Dynamic van der Waals Theory: A Phase Field Model of Fluids

Author(s): Omiki, Akira

Citation: 物性研究 (2004), 83(3): 323-324

Issue Date: 2004-12-20

URL: http://hdl.handle.net/2433/110129

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Dynamic van der Waals Theory
A Phase Field Model of Fluids

Kyoto Univ. Akira Onuki

In usual theories of phase transitions, the fluctuations of the temperature \(T \) are assumed to be small and are neglected. However, there can be situations in which phase transitions occur in inhomogeneous \(T \). For example, wetting properties near the gas-liquid critical point are very sensitive to applied heat flux and boiling processes remain largely unexplored [A. Onuki, Phase Transition Dynamics (Cambridge, 2002)]. To treat such problems we propose to start with a coarse-grained entropy rather than a Ginzburg-Landau free energy. For one-component fluids, let an entropy functional \(S \) be determined by the local number density \(n = n(r,t) \) and the local internal energy density \(e = e(r,t) \) as

\[
S = \int dr \left[ns - \frac{1}{2} C |\nabla n|^2 \right]
\]

(1)

We assume that \(s = s(n,e) \) is the entropy per particle defined as a function of \(n \) and \(e \). The gradient term represents a decrease of the entropy due to inhomogeneity of \(n \). We introduce the local temperature \(T' = T(n,e) \) by

\[
\frac{1}{T'} = \frac{\delta}{\delta e} S
\]

(2)

where \(n \) is fixed in the derivative. For the special form of Eq.1 we simply obtain \(1/T = n(\partial s/\partial e)_n \). Maximization of \(S \) under a fixed total particle number \(\int dr n \) and a fixed total energy \(\int dr e \) leads to the equilibrium conditions \(T' = \text{const.} \) and \(h/T' \equiv \delta S/\delta n = \text{const.} \). As first derived by van der Waals, the equilibrium interface density profile \(n = n(x) \) is determined by \(h = \mu(n,T') - C T \delta^2 n/dx^2 = \text{const.} \) [J.S. Rowlinson, J. Stat. Phys. 20, 197 (1979)]. In the van der Waals theory \(s = s(n,e) \) is given by

\[
s = k_B \ln[(e/n + \epsilon v_0 n)^{d/2}(1/v_0 n - 1)] + \text{const.}
\]

(3)

where \(v_0 \) and \(\epsilon \) are positive constants representing the molecular volume and the magnitude of the attractive potential, respectively, and \(d \) is the space dimensionality.

The reversible part of the stress tensor reads

\[
\Pi_{ij} = p \delta_{ij} + CT \left[\nabla_i n \nabla_j n - (n \nabla^2 n + |\nabla n|^2/2) \delta_{ij} \right]
\]

(4)

where \(p = n(\mu + s') - e \) is the van der Waals pressure. The mass density \(\rho = mn \) obeys the continuity equation. The momentum density \(J = \rho v \) and the energy density obey appropriate dynamic equations.
including the gradient part of the stress tensor. The entropy production rate dS/dt within the fluid is non-negative-definite if there is no heat flow from outside.

We give a numerical solution of our phase field model imposing a wetting boundary condition on all the boundaries. At $t = 0$ we placed a gas droplet at the center of the cell in equilibrium at $T' = 0.875T_c$. The bottom boundary was then increased by a constant $\Delta T = 0.054T_c$ for $t > 0$, while the top boundary was held at the initial temperature. There is no gravity, while we use "bottom" and "top". Fig.1 shows droplet migration toward the bottom, caused by a Marangoni effect. See a first report: N. O. Young et al., J. Fluid Mech. 6, 350 (1959) (where bubbles and liquid were different fluids and there was no first-order transition at the interface). Fig.2 displays the velocity and the temperature in the steady state. It is a new finding that the velocity component through the interface is nonvanishing, leading to latent heat transport. Because it is highly efficient, a flat temperature or no temperature gradient appears inside the droplet. In the steady state the gas droplet apparently wets the bottom partially, while a very thin liquid layer is sandwiched between the bottom boundary and the droplet. We can define an apparent contact angle θ_{eff}, which is a decreasing function of $\Delta T'$. Garrabos et al. observed in space that gas spreads on a heated wall initially wetted by liquid and exhibits an apparent contact angle even larger than $\pi/2$ [Phys. Rev. E 64, 051602 (2001)]. With further increasing $\Delta T'$ the heated wall is completely covered by gas, eventually leading to film boiling in gravity.