulk within the Rouse time of the subchain.

From assumptions 1–4, the node is scattered randomly
from the point at which it collides. The probability density
function, f�x ,	td�, of a distance vector, x, from the colliding
point and a diffusing time, 	td, from the collision obeys the
diffusion equation,

� f�x,	td�
�	td

= D
� f2�x,	td�

�x2 , �8�

where D is the diffusion coefficient of the node. The prob-
ability density, f�x ,	td�, satisfies the following initial and
boundary conditions:

f�x,0� = ��x� , �9�

� � f�x,	td�
�x

· n�
WB

= 0, �10�

where we set the origin of the coordinates to the collision
point. In Eq. �10�, n is the unit vector normal to the wall. To
solve Eq. �8�, we decompose the probability density function
into normal and parallel components,

f�x,	td� = f��x�,	td�f ��x�,	td� . �11�

Here, x� and x� represent the normal and parallel compo-
nents of x. Solving Eq. �8� with the initial and boundary
conditions in Eqs. �9� and �10�, the probability density func-
tions are derived as

f��x�,	td� =
1

�
D	td

exp
−
�x� − v�	td�2

4D	td
� , �12�

f ��x�,	td� =
1

�4
D	td

exp
−
�x� − v�	td�2

4D	td
� . �13�

Here, v� and v� are the normal and parallel components,
respectively, of the wall velocity vector.

Since the WB describes the behavior of the node at the
wall, we should also define a mean field potential near the
wall to solve the Langevin equations. In this study, we intro-
duce the chemical potential of the node in the wall, �wall,
which includes the self-avoidance of the subchain due to the
wall.

From assumptions 1–4, the diffusion coefficient should
be equal to that in bulk within the Rouse time of the sub-
chain. Thus, the diffusion coefficient can be expressed using
the friction coefficient of the node,

D =
kT

�
. �14�

Here, we confirmed that the measured diffusion coefficient
within the Rouse time of the subchain in periodic boundary
simulations agreed with that estimated by Eq. �14�. The ex-
cluded volume interaction between wall and polymer is mod-
eled as the chemical potential of the wall, �wall.

Figure 2 shows how to determine the diffusing time, 	td.
We shall consider the time evolution of the nodes from time
t1 to time t2 �we write 	t12= t1− t2�. The positions of the node

∆td

{x1, t1}

{x2, t2}
{xw, tw}

∆t1w

∆t12

FIG. 2. �Color online� Schematic illustration of how to determine the dif-
fusing time 	td in the WB model. Arrows indicate the trajectory of the node
�closed sphere�. The node is reflected by the WB �solid line�.
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at t1 and t2 are denoted by x1 and x2, respectively. We assume
that the collision position, xw, is on a line between x1 and x2.
Therefore, the elapsed time until the collision is estimated as
��xw−x1� / �x2−x1��	t12. Thus, the rest time 	td can be esti-
mated as 	td= �1− ��xw−x1� / �x2−x1��	t12, and can be re-
garded as the diffusion time from the collision point. In Sec.
IV, we simulate the dynamics of entangled chains confined in
slit channels using the PCN model with the proposed WB
model.

IV. SIMULATIONS

Time unit is normalized by the relaxation time of sub-
chains, �s, distance by the equilibrium length of subchain,
a0�=bn0

1/2�, number of monomers by the equilibrium number
of monomers contained in a subchain, n0, energy by kT, and
friction by �s. The discretized forms of Eqs. �1� and �4� used
for Euler integration become

�̃	R̃ = 	t̃��
j

�
r̃ j

ñj

−
1

3
�̃�̃� + �2�̃	t̃w , �15�

	ñ

�̃
= 	t̃�
 r̃i

ñi

−
r̃i−1

ñi−1
� −

1

3
�̃�̃� +�2

3
	t̃w , �16�

where tilde indicates the normalized value. w and w are
Gaussian random vectors in 3D and 1D, respectively, with
zero mean and unit variance. The time step for integrating
the Langevin equations, 	t̃, is set as 0.01. The reflection by
the WB is performed after every update of positions in Eq.
�15�. The relative position vector of reflected node from the
colliding position on the wall, x̃, is determined by Eqs. �12�
and �13� as

x̃� =�2	t̃d

3
�̃�w� + ṽ�	t̃d, �17�

x̃� =�2	t̃d

3
�̃w + ṽ�	t̃d. �18�

To reconstruct the entanglement network, the addition and
removal of entanglement nodes are employed every unit
time.

Simulation boxes with a size of L�W�W are confined
by parallel walls, where L is the slit width and varies from
3a0 to 32a0 �see Fig. 3�. Each chain has the number of mono-

mers, M, set to 5n0, 8n0, 10n0, 16n0, and 20n0. W varies with
respect to M: W=6a0 �M =5n0�, W=8a0 �M =8n0 and 10n0�,
and W=12a0 �M =16n0 and 20n0�. The number density of
monomers is set to 10n0. The phenomenological modulus, �,
in Eq. �6� is set to 3. The chemical potential of the wall,
�wall, is set to ����	�.

Figure 4 shows snapshots of a condensed polymeric liq-
uid confined in a slit channel with M =10n0 and L=8a0. The
figures show that the configuration of each chain in a con-
densed liquid is changed dynamically. To explain the effect
of the wall on chain dynamics, we focus on three parameters:
the projected components of radius of gyration, relaxation
time of the end-to-end vector, and diffusivity of the center of
mass of chains.

The position, G, of the center of mass of each chain is
defined as

G =
1

Nt
�

i

ni + ni+1

2
Ri, �19�

with the total number of monomers, Nt, in the chain. Ri and
ni are the position vector and the number of monomers of the
ith node, respectively. The mean-square radius of gyration,
Rg

2, is defined as

Rg
2 =� 1

Nt
�

i

ni + ni+1

2
�Ri − G�2� . �20�

Then, let Ri be the component of the  axis of Ri. The
projected component normal to the walls, Rg�, and that par-
allel to the walls, Rg�, are defined as

Rg�
2 =� 1

Nt
�

i

ni + ni+1

2
�Rix − Gx�2� �21�

and

x
z

L
W

y
W

FIG. 3. �Color online� Schematic illustration of a simulation box confined in
the slit channel. x, y, and z are defined as displayed. A simulation box with
a size of L�W�W is confined by two parallel WBs, where L is the slit
width along the x axis. Periodic boundaries are applied to the other
boundaries.

100 step 200 step 300 step

(b)

(a)

FIG. 4. �Color online� Snapshots of �a� all and �b� single liner chains con-
fined in a slit channel with M =10n0 and L=8a0. Red spheres indicate end
nodes, yellow spheres entanglement nodes, and blue lines subchains.
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Rg�
2 =� 1

Nt
�

i

ni + ni+1

2

�Riy − Gy�2 + �Riz − Gz�2

2 � , �22�

respectively.
Relaxation time is monitored through the autocorrelation

function, CP�t�, of the end-to-end vector, P, of each chain,
given by

CP�t − t0� =
�P�t − t0�P�t0�	

�P�t0�P�t0�	
. �23�

In the long time region, CP�t� is well described by a single
exponential decay function, from which we obtain the long-
est relaxation time, �P.

In-plane diffusivity, D�, is calculated from the mean-
square distance �MSD� of the center of mass of the chain,

MSD = ��Gy�t + t0� − Gy�t0��2 + �Gz�t + t0� − Gz�t0��2	

= 4D�t . �24�

V. RESULTS AND DISCUSSION

Figures 5–8 show Rg�, Rg�, �P, D�, and the number of
entanglements, Z, respectively, as functions of the slit width,
L, which is normalized by the average of the radius of gyra-
tion Rgb calculated by the simulation with a box that is peri-
odic in the y and z directions. The decrease in Rg� shown in
Fig. 5�a� can be understood as the confinement effect of the
wall, which is reasonably attributed to the Neumann bound-
ary condition. Although the trends of Rg�, �P, and D� with
respect to L shown in Figs. 5�b� and 7 are similar to those of
dilute liquid, the origin of these trends is based on different
factors from dilute liquids. It is physically reasonable that
these average parameters converge to the bulk values with
increasing slit width.

The PCN model does not introduce excluded volume
interactions, but it has the osmotic term to realize a certain
uniformity of the network. Therefore, because the system
box is applied with periodic boundaries except the walls, the
osmotic pressure parallel to the walls must be statistically
homogeneous in the system. Therefore, the force that ex-
pands chains parallel to the walls can be balanced with that
of compressing the chains. Thus, the change in Rg� has no
relation with that of Rg�, but is caused by another factor. The
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8
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�

M /n
0
=

10-1
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0 0 .5 1

R
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�
�

R gb / L

���

���

FIG. 5. �Color online� Variation of mean-square radius of gyration as a
function of slit width, L. Mean-square radius of gyration is projected in the
direction �a� normal, Rg�, and �b� parallel, Rg�, to the wall. Gradually Rg�

decreases and Rg� increases.
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FIG. 6. �Color online� Plots of relaxation time �P of the end-to-end vector as
a function of L. �P gradually increases as L decreases.
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FIG. 7. �Color online� Plots of in-plain diffusivity D� of the center of mass
as a function of L. D� gradually decreases as L decreases.
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0
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R gb / L

FIG. 8. �Color online� Plots of the mean number of entanglement Z per
single chain as a function of L. Z gradually increases as L decreases.
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process of creating entanglements in the PCN model is a
possible factor of the change in Rg�. In the PCN model, an
entanglement is newly created in a certain definite domain
around the end of the chain. As schematically shown in Fig.
9, because the entropy of subchains decreases near the wall,
the density of subchains near the wall becomes lower than
that in the center of the channel, i.e., bulk hereafter. Thus, the
position of newly created entanglements near the walls is in
the bulk rather than near or on the wall. This elongates the
average distance between the end of the chain and the new
entanglement compared to that in bulk. The length of sub-
chains connected to the new entanglement also becomes
longer than that in bulk. Consequently, the radius of gyration
of the chain near the wall increases. Although the walls do
not confine the polymer chains in the parallel direction to the
walls, the average radius of gyration in the parallel direction
becomes larger by these elongated chains near the walls.
Obviously, narrowing the slit enhances this apparent increase
in Rg� because the contribution of the near-wall domain
dominates that of the bulk in the narrower slit. Thus, the
increase in Rg� is likely to be caused by the process of cre-
ating entanglements in the PCN model.

Figures 6 and 7 show that narrowing the slit width in-
creases �P and decreases D�. Although a decrease in D� is
reported in the case of dilute polymeric liquid confined in a
slit, the mechanism here seems to be different from that in
the case of dilute polymers. According to scaling theory,
polymer chains in dilute solutions can be modeled as self-
avoiding chains of blobs, and the friction coefficient of a
chain is proportional to the number of blobs. According to
Ref. 1, narrowing the slit width increases the number of
blobs, and thus decreases D�. In our condensed polymeric
liquid model, the confinement effect on the mobility is
mainly caused through entanglements because the friction of
the entanglement determines the mobility of the chain. Fig-
ure 8 shows that narrowing the slit width increases the num-
ber of entanglements. In addition, because the PCN model

used in this study assumes that the friction of the entangle-
ments is constant independent of the density of monomers,
the friction of the chain depends only on the number of en-
tanglements. Thus, the increase in the number of entangle-
ments directly relates to the decrease in D� and increase in �P
in this simulation.

Next, let us consider how the number of entanglements,
Z, contributes to D� and �P. From the dimensional analysis,
D� and �P can be related to the friction of the chain,

�P � �c, �25�

and

D� � �c
−1, �26�

respectively. Assuming that the friction coefficient is propor-
tional to the number of entanglements, �c�Z, we obtain

�P � Z , �27�

D� � Z−1. �28�

Therefore, �P and D� are scaled by �P /Z and D�Z, respec-
tively. Figure 10 supports these scaling laws.

It becomes apparent that the increase in the number of
entanglements determines the mobility of chains. Next, let us
consider why the number of entanglements is increased
when the slit width narrows. Because reflections from the
walls affect polymers near the wall only, we focus on the
process of creating new entanglements near the wall �see Fig.
11�. In the PCN model, a new entanglement is created near
an end subchain when the number of monomers in the end
subchain exceeds a threshold value. Thus, this addition rule
involving monomer motions probably causes an increase in
entanglements. Because there are few monomers near the
wall, as mentioned earlier, the osmotic pressure gradient is
directed to the wall. This osmotic pressure gradient slides
monomers to the wall along the chain. However, because end
subchains prefer to stay near the wall due to the recovery of
entropy reduction, these end subchains create new entangle-
ments using these monomers near the wall. Consequently,
the number of entanglements increases near the wall. As the
slit width narrows because the ratio of the near-wall domain
to the entire system box becomes larger, the average number
of entanglements increases. Thus, the observed increase in
the number of entanglements is due to the nature of entangle-

FIG. 9. �Color online� Schematic illustration of the process of creating
entanglements near the wall. The hooking partner to create a new entangle-
ment is sought in a sphere of radius a �circle in the figure�. The center of the
figure is located at the end node of a chain �open yellow circle�. Possible
partners are all subchains in the sphere �solid segments�. Other subchains
are indicated as dashed segments. Apparently, the position of the newly
created entanglement is closer to the bulk side than the wall side.
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FIG. 10. �Color online� Scaling laws of the number of entanglement for the
relaxation time and in-plain diffusivity. �a� Plots of the relaxation time
scaled by �P /Z, and �b� plots of the in-plain diffusivity scaled by D�Z as a
function of L. Z is normalized by the average number of entanglement, Zb,
calculated by the simulation with periodic boundaries in every direction.

214907-6 Okuda et al. J. Chem. Phys. 130, 214907 �2009�

Downloaded 21 Apr 2010 to 130.54.110.32. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



ment reconstruction in the PCN model, and hence it may not
occur in reality. However, we shall avoid further modifica-
tion of the PCN model at present because there have been no
reports on addition of entanglement around the wall, to the
authors’ knowledge.

VI. CONCLUSION

We developed the WB model for the PCN model to
simulate the dynamics of condensed polymeric liquids con-
fined in a slit channel. Simulations using the WB model
show the following characteristics. When the slit width was
decreased, Rg� was reasonably decreased by the confinement
effect of the wall on polymer chains. Rg� was increased by
the expansion of chains due to the process of creating en-
tanglements near the wall. As the slit width narrowed, �P was
increased and D� was decreased. These trends relative to the
width could be explained by their dependence on the number

of entanglements, �P�Z and D� �Z−1, because the friction of
each chain was proportional to the number of entanglements.
A possible factor affecting the increase in the number of
entanglements was the process of creating entanglements in
the near-wall domain.

To confirm whether the results are consistent with physi-
cal phenomena, we need to know the real trend of the num-
ber of entanglements. For example, we point to analyzing
primitive passes of chains near the wall using more detailed
simulations, such as the MD method.15 Even if the real trend
might be different from our results, a possible modification is
to tune the number of entanglements by altering the process
of creating entanglement without changing the proposed WB
model.16
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FIG. 11. �Color online� Schematic illustration of the increase in the number
of monomers condensed in an end subchain, focusing on a chain with en-
tanglement nodes �closed circles� and subchains �solid segments�. Open
circle indicates the end node of a chain located near the wall. All other nodes
and subchains are indicated as dashed circles and lines, respectively. The
osmotic pressure gradient is directed normal to the wall �open arrow�. The
number of monomers in the end subchain is increased by monomers in the
near-wall chain sliding to the wall �closed arrow�.
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