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Abstract 

 

In our previous study, a computer simulation scheme based on Doi-Onuki 

theory is proposed to simulate the dynamics of the shear-induced phase separation in 

semi-dilute polymer solutions [KOBUNSHI RONBUNSHU 2007, 64, 324]. The 

scheme employs Ianniruberto-Marrucci model as a constitutive equation to express the 

viscoelastic behavior of the solution explicitly. The scheme enables us to simulate the 

time-evolution of stress as well as that of shear-induced structure upon shear-jump. In 

this study, we explain the conformation of polymer chains. The dynamics of the 

polymer chains agrees with those in the “solvent squeeze” model which interprets the 

shear-induced phase separation phenomena in semi-dilute polymer solutions by Saito et. 

al [Macromolecules 1999, 32, 4879]. 
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1. Introduction 

 

When shear flow is imposed to a semi-dilute polymer solution in its one phase 

region, the solution exhibits strong turbidity. Ver Strade and Philippoff[1] firstly found 

this phenomenon in polystyrene(PS)/dioctyl phthalate(DOP) and PS/decaline solution 

under the shear flow in a capillary tube. Since then, many experimental and theoretical 

studies on the phenomenon have been done in order to understand the phenomenon 

called the shear-induced phase separation. Wu et al[2] investigated the shear-induced 

structure of PS/DOP by light scattering and found that the scattering intensity was 

enhanced in the first and third quadrants of qx-qy plane, where q=(qx,qy,qz) is the 

scattering vector and x, y, and z direction are, respectively, the flow direction, the 

velocity gradient direction and the neutral direction. The unique scattering pattern for 

the shear-induced structure is called “butterfly pattern”. 

The scattering pattern in qx-qz plane for the shear-induced structure of the semi 

dilute polymer solutions has been also observed by light scattering[3-7] and small angle 

neutron scattering.[8,9] In qx-qz plane, the butterfly patterns where the scattering 

intensity increases along qx-axis have been found. Kume et al[7] investigated time 

evolution of stress and concentration fluctuations upon shear-jump by means of both 
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flow light scattering and rheological mesearment for PS/DOP. The butterfly pattern 

appeared in light scattering of qx-qz plane upon shear jump and the peak positions of the 

butterfly pattern shifted to small angle with time according to the coarsening of the 

phase-separated structure under shear flow. In the time-evolution of stress, several 

overshoots due to growth of the phase-separated structures were found in addition to the 

first overshoot associating with disentanglement. 

Theoretically, in order to explain the shear-induced phase separation, Doi and 

Onuki proposed two fluid model[10]. In this model, in order to include the effects of the 

spatial inhomogeneity of stress field on the dynamics of concentration fluctuations, the 

gradient term of the stress tensor is incorporated into Ginzburg-Landau type free energy 

functional. The computer simulation of the shear-induced phase separation with the two 

fluid model has been firstly done by Onuki et al.[11,12] Subsequently, Okuzono[13] 

numerically studied the dynamics of the shear-induced phase separation and the 

time-evolution of rheology of polymer solution under shear flow in two dimensional 

space on a basis of two fluid model by using Smoothed-particle hydrodynamics method. 

Furukawa and Onuki[14] observed the chaotic behavior in shear-induced phase 

separation phenomena at higher shear rate. In all simulation, the structure factors of the 

phase-separated structures under shear flow exhibit the butterfly patterns with the peaks 
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in the first and third quadrants of qx-qy plane as experimentally observed by Wu[2]. Our 

group[15] has simulated the time-evolutions of concentration fluctuations and stress 

upon shear-jump in three dimensional spaces by using the two fluid model with the 

condition similar to Kume’s experiments[7]. In our simulation, the concentration 

fluctuations were enhanced and the butterfly pattern was observed in qx-qz plane as well 

as qx-qy plane as observed experimentally, indicating that the simulation can well 

describe the behaviors of the concentration fluctuations of the polymer solution under 

shear flow. However the stress observed in our simulation increased monotonically and 

then became constant, and did not show any overshoot behaviors observed in the 

experiment by Kume. The discrepancy in the behavior of stress between our simulation 

and experiment originates from the usage of Maxwell model as constitutive equation in 

our simulation. It is well known that Maxwell model employed in our simulation cannot 

describe the non linear viscoelasticity of the solution correctly[15]. Subsequently, we 

developed a computer simulation scheme to simulate the behavior of the mechanical 

properties of the solution exhibiting shear-induced phase separation well, as well as the 

time-evolution of the concentration fluctuations[16]. In order to express the viscoelastic 

behaviours of the semi-dilute polymer solutions correctly, we incorporated the 

Ianniruberto-Marrucci(IM) model[17-19] instead of Maxwell model to the two fluid 
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model as a constitutive equation. The IM model includes i) entangled chains relaxation 

by reputation, ii) constraint release (both thermal and convective), and iii) stretch 

relaxation (include the effect of upper limited stretch), and was found to be able to 

describe the viscoelastic behaviors of polymer solutions well. In this study, we focus on 

the conformation of polymer chains which is characterized by the chain stretch rate and 

the orientation of segments. 

The contents of this paper are as follows: In Section 2, we will describe the 

detail of the simulation scheme of the time dependent Ginzburg-Landau type equation 

with IM model, where the effects of concentration fluctuations are included. In Section 

3, we will show the results of the simulation, and the characteristic of the simulation 

results. Finally we will conclude our results in Section 4. 
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2. Simulation Scheme 

 

According to the two fluid model[10], the change in the volume fraction of 

polymer !
 
with time t  is expressed by 

,
    

(1) 

where v , L , µ , p!  and J  are, respectively, the velocity field, the Onsager kinetic 

coefficient, the chemical potential, the stress tensor, and the thermal noise. The 

chemical potential is given by20 
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where Bk  is the boltzuman coefficient, T  is the absolute temperature, a  is the 

statistical segment length of the polymer, N  is the polymerization index, !  is the 

Flory-Huggins interaction parameter per monomer, and 0!
 
is the initial volume 

fraction of polymer. L  is given by[21,22] 

0
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with 0!
 
being the viscosity of solvent. The velocity field follows the Stokes equation 

under the incompressible condition: 

,
     

(4) 

with p  being pressure. 
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According to the fluctuation dissipation theorem[23] ijJ  is expressed by 

ijBji ttTLktJtJ !!! )'()'(2)','(),( "">=< rrrr .   (5) 

According to IM model[17-19], the stress tensor is given by 

,
      

(6) 

where ( )G !  is the plateau modulus in a semi-dilute polymer solution at ! , S
 
is the 

tensor of the average tube orientation, !  is the stretch ratio and max!  is upper limit of 

stretch ratio. The concentration dependence of the plateau modulus ( )G ! [24] is 

expressed by 

2.3( )G G! !=        (7) 

with G  being the plateau modulus in bulk of polymer. The time evolution of S  is 

given by 
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where pv  is the velocity field of polymer, k  is the velocity gradient tensor, and !  

is the relaxation time of tube segment. !

 

is given by 
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where ( )d! "  and ( )R! "

 

are the reptation time of a semi-dilute polymer solution and 
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the Rouse time of a semi-dilute polymer solution at ! , respectively. The concentration 

dependence of the reputation time ( )d! "  and ( )R! "  is expressed by[24-26] 

2.8( )d d! " ! "=        (10) 

and 

1.0( )R R! " ! "= ,       (11) 

where d!  and R!  are, respectively, the reputation time and the Rouse time in bulk of 

polymer. The time evolution of !  is given by 
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Here, we numerically solve the above equations (1) to (12) on a 256×256 

square lattice. The x  and y  axes of the lattice are defined as the flow and the 

velocity gradient directions, respectively. To apply the shear flow to the system in the 

simulations, we used the coordinate transform method[27]. In the method, we deformed  

space coordinates   r = (x, y)  at t0 to ' ( ', ')x y=r  by 

       (13) 

yy =' . 

at t1, where Δt= t1- t0. 

Then, we rewrite the gradient term as 

 ' ( , )
' ' 'x y x

!" " "# = $
" " "

,      (14) 
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so that the deformed Laplacian is 

 2 2 2' ( ) ( )
' ' 'x y x

!" " "# = + $
" " "

     (15) 

with being t! != !  is strain. 

The procedure of the application of shear flow with equation (13) is shown 

schematically in Figure 1. The lattice is deformed by tilting y -axis by a factor of !  

with t  (Figure 1(a) to (c)). When !  become 1, the lattice is restored to the original 

position with the following equations : yxx !='  and yy =' (Figure 1(c) to (a)). This 

process is repeated in the simulation. There are two advantage points in the coordinate 

transform method in comparison with shifting method[28,29]. One is that the coordinate 

transform method is free from the errors caused by Lees-Edwards boundary condition 

used in shifting method along y -direction. The schematic diagram of shifting method 

is shown in Figure 2. In shifting method, the usual periodic boundary condition is used 

along x -direction. For 2 dimensional matrix of matrix! (0,0)-(255,255) used in our 

simulation, we set ! (256,ny)=

 

! (0,ny) and ! (-1,ny)=

 

! (255,ny). On the other hand, 

along y-direction or velocity gradient direction, we need to use Lees-Edwards boundary 

condition to follow shear flow. In Lees-Edwards boundary condition, we also set 

! (nx,256)=

 

! (nx,0) and ! (nx,-1)=

 

! (nx,255). However, the position of ! (nx,256) 

and ! (nx,-1) is, respectively, shifted along x -direction by 256 t!!  and -256 t!! , thus the 
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position of ! (nx,256) and ! (nx,-1) becomes (dnx+256 t!! ,256) and (dnx-256 t!! ,-1), 

where d is lattice size. Since x -value of the position become off-lattice, we have to 

interpolate the boundary values from the shifted lattice. On the other hand, the errors do 

not occur in the coordinate transform method, since periodic boundary condition can be 

used for both x -axis and y -axis in the coordinate transform method. The other is that 

the Fast Fourier Transform (FFT) can be applied to solve Stokes equation[30] in 

coordinate transform method while the iteration method has to be used to solve Stokes 

equation in shifting method. The applicability of FFT results in the reduction of 

computational time. 

We use the following reduced variables for space, time and concentration, 
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Equations (1), (2), (4), (6) and (8) are respectively reduced to these equations, 
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In this study, we used !~" =1.38, 2.3
0G!! !  =2.5, 2.8

0d! "!! =100.0, 1.0
0R! "!! =0.267, and 

max! =2.5. 
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3. Result and Discussion 

 

Figure 3(a) shows the time-evolution of the concentration fluctuations obtained 

by the simulation scheme under shear flow with the reduced shear rate !!" =0.05. At 

0< t! <60, the concentration fluctuations do not seem to change with time. At 60< t! , the 

concentration fluctuations grows with time and the string-like domain was formed, the 

domains coarsen with time. The time-evolution of the concentration fluctuations shows 

that shear-induced phase separation occurs under shear flow. On the other hand, under 

shear flow with !!" = 0.01, the concentration fluctuations are not enhanced even at 

t! =2000, as shown in Figure 3(b). This suggests that critical shear rate for shear-induced 

phase separation exists between 0.05 and 0.01. 

Figure 4 shows the time changes in the structure factor at !!" =0.05. At t! =80, 

the structure factor start to increase and the peaks in structure factors appear in the first 

and third quadrants of qx-qz plane. The peaks then shift towards smaller q with time. 

The peaks in structure factors are observed in the first and third quadrants of qx-qz plane. 

This tendeicy agrees with the experimental result by Wu[2], indicating that the scheme 

can simulate the time-evolution of the concentration fluctuations. 

First, we focus on the shear rate dependence of shear-induced phase separation. 
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Figure 5(a) shows time evolution of the spatial average of variance !"  at shear rate 

!!" =0.01, 0.04, 0.05 and 0.1. !"  is defined by 

2
0( )!" " "= < # >! ! ,      (22) 

where <･･･> denotes spatial average. At !!" =0.04, 0.05 and 0.1, the concentration 

fluctuation increases according to the time-evolution of phase separated structure under 

shear flow. On the other hand, !"  dosen’t increase with time at !!" =0.01. Figure 5(b) 

shows the steady-state !"  as a function of !!" . The discontinuity can be found between 

0.025 and 0.04, indicating that the critical shear rate is around 0.03. The terminal linear 

viscoelastic relaxation time w!!  is calculated with IM model at 0! !=  found to be 50 

in this simulation. According to experimental result[30], the critical shear rate and the 

inverse of the longest relaxation time are, respectively, 3.56!10-2s-1 and 2.08!10-2s-1 

for PS/DOP solution at 27 C°  and the critical shear rate 0.03 is slightly higher than the 

inverse of w! . The critical shear rate in our simulation is nearly equal to 1/ w!! =0.02, 

agreeing with the tendency of the experimental results. 

Figure 6 shows !" , the spatial averaged shear stress xy!!  and spatial 

averaged normal stress difference 1N!  as functions of time at !!" =0.05(a) and 

!!" =0.01(b). xy!!  and 1N!  are given by 

,     (23) 
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and 

.   (24) 

In the time evolution of xy!!  at !!" =0.05, the first overshoot appears around t! =36, and 

then several small overshoots appear. The overshoots were not observed in our previous 

simulation with Maxwell type constitutive equation[15]. The overshoots behaviors 

agree well with the experimental results by Kume et al[7], indicating that the new 

simulation scheme can well simulate not only the shear-induced structure but the stress 

overshoots behavior. We also plotted the time-evolution of shear stress calculated by 

using IM model at 0!  in Figure 6(a). Although time-evolution of shear stress at 0!  

exhibits the first overshoot, any overshoots don’t appear after the first overshoot. Thus, 

the overshoots after the first overshoot is caused by the shear-induced phase separation. 

Similar to the behavior of shear stress, the time-evolution of normal stress difference 

1N!  also shows the first large overshoot and several small overshoots after the first 

overshoot. However 1N!  calculated with IM model at 0! , does not exhibits any 

overshoots. Thus, the overshoots found in the simulation are caused by the 

shear-induced phase separation. In the case of !~! =0.01(Figure 6(b)), the shear-induced 

phase separation doesn’t occur, the first small overshoot thus appears in the time 

evolution of xy!!  and 1N!  doesn’t show the overshoot behavior. It should be noted that 
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the first terms of equation (23) and (24) are found to be much larger than the second 

terms arising from the surface tension in two-phase states. Thus 

 and  in this simulation condition, 

reflecting that the surface tension doesn’t contribute to shear stress in two-phase states. 

Next, we will discuss the change in conformation of polymer chains under 

shear flow. In the constitutive equations in eqs. (6) to (12), the conformation can be 

characterized by the chain stretch rate !  and the orientation of segments S. Thus, we 

investigated the increment of ! , !" , and the degree of orientation |a|/|b|, to clarify the  

time change in conformation under shear-induced phase separation process. Here !"  

is defined as 

1!" "= # .
       

(22) 

a and b are, respectively, the vector of main axis of average tube orientation and that 

perpendicular to a. We also investigated the angle !  between a and x -axis. Figure 7 

shows conc!"  and dilute!"  as functions of strain !  at !!" =0.05 and !!" =0.01. Here 

conc!"  is !"  averaged in concentrated region at which !  is larger than 0! , while 

dilute!"  is !"  averaged in dilute region which !  is smaller than 0! . In the case of 

!!" =0.01, !"  increases with time at ! <2, and then becomes constant at ! >2. At 

!!" =0.01, the entanglements can well relaxed in the diffusion process of polymer chains 
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so that any overshoot cannot be observed in !" . On the other hand, in the case of 

!!" =0.05, we observe the overshoot behaviors due to the entanglements in both conc!"  

and dilute!" , and the behaviors of conc!"  and dilute!"  are identical with 0!"  calculated 

with 0!  at ! <3. Since the concentration fluctuation has not been developed at ! <3, 

the solution behavior as homogeneous one and the first overshoot is caused by the 

remained entanglements. After first overshoot, conc!"  decreases while dilute!"  increase 

with ! , and the tendency conc!"  > 0!"  > dilute!"  appears at ! >3, reflecting that 

polymer chain in dilute region in stretched by shear flow. 

Figure 8(a) shows |a|/|b| with !!" =0.05 and !!" =0.01, and figure 8(b) shows !  as 

function of !  with !!" =0.05 and !!" =0.01. In the case of !!" =0.01, the behavior of 

(|a|/|b|)conc and (|a|/|b|)dilute are identical with that of (|a|/|b|)
0!
, and the behavior of dilute!  

and conc!  is also identical with that of 
0!

" . On the other hand, in the case of !!" =0.05, 

before !"  increase with !  ( ! <5), |a|/|b| increase and dilute!  and conc!  decrease 

with ! . At 5<! <20 where !"  increases with ! , |a|/|b| decreases and !

 

increases 

gradually in concentrated region, while |a|/|b| decreases and !

 

decreases slightly in 

dilute region. Finally, at 20<! , both |a|/|b| and !  then fluctuates with time in both 

regions. 

The behaviors of the conformation in polymer chains agree with those in 
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“solvent squeeze” model[32] which explains the shear-induced phase separation 

phenomena in semi-dilute polymer solutions. The thermal concentration fluctuations in 

one phase region of the semi-dilute solutions give rise to the inhomogeneity of 

entanglement density. If we apply the shear flow to the solution, the concentrated region 

was not deformed well while the dilute region was deformed more than that in the 

concentrated region. In the case when shear rate is larger than the inverse of terminal 

relaxation time, the polymer chains cannot relax well by disentanglement. The polymer 

chain in dilute region is stretched by shear flow and becomes unstable in terms of 

conformational entropy. In order to relax the unstable stretch, the stretched polymer 

chains retract toward concentrated region. The retraction enhances the concentration 

fluctuations and the phase-separated structure is eventually formed under shear flow. 

In the simulation at !!" =0.05, !"  and |a|/|b| decrease and !

 

increases 

associating with the evolution of concentration fluctuations. These results indicate that 

the conformation of polymer chains can be relaxed in developing concentrated region, 

while agrees with the dynamics of polymer chains of the “solvent squeeze” model. 
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4. Conclusion 

 

We developed the new computer simulation scheme based on Doi-Onuki 

theory, with the Ianniruberto-Marrucci as the constitutive equation, and simulated the 

shear-induced phase separation with the scheme in two dimensions. The enhancement of 

the concentration fluctuations occurs under shear flow, the scattering pattern shows 

so-called “butterfly pattern” and first stress overshoot by disentanglement appeared and 

some overshoot after the first overshoot can be observed. These results agree with 

experimental results in terms of structure and mechanical properties. We can 

characterize the changes in the conformation of polymer chains with time during 

shear-induced phase separation with !" , |a|/|b|, and ! . The time changes in the 

parameters reflects that the conformation of polymer chains in concentrated region 

associating with concentration fluctuations, and agrees with the dynamics of the polymer 

chains in the “solvent squeeze” model. 



20 
 

References 

[1]  Ver Strate G, Philippoff WJ, J Polym Sci Polym Lett Ed 1974; 12: 267. 

[2]  Wu, XL, Pine DJ, Dixon PK, Phys Rev Lett 1991; 66: 2408. 

[3]  Hashimoto T, Fujioka K, J Phys Soc Jpn 1991; 60: 356. 

[4]  Hashimoto T, Kume T, J phys Soc Jpn 1992; 61: 1839. 

[5]  Saito S, Hashimoto T, J Chem Phys 2001; 114: 23. 

[6]  Saito S, Hashimoto T, Morfin I, Lindner P, Boue F, Macromolecules 2002; 35: 

445. 

[7]  Kume T, Hattori T, Hashimoto T, Macromolecules 1997; 30: 427. 

[8]  Boue F, Lindner P, Europhys Lett 1994; 25: 421. 

[9]  Morfin I, Lindner P, Boue F, Macromolecules 1999; 32: 7208. 

[10]  Doi M, Onuki A, J Phys II France 1992; 2: 1631. 

[11]  Onuki A, Yamamoto R, Taniguchi T, J Phys II France 1997; 7: 295. 

[12]  Onuki A, Yamamoto R, Taniguchi T, Prog Colloid Polym Sci 1997; 106: 150. 

[13]  Okuzono T, Mod Phys Lett B 1997; 11: 379. 

[14]  Furukawa A, Onuki A, Physica D 2005; 205: 195. 

[15]  Takenaka M, Nishitsuji S, Taniguchi T, Yamaguchi M, Tada K, Hashimoto T, 

Polymer 2006; 47: 7846. 



21 
 

[16]  Nishitsuji S, Takenaka M, Taniguchi T, Hasegawa H, KOBUNSHI 

RONBUNSHU 2007; 64: 324. 

[17]  Ianniruberto G, Marrucci G, J Non-Newtonian fluid Mech 2000; 95: 363. 

[18]  Ianniruberto G, Marrucci G, J Rheol 2001; 45: 1305. 

[19]  Ianniruberto G, Marrucci G, J Non-Newtonian fluid Mech 2002; 102: 383. 

[20]  de Gennes PG, J Chem Phys 1980; 9: 72. 

[21]  de Gennes PG, Scaling Concepts in Polymer Physics, Cornell University Press, 

Ithaca, 1979. 

[22]  Onuki A, J Phys Condens Matter 1997; 9: 6119. 

[23]  Binder K, J Chem Phys 1983; 79: 6387. 

[24]  Adam M, Delsanti MJ, Physique 1984; 45: 1513. 

[25]  Osaki K, Inoue T, Uematsu, T, J Polym Sci Part B Polym Phys 2000; 38: 3271. 

[26]  Osaki K, Inoue T, Uematsu T, Yamashita Y, J Polym Sci Part B Polym Phys 

2001; 39: 1704. 

[27]  Onuki A, J Phys Soc Jpn 1997; 66: 1836. 

[28]  Lees AW, Edwards SF, J Phys C 1972; 5: 1921. 

[29]  Naitoh T, Ono S, J Chem Phys 1979; 70: 4515. 

[30]  Koga T, Kawasaki K, Phys Rev A 1991; 66: 1836. 



22 
 

[31]  Endoh KM, Saito S, Hashimoto T, Macromolecules 2002; 35: 7692. 

[32] Saito S, Matsuzaka K, Hashimoto T, Macromolecules 1999; 32: 4879. 



23 
 

Figure Captions 

Figure 1.  The procedure of the application of shear with the coordinate transform 

method. The lattice is deformed into (a) to (c) up to 1/t != !! " . Then right part 

of the lattice in (c) (shaded region) is moved to left of the lattice and resume 

the deformation process. 

Figure 2.  The procedure of the application of shear with the shifting method. 

Figure 3.  Time changes in the concentration fluctuations with (a) 0.05! =!"  and with 

(b) 0.01! =!" . 

Figure 4.  Time changes in the structure factors with 0.05! =!"  in qx-qy plane. 

Figure 5.  Time evolution of average variance !"  with !!" =0.01,0.04,0.05,0.1 as 

function of strain !  (a) and the shear rate dependence of !"  (b). 

Figure 6.  The volume fraction and stress field as functions of time at 0.05! =!"  (a) 

and 0.01! =!"  (b). Open circles, Open squares and Open triangles indicate 

!" , xy!!  and 1N  respectively. Solid lines and broken line indicate xy!!  

and 1N  with 0!!  respectively. 

Figure 7.  conc!"  and dilute!"  as functions of !  with 0.05! =!" . Open circles and open 

squares indicate conc!"  in the concentrated region and dilute!"  in the dilute 

region with 0.05! =!" , respectively. The solid line indicate in both 
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concentrated region and dilute region with 0.01! =!" . The broken line 

indicate !"  in homogeneous state with 0.05! =!" . 

Figure 8.  |a|/|b| as function of !  (a). Open circle and open square indicate |a|/|b| in 

the concentrated region and |a|/|b| in the dilute region with 0.05! =!" , 

respectively. The solid line indicate |a|/|b| in both concentrated region and 

dilute region with 0.01! =!" . The broken line indicate |a|/|b| in homogeneous 

state with 0.05! =!" . !  as function of !  (b). Open circle and filled square 

indicate !  in the concentrated region and !  in the dilute region, 

respectively. The solid line indicate !  in both concentrated region and 

dilute region with 0.01! =!" . The broken line indicate !  in homogeneous 

state with 0.05! =!" . 
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Figure 1. (a)                 (b)                     (c) 
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Figure 3. (a) 
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0t =!               400t =!              2000t =!  

Figure 3. (b) 
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Figure 4. 
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Figure 5. (a) 
 

 
Figure 5. (b) 
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Figure 6. (a) 
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Figure 6. (b) 
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Figure 7. 
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Figure 8. (a) 
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Figure 8. (b)
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