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1 Introduction

Various models for the experimental realization of quantum computation have been pro-
posed [1]. Kane [2] proposed the quantum computation by nuclear spins in a semiconductor,
where the nuclear spin of the dopant atom 3!P implanted into the silicon substrate is a single
qubit and the quantum state is measured by detecting the charge of one electron around the
donor (i.e., 31P). Although the implantation of atoms with accuracy and the detection of the
single electronic charge are very difficult even in the present state of technology, the Kane’s
proposal has the possibility of realizing quantum computation by the use of multi-qubits, ap-
plying the several existing micro fabrication techniques of semiconductors. Furthermore, the
several important experimental techniques for the experimental realization of this proposal, for
example, the single ion implantation method [3] and the single electron transistor [4], have been
developed steadily.

In this paper, we discuss schemes for performing quantum gates in the Kane’s model based
on the adiabatic varying processes for the controllable parameters involving in it. So far, several
authors have researched the construction of quantum gates proposed by Kane. Hill and Goan {5]
showed the schemes of several single qubit operations, a controlled—Z gate and a controlled—NOT
(CcNOT) gate by instantaneously varying all parameters in the system, based on the perturbation
theory for the controlling parameters. However, an instantaneous variation of parameters is
only an idealized process in real experiments. Moreover, the potential errors could exist in their
scheme since they analyze the system approximately. Fowler [6] et al. showed numerically the
scheme of a CNOT gate based on the adiabatic controlling process for parameters and discussed
the effect of decoherence for it. It is important to understand the reason why their scheme works
successfully, comparing it with the more acceptable model than the original one. We analyze
the Kane’s model exactly when the rotating magnetic field is not applied, and show the scheme
of a phase shift operation and a controlled-Z gate.

2 Quantum gates based on adiabatic controlling processes

The Kane’s architecture, as is shown in Fig. 1, consists of the dopant atoms in a one dimen-
sional array embedded in a silicon substrate, the gates (A-gates) located right above each dopant
atom, and the other gates (J—gates) between the neighbouring dopant atoms.
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The Kane’s model for two qubits is described by the Hamiltonian, H(?) = $°2 | H 4 Jole.

o?e+ 2 L HE., where H' = —gnun Boi™ + pugBo'f + A;0%¢ - o'™, H}, = Boem' - (—gnpno'™ +
ppo'e), m’ = (cos(wact), sin(wqct), 0), o (kK = z, y, 2) is the Pauli Matrix, up is the Bohr
magnetic moment (upB = 0.116 meV), u, is the nuclear magnetic moment and g, is the g-
factor of 3P (gnpunB = 0.071 x 103 meV). The superscript e (n) in the Pauli matrix indicates
the electronic (nuclear) spin. The hyperfine interaction (HY) between the i—th nuclear spin and
the i-th electronic spin is A;0%¢ - '™ and is locally changed by controlling the voltage of the
i—th A-gate. The value of the HY is 0.121 x 1073 meV (= Ag) when the voltage of the A—gate is
vanishing, and the magnitude of A; weakens as the voltage of the i—-th A—gate decreases [2] The
electronic exchange interaction (EE) between the 1st and the 2nd electronic spins is Jo'€ - o?¢
and is locally changed by controlling the voltage of J-gate. We assume that it will be possible
to change the magnitude of the EE from J = 0meV to J ~ upB (2, 5. The third term in H (1,2)
is the rotating magnetic field, and plays important role in spin flip operations [2]. Hereafter, we
calculate the temporal behavior in the system when the rotating magnetic field is not applied.
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FIG. 1: The sketch of the Kane’s architecture. The dopant atoms are implanted at 20 nm inter-
vals. The static magnetic field is uniformly applied in the direction of z—axis and the magnitude
of it is 2 T. Furthermore, the rotating magnetic field is applied in a direction perpendicular to
z axis and the magnitude of it is about 1073 T. Temperature of the device is 100 mK.

Before calculating the time evolution of the system by adiabatically varying parameters, we
have to choose the suitable states to represent a qubit. Note that, in Ref. [5], the electrons are
assumed to be always polarized in the downward direction. However, this choice is not so good
for the A-gate operation. The logical states (|0)1; and|1)L ;) of the i—th qubit should consist of
the eigenstates for H: |0)1; = |u}) and |1)1; = |u), where |u}) and |u}) are the ground state
and the first excited state of H?, respectively. These states are no longer the eigenstates for o™
or ¢, because the value of the HY is non-zero. When we calculate the energy difference A01
between lui) and [uf), we find that A} ~ 2A;42g,un B; it is characterised by the magnitude of
the HY. Therefore, the phase dlfference between |ut) and |ul) is controlled by varying the value
of A;. Next, let us explain the relationship between the above logical states and the eigenstates
of H (1’2). We introduce the total spin operator S = (01™ + 01® 4+ 02" + 02°)/2 and the parity
operator P which permutates the index of qubit (i.e., i) between the identical particles. We
find that [S, H(I’Q)] = [P, H(m)] = 0 and H®? = ®spH(s,p), where s(= -2, -1, 0, 1, 2)
and p(= + —) are the quantum numbers for S and P, respectively, if the rotating magnetic
field is not applied and A; = Az. Non-zero parts of each H(s,p) are 4 X 4 matrices at most.
Therefore, the Hamiltonian H(1?) is diagonarized analytically. Introducing |v;) = |0)£,1]0) L2,
lvx) = (10)z,111)z,2 £ [1)£,1/0)2,2)/ V2, and |vs) = [1)1,11)1,2, we find that |v1), u.), [v-), and
|vg) are the eigenstates of H(0,+), H(-1,+), H(—1,—), and H(—2, +), respectively, if the value
of J is vanishing.

We achieve the phase shift operation for the i-th qubit, keeping J(t) = 0 and A;(t) = Ao
(j # 1), and varying A;(t) adiabatically. Introducing two parameters a (0 < a < 8) and Top(> 0),
we assume the time dependence of A;(t) as follows: A;(t) = Ag(1—a7?) for 0 < 7 < 1/4, A (t) =
Ao(1—a/8+a(r —1/2)?) for 1/4 < 7 < 1/2, and A;(t) = Ag(1l —a(r — 1/2)?) for 3/4 < 7 < 1,
where 7 = t/T,,. The parameter Ty, is just the operation time for the phase shift operation. The
parameter a is a dimensionless number. The initial state for the i—th qubit is spanned by |ug)
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and |u;). Therefore, the time evolution operator U*(Ty,) for the i-th qubit, due to the adiabatic
theorem, is written by U'(T,p) = T [exp(—ih‘1 [T Hi(t) dt)] ~ e~ 00 |ub) (ud] + e [ul ) (ud|,

where 6% = T,p{ fol(—Ai(s)— V/(gnnB + upB)? + 44;(s)?) ds} /A and & = Top (gnitn B— B+
) Ai(s) ds)/h. Generally, the terms related to |u})(ub| appears in U*(T,p) due to the structure

of H?, where |u}) is the 2nd excited state of H®. Let us write the adiabatic eigenstate of H()(¢)
for each instant of time as |ul(t)) (i-e., Hi(t)|ui(t)) = Ei(t)|ui(t))), and so on. The energy
difference between |ul(t)) and |u(t)) is characterized by the value of ugB. Therefore, the
adiabatic approximation for the above A;(¢) is valid. On the other hand, because the maximum
value of |Aj(t)| is characterized by a quantity which is smaller than the value of upB. We obtain
the two conditions of the parameters a and Top: (i) 85 — & = 2nm + 6 (i.e., the condition to
obtain the phase difference 6 between |0)1; and |1) ; for the i—th qubit) and (ii) 6 — 8] = 2mn
(i.e., the condition to obtain no phase difference between |0)r, ; and |1)1, ; for the other qubits),
where m and n are some integers.

Next, we construct the controlled-Z gate, keeping A; = Az = Ay, varying J(t) adiabatically.
Introducing four parameters J.(> 0), To(> 0), Tp(> 0), and 7. (0 < 7, < 1/2), we assume the
time dependence of J(t) as follows: J(t) = J£72 for 0 < 7 < 7, J(t) = J.(1 — n(T — 1/2)?)
for 7, < 7 < 1/2, J(t) = J  for 1/2 < 7 < 7 +1/2, J(t) = J.(1 — (T — 7 — 1/2)?) for
Th+1/2 < T < Te+T,+1/2, and J(t) = JE(r—1—m)2 for o+ 7, +1/2 < 7 < 7, + 1,
where £ = 2/7.,, n = 4/(1 — 27.), 7 = t/Ty, and 7, = T/T,. The operation time T, for
the controlled-Z gate is given by T,, = T, + T},. The parameter J. is the maximum value
of J(t). The parameter 7. is a dimensionless number. The initial state for the two qubis is
spanned by |v1), |v+), and |vg). Therefore, the time evolution operator for the two qubits,

due to the adiabatic theorem, is described by UM2(T,,) = T [exp(—ih_1 fOT » H1:2)(t) dt)] ~

S e R lup) (o | = (30, et |uk) (vk) (ZJ e~ |v;)(v; |) . We obtain the analytical expres-
sions for o and B; (k, j =1, 4+, —, 4), but we don’t write these explicitly in this paper because
they are rather complicated expressions composed of the eigenvalues of H(1?). The phase ay
and By are related to the process under which the value of J(¢) changes and the value of J(t) is
constant, respectively. The adiabatic approximation is valid for J. < 0.5upB in our assumption
for J(t), because there are the adiabatic eigenstates of H(1:?) between which the energy differ-
ence is characterized by the value of Ag as J(t) — 0.5upB. Let us write Ugge = 31, €% v ) (v |
and Ustar = Y 1 e‘iﬁklvk)(vkl. We obtain the conditions that U,g4. is equal to the single qubit
operation (0: ® 12)(1' ® 02) (0% = |0)1:(0] — [1)£+(1] and 1¢ = |0)L ;(0] + |1)1:(1]) as follows:
a1 —ax =T+ 2man and o] — ag = 2mym, where my and my are some integers. In general,
a controlled-Z gate U, () of the angle 0 is U, () = e 1373807 (1'® eig"g). A controlled-Z

gate is U.,(6 = 7/2). The operation e~159:89% hetween the two qubits consists of Uste: and the
phase shift operations and several spin flip operations. According to Ref. [5], we obtain the final
condition to determine the parameters as follows: 2(8+ — B-) = m. Therefore, the controlled-Z
gate in our scheme consists of the gate by instantaneously varying the parameters in Ref. [5] and
the correction term Upgge.

3 Numerical results

We show the results for the phase shift operation. We solve the equations of a and T, for given
# numerically. The integers m and n are free parameters. We show the results for m = —5 and
n = —6 in TableI, where the value of A,,;, is a minimum value of A;(t) and Amin = Ao(1—a/8).
The operation time T, is independent of the value of 8, and 0.05 us for m = —5, which is almost
equal to the result in Ref. [5]. We find that the phase shift operations are performed by varying
the HY up to Ap/2 at most. .

Next, we calculate the values of J. and 7, such that the operator U,q4. is equivalent to (a; ®
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0 w/4 | w/2 | 3n/4 vis
a 4.78 | 531 | 5.84 | 6.37
Amin/Ao || 0.402 | 0.336 | 0.270 | 0.203

TABLE I: The values of a and Ap;, for 6 = n/4,7/2, 3w/4, and w. The value of the free
parameters m and n for any 6 are —5 and —6, respectively.

12)(1! ® ¢2), by numerically solving equations (a1 — a4)/(a1 — ax) = 2my/(1 + 2mz). We
find that several solutions exist; for example, J./upB = 0.1988 (i.e., J. ~ 0.023meV) and
Te = 0.1925 for m4 = 1 and my = 0. The maximum value of J(¢) is 0.0423 meV in Ref. [5] and
0.056 meV in Ref. [6]. Our results are rather smaller than those values.

4 Discussion

In this paper, the schemes of the phase shit operation and the controlled—Z gate in the Kane’s
model have been researched, based on the adiabatic controlling processes of the parameters.
The phase shift operation for the i—th qubit is performed by varying A;(t) adiabatically. Its op-
eration time is estimated at about 1072 us. The controlled~Z gate consists of two time evolution
operators Ugq: and Uyg.: The element of controlled operations between two qubits involved in
Ustat- On the other hand, Uyq. is equivalent to the single qubit operation (0! ® 1?)(1! ® ¢2),
by adjusting the time dependence of the parameter, Actually, we have to use many spin flip
operations in the scheme of the controlled-Z gate. However, our recent calculation suggests that
there are potentially errors in the spin flip operations of the Kane’s original proposal. And, it
is important to research the temporal behavior of the system for J(t) > pupB/2, because it is
necessary to vary the value of it from 0 to upB in the measurement scheme of the Kane’s model.
In future, we would like to research the origin of such errors in detail.
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