Quantum anomaly and effective field description of a
quantum chaotic billiard
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Introduction

In this work, we investigate the effective field description of a quantum chaotic billiard
from a novel perspective — quantum anomalies in spectra. The relevance of the anomaly
to a quantum billiard is most easily understood by noting different spectral structures
between classical and quantum theories. Whereas classical dynamics has continuous sym-
metry along the energy, e.g., by changing the momentum continuously without altering
the orbit in space, such continuous symmetry is absent quantum mechanically since dis-
crete energy levels are formed. By examining the algebraic structure,on the energy shell,
we will show the presence of anomalous part, i.e., the Schwinger-type term. Its presence
enables one to construct effective fields as phase variables without any additional coarse- -
graining nor ensemble averaging, while the spectral Husimi function acts as the amplitude

degree of freedom. Some technical details are reported elsewhere [1].

Effective field theories of quantum dots Effective field theories of quantum dots
by the supermatrix nonlinear-sigma (NL-0) model have been successful in describing
disordered metals with diffusive dynamics [2]. Not only describing quantum interference
phenomena, it has provided a direct proof of the BGS conjecture [3] stating that the level
correlations of quantum chaotic systems in general obey the Wigner-Dyson statistics.
By seeing the success of effective field description in diffusive systems, the same zero-
dimensional model has been anticipated in a ballistic chaotic system and a great effort

has been put forth to extend the framework toward it [4].
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The validity of these ballistic NL-o models, however, is not so transparent unlike the
diffusive counterpart. Soon after initial derivations, it has been recognized that such a
theory has some (unphysical) zero mode vertical to the energy shell and nothing suppresses
those fluctuations [4]. As a result, how to attain the necessary “mode-locking” has been

questioned. Here we will find an explanation by the anomaly carried by each level.

Sepctral QFT (QFT with the energy coordinate)

Our purpose is to derive the classical-quantum correspondence for the time scale longer
than the Ehrenfest time. We are particularly concerned with “classicalization” of the
quantum theory in a quantum chaotic billiard. We will show that the existence of the
Wigner-Dyson correlator is closely related to the generic symmetry on the energy shell.

Let us consider a generic quantum chaotic billiard, by which we mean no special
symmetry in spectra. We begin with the full quantum theory, Heoo(r) = £,04(r) with
eigen energies £, and eigen functions ¢,(r). When we attach independent fermionic
creation/annihilation operators %! and 1, to each level, the field operator on a certain
energy shell ¢ is defined by ¢(rt) = [*_v(re) e */"de and 9(re) satisfies

{#(r1e1), ¥ (roe2) } = 8(e1 — €2) (11| 8(e2 — H) |r2) - (1)

Interestingly the system may rather be viewed as the one-dimensional system along the
“e-axis” with some internal degrees of freedom attached.

The field 9 (re) is subtle. It exists only at € coinciding with one of eigen energy levels,
when it diverges due to discrete spectrum. This intrinsic divergence must be regularized
usually by introducing the Dirac delta function with some broadening 1. However, the
prescription is incomplete for composite fields such as currents. Correctly, we need to
define the current operator by using the normal-ordering :: as j(r,7';¢) = : ¥ (r'e)y(re) :.

An appropriate definition of : : is given by decomposing % into (%) parts by

vatre) =3 [~ g 0=t =0 )
(Walre) hire)} = L0 s - M. @)

Noting 276'(2) = (2 —in)~2 — (2 + in) 2, we readily evaluate the current commutator as

[]'(7'1,"‘;'; 51),j(r2,r§;52)] = 0(e1 — €2) [(”'1[‘5(52 - H)I”"z)j("'lprz;‘fz) ~ (1 2)]

+§(7°2l5(61 — H)Ir)(r1lé(e2 — H)|rp)d' (61 — €2), (4)

where we clearly confirm the anomalous contribution as the last term.
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Spectral QFT on the phase space Though the above commutator determines the
current algebra completely, working on the bilocal operator j(r,r’) is unpleasant. A way
to circumvent it is to recast j onto the classical phase space. Surprisingly, in spite of
prevalent uses of the Wigner representation, we find that the Husimi representation (the
wave-packet representation) is needed to identify the exact symmetry of the algebra. The
Husimi representation of j is defined as (x|j(e)|z) (still an operator) by is the coherent
state |) centered at = (q,p). The definition can be equally rewritten in terms of the
field operator for the wave-packet ¥(z) = [dr{z|r)y(r) as j(xz;e) = : Yi(z; )P (z;€) .
The operator ¥(x; €) obeys {¢(x;¢;), ¥ (x;2)} = 8(e1 — €2) H(x) where H(x;e) is the

spectral Husimi function. Hence we can write Eq. (4) as

s 1), s e2)] = 5 H (s 1) H(ws€2)6 (2 — ) (5)

This reveals that j(x, )/ H(x, ) satisfies the Abelian Kac-Moody algebra ezactly at each
. We can complete bosonization by introducing chiral boson fields ¢(z;¢€) by j(x;€) =
H(x;€) O.¢(x; ). Note the dual field ¢ is meaningful only when the “amplitude” H(x;¢)

does not vanish. Therefore the mode-locking is fulfilled automatically.

Supersymmetric extension In considering the n-point spectral correlation, it is neces-
sary to evaluate the n-fold ratio of the determinant correlator []._, det(es; —H)/ det(ew —
H). As a result, the relevant symmetry is enlarged to the general linear superalgebra
g = gl(n|n) in the simplest (unitary) case. The preceding treatment can be extended

straightforwardly by using the superbracket [-, -] and the corresponding current operator
Ja(x, ;) = Yl(z; ) X (x; €) : X, €1ig. (6) -

One can check the current commutator as before to find that j,(x;e)/H(x;€) satisfies
exactly the Kac-Moody algebra of a corresponding Lie superalgebra at each . Hence
the effective field theory is described by the (chiral) WZNW model defined by the field

g(x; €) on the corresponding Lie supergroup, and the current can be expressed as
j(x;e) = H(z:e) g7 0g(; €). (7)

Connection with the standard NL-o formulation By recognizing the convoluted
function (¢ —¢’414n)~! in Eq. (2) is a Fourier transform of the step function, the projection
onto (+) may be regarded as the decomposition into the retarded (R) and advanced (A)

components. We can make the correspondence explicit by writing

stz = (%), wma=(ﬁﬁ, ®
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where bg 4 (fr,4) are bosonic (fermionic) fields to generate the retarded/advanced Green
functions. With the source term proportional to the energy difference, one can construct
the color-flavor transformation [5] at each at each = to obtain the supermatrix NL-o
model. The only modification crucial for the mode-locking problem is the presence of the
spectral Husimi function instead of the average DOS. In this way, the supermatrix NL-o

model with the exact DOS can be derived in a ballistic system.

Husimi vs. Wigner representations The difference between the Husimi and the
Wigner representations is worth mentioning. In the former, the symmetry can be iden-
tified ezactly as the Kac-Moody type. In the latter, a similar algebra can be obtained
approzimately by a semiclassical expansion, which is genrally hard to justify by wild
oscillations of the Wigner functions. The necessity of using the Husimi representation
enforces one to consider coarse-grained semiclassical dynamics (wave-packet dynamics) in

evaluating the nonuniversal deviation.

Concluding remark

An extension to the time-reversal symmetric system is also possible, where the relevant
symmetry is enlarged to osp(2n|2n). Any additional symmetry is accommodated similarly.

The usefulness of the present construction is not limited to quantum chaos and dis-
ordered systems. It seems possible to extend the present approach even to interacting
electrons, where U(1) symmetry no longer exists to each level, yet we have one global
U(1) phase. Hence the bosonization is possible at Er. Apparently, the present scheme
is closely connected with the Luther-Haldane bosonization in arbitrary dimension, but a

direct comparison remains to be seen at present.
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