Title
Near-field evidence of local polarized emission centers in InGaN/GaN materials

Author(s)
Micheletto, Ruggero; Allegrini, Maria; Kawakami, Yoichi

Citation
APPLIED PHYSICS LETTERS (2009), 95(21)

Issue Date
2009-11

URL
http://hdl.handle.net/2433/109905

Copyright 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in APPLIED PHYSICS LETTERS 95, 211904 (2009) and may be found at http://link.aip.org/link/APPLAB/v95/i21/p211904/s1

Type
Journal Article

Textversion
publisher

Kyoto University
Near-field evidence of local polarized emission centers in InGaN/GaN materials

Ruggero Micheletto,1,a) Maria Allegreni,2 and Yoichi Kawakami3
1Nanoscience and Technology, International Graduate School of Art and Sciences, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
2Department of Physics “E. Fermi,” University of Pisa and CNISM, Largo Pontecorvo 3, 56127 Pisa, Italy
3Department of Electronic Science, Graduate School of Engineering, Kyoto University, Nishigyo-ku, Katsura, 615-8510 Kyoto, Japan

(Received 21 July 2009; accepted 28 October 2009; published online 24 November 2009)

We study the optical polarization properties of confined structures in InGaN/GaN single quantum well devices. Using a near-field optical setup we investigated the photoluminescence maps with a polarization-modulation method. If the optical emissions have a preferred polarization orientation, our apparatus yields a signal that is proportional to the degree of polarization. We could demonstrate that within the quantum well there are localized submicrometer centers that emit strongly oriented light. This points toward the existence of quantum-dot like confined asymmetric domains hidden within the quantum well. © 2009 American Institute of Physics. [doi:10.1063/1.3265732]

Wide band solid state materials are used internationally in the effort to realize more efficient and more luminous optical devices as light emitting devices, lasers, and similar objects. Indium gallium nitrides (InGaN) are currently used for various applications in this field, for example, the creation of shorter wavelength devices for optical memory read/write applications1,2 or for illumination systems.2

It has been noticed,1–3 that the optical emission of these samples is not uniform but is characterized by a granular structure with localized stronger centers. The nature of these confined higher emission domains is not clear; they present peculiar shapes, can show blinking,4 and often are heard to be associated with quantum dots or highly confined dotlike features in the crystal structure. These can be defects or impurities that somehow act as carriers traps in the quantum well.1,2 Many researchers suspect that these structures may have an inherent orientation or symmetry5 that can be observed optically by analyzing the polarization properties of the emission. In this letter we study for the first time an InGaN sample in high resolution with a very straightforward polarization-modulation technique.

The structure of a typical GaN/InGaN/GaN device is shown in the picture (Fig. 1). The active layer is a 3 nm quantum well. Indium concentration varies creating some-what peaked at different values as shown in the right panel. A typical memory read/write applications1 or for illumination the quantum-well devices. Using a near-field optical setup we investigated the photoluminescence maps with a polarization-modulation technique. If the optical emissions have a preferred polarization orientation, our apparatus yields a signal that is proportional to the degree of polarization. We could demonstrate that within the quantum well there are localized submicrometer centers that emit strongly oriented light. This points toward the existence of quantum-dot like confined asymmetric domains hidden within the quantum well. © 2009 American Institute of Physics. [doi:10.1063/1.3265732]

The structure of a typical GaN/InGaN/GaN device is shown in the picture (Fig. 1). The active layer is a 3 nm quantum well. Indium concentration varies creating some-what peaked at different values as shown in the right panel. A typical memory read/write applications1 or for illumination the quantum-well devices. Using a near-field optical setup we investigated the photoluminescence maps with a polarization-modulation technique. If the optical emissions have a preferred polarization orientation, our apparatus yields a signal that is proportional to the degree of polarization. We could demonstrate that within the quantum well there are localized submicrometer centers that emit strongly oriented light. This points toward the existence of quantum-dot like confined asymmetric domains hidden within the quantum well. © 2009 American Institute of Physics. [doi:10.1063/1.3265732]
where there is local dichroism, signal will be oscillating at intensity at the phototube will be constant in time. Instead, if photoluminescence has not particular polarization, the in-lock-in that we call hereafter PM-SNOM map. It represents the intensity of the evanescent optical field in the near-field optic emission between the sample and the photodetector probe. The PL light is filtered by a linear filter (Polaroid) that is put in front of the sample on small scales can be considered of constant transparency, the emission will be still circular, and the signal at the PMT will be constant in value. If this condition is not true, the light will be filtered in amplitude by the Polaroid at the frequency of rotation of the Polaroid. A lock-in amplifier synchronized to this frequency will amplify all the relevant modulations.

The physical meaning of a SNOM map is well known, it represents the intensity of the evanescent optical field in the vicinity of the sample surface. A PM-SNOM map is instead the results of the lock-in filtering, so it is an information related to the local polarization properties of the sample. If photoluminescence has not particular polarization, the intensity at the phototube will be constant in time. Instead, where there is local dichroism, signal will be oscillating at ω_r. The amplitude of the oscillation represent how elliptic is the beam and it is measured directly at the phototube (PMT). A zero to one type of signal at PMT represents a linear polarization whereas a 0.9 to one signal represent an elliptic beam with 10% ratio between the two axis. The sample is scanned on the xy-plane, only the position dependent polarization properties are relevant in these maps. Polarization changes introduced by the birefringence of the tip or other tip-introduced spurious phenomena are not relevant because they are not position dependent and result in a mere elliptical excitation light, or a background offset in the PM-SNOM image. Naturally, the unavoidable polarization distortion introduced by the tip should be not too big. In fact, for our system to work and exhibit polarization contrast, the excitation beam polarization should cover all the angular spectrum. If this is not true measurements would not be possible, we could verify that the JASCO probes used conserve polarization well enough to have a reasonable quasircular excitation beam and good polarization contrast in our maps.

We modeled and simulated the whole optical cascade, considering also the effects of real instrumentations as lock-in and photon counter. If the xy index indicates all position-dependent parameters, the signal mapped by the lock-in R_{xy} is proportional to

$$R_{xy} = k_{xy} \frac{\pi \rho_{xy}}{2 \omega_r},$$

where k represents the local transparency of the sample, whereas ρ is the actual polarization map. This parameter [Eq. (1)] is null where there are not polarization changing properties and it is linearly proportional to them. Since our sample on small scales can be considered of constant transparency, k_{xy} is a constant for all points xy. Because ω_r is another constant, the lock-in R_{xy} map is proportional to the polarization properties of the sample. See Fig. 2 for a simplified visual scheme of the principle of operation of the setup. Simultaneous maps are recorded and shown in Fig. 3; the near field optic emission (a) and the lock-in map (b). In (a) there are visible areas of higher optical intensity caused by the typical Indium concentration variations.

The lock-in generated map (b) reveals a confined area of strong polarization that is not detectable in the standard SNOM map (a). This indicates the relevance of the methodology to put forward quantum dot like local polarization-changing domains that could not be detected normally. A residual background position-independent intensity is due to spurious polarization introduced by the optical probe dichroism. Also, all the features in (b) do not have corresponding counterpart in (a), demonstrating that there are not artifacts due to cross talk. In Fig. 4 we show another example of quantum-dot like features revealed by the tests, panel (b) shows that the feature has strong polarization properties.
Measurements were done with a scanning speed of 36 ms per pixel, integrating with the lock-in with a time constant $\tau=10$ msec. Total scan time was of about 40 min. A residual horizontal elongation of features is an instrumental artifact due to the slow integration time compared to the scan speed.

The presence of highly confined carrier traps can induce the local ILCs mapped. The fact that some of them have inherent polarization properties can be related to the geometrical symmetry of the confinement. If there are asymmetries or preferred orientation in the trap, we may observe the local polarization revealed by our tests.5,17,18

In other tests we do not show here for reason of space, it was noticed that not all the ILCs do have polarization properties, suggesting that asymmetrical strain is not a general characteristic of them but emerges randomly without a recognizable pattern.

This technique provides a high-resolution methodology for the general investigation of any optical emitting material to realize better understanding on the optical emission fundamental mechanism and possibly pave the way for the realization of better and more efficient devices.

We would like to thank Akio Kaneta, Kazunobu Kojima, and Dr. Tatsuo Nakagawa of Unisoku Ldt for helpful discussions and technical support with the SNOM apparatus. This study received financial contributions from the Strategic Research Project K20019 of Yokohama City University and from the executive program of scientific cooperation between Italy and Japan (Project 31).