
「量子系およびマクロ系におけるカオスと非線形動力学j

Dynamical versus static imperfections in quantum computers 

Pao16 Facchi，l Rosario Fazio，2 Simone Montangero，2 and Saverio Pascazio1 

1 Dipαrtimento di Fisicα， Universita di Bαri， 1・70126Bαri， Itαly 
αηd 1NFN， Sezione di Bαri， 1-70126 Bαri， Itαly 
2NEST-1NFM & Scuola No門η~ale Superiore， 
Piazzαdei Cavαl'ieri 7， 56126 Pisα， 1tαly 

切ww.qti.sns. it 

Abstract 

We study the e百ectsof imperfections in a spin model of a quantum computer. We identify 
different regimes， ranging from low-frcquency fluctuations， where the imperfections can be 
considered static， to the high-frequency case， where the imperfections are purely dynamical 
and their effects are shown to be completely wiped out. 

Dynamical errors， yielding decoherence， can be extremely detrimental in quantum 
computation [1]. On the other hand， the role of static imperfections， such as small 
inaccuracies in the coupling constants， is often considered on a different footing， 
as these do not induce， strictly speaking， any decoherence， but rather errors that 
can be tolerated up to a certain threshold [2]. Also， the role of static imperfections 
is regime dependent， and can be utilized as an indicator of an underlying chaotic 
dynamics [2]. 

However， strictu senso， a discrimination between “static" imperfections and “dy-
namical" noise is given by the physics and depends on the speed of the quantum 
computer: dynamical noise plays the role of static imperfectionsう ifits timescale is 

much larger than the computational time. We intend to explore this problem in 

more details and discuss the suggestion [3] that static imperfections can be more 

disruptive than noise for quantum computation. 

We model a quantum computer as a lattice of interacting spins (qubits). Due to 

the imperfections， the couplings between the qubits and with an external field are 
both random and fluctuate in time. We consider n qubits on a ιdimensionallatticeう

described by the Hamiltonian 

Hr(t) =玄[ムo+ oj(t)]aY) +乞Jij(t)ali)σ;j)? (1) 
j=l (i，j) 

where the σど)ぅs(α=ιy， z) are the Pauli matrices for q山 iti and the second sum 

runs over nearest-neighbor pairs. The number nc of terms in the second sum depends 
both on the arrangement and dimensionality and is proportional to nd. The energy 

spacing between the up and down states of a q山 itisムo+ Oi(t)う wherethe Oi (t) 's 

are uniformly distributed in the interval [-0/2ぅ0/2]and the Jij(t)'s in the interval 

[ーよJ](zero means and variances 02σ2 and 4J2σ2， respectively， with σ2 = 1/12). 
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FIG. 1: Error E as a function of T for t = 25， n = 10， J = 5 X 10-3， in the ergodic regime 
d = 5 X 10-3 = J， wiもhnU = 8，nj↑=  5 (squares)， nU = 13， n↑↑= 0 (triangles)， and in七he
FGR regime d = 3 X 10-1 << J， with nU = 8， n↑j = 5 (circles). We set 0'2 = 1/12， nc = 13， 
ムo= 1. The fits are given by Eq. (3) with n↑↓ = 8，n↑↑=  5 (dashed)， n↑1 = 13， n↑↑ =0 
(dot-dashed). The transition at九 isshown only in七heformer c部 e.
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We model the dynamical noise by supposing that both ゐ(t)and Jij(t) ra吋 omly

change after each time interval T and are constant otherwise. 

For J = d = 0 the spectrum of the Hamiltonian is composed of n + 1 degenerate 

levels， with interlevel spacing 2ム0，corresponding to the energy required to flip a 

single qubit. We study the case 0く d，J<<ム0，in which the degeneracies are 
resolved and the spectrum is composed by η+ 1 bands. In this limit the coupling 

between different bands is very weak and each state is effectively coupled to O(n) 
other states inside the band. Weωsume free boundary conditions and express all 

energies in uni tsムo(五 1). We study the behavior of the error (that is the 

logarithm of the五delity[4]) 

(2) Et(r) = -lnFt(r) = -ln I (w[T e叶イι叫
where T denotes time ordering. The behavior of E will be studied at fixed t as a 

function of T， the inverse仕equencyof the noise characterizing the fiuctuations of d 

and J. The initial state I宙)is taken to be an eigenstate of oY) (j = 1，・・・川)and 

we concentrate on the central band of zero total magnetization， characterized by the 
highest density of states， and for which one expects the effect of noise to be most 
pronounced. 

An exact calculation of the error to order J2 can be carried out explicitly [5]. We 
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only give here the approximate expression at a fixed time t 三7:
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7 く 7p

7pくアく 7c

ア > 7c， J ~ 8 
7 > 7c， Jく 8/η

(all regimes) 

(all regimes) 
(ergodic regime) 

(FGR regime) 

(3) 

where nc = n↑↓ +η↑↑ is the total number of linksヲ n↑i(n↑↓) being the number of 
nearest-neighbor parallel (antiparallel) pairs in the initial state. Notice that， unlike 
niL and n↑↑， nc does not depend on the initial state I宙)but only on the geometry 
of the spin lattice. 

In Fig. 1 we show the behavior of Et(7) for different values of 8. In the stαtic 

situation (large 7， so that 8's and J's can be considered constant) system (1) is 
characterized by two distinct dynamical regimes: the Fermi Golden Rule (FGR) 

(Jく Jc)and the ergodic regime (J > Jc)， where Jc rv 8/η[2， 3]. The FGR holds 
below threshold (weak coupling J ~ 8) and is characterized by a Lorentzian local 

density of states. The ergodic regime takes place in the strong-coupling regime 

8 ~ J， when all the levels inside the band participate to the dynamics [6] and the 

local density of states coincides with the (Gaussian) density of states. The fidelity 

九(ァ)[仕omwhich the error (2) is computed] is always the Fourier transform of the 

local density of states [6]. 
When 7 becomes smaller， the imperfections become dynαm'tcαl and different 

regimes emerge as a function of the仕equency7-
1
. The tr.ansition at 7 = 7c occurs 

when the error starts deviating from the linear behavior given by Eq. (3). As 7 く九

the two distinct (ergodic and FGR) behaviors characterizi時 thestatic case (c∞om 

pared i泊nFig. 1 only for the sets with n↑↓= 8) cannot be resolved anymore. The 

additional kink at 7 竺 7p=π/4ムosets in when the single spin dynamics starts to 
play a role. As a global feature， the error tends to vanish linearly with 7. 

In concl usionヲ belowa given (frequency) threshold， the errors can be considered 
static， and thus can be corrected by using any of the known methods. One observes 
in this case two different dynamical regimes. Above this threshold these regimes 

become unresolved. The difference between these regimes， found for static imper-
fections， holds also in the quωi-static case. On the other hand， unitary dynamical 
errors average to zero in the high仕equencycase. Our results can be relevant in the 

context of the strategies that have been proposed during the last few years in order 

to suppress decoherence [7]. 

These results are independent of the form and the size of the quantum computer. 

They remain valid under quite general conditions on the system Hamiltonian [5]， 
allowing a more general application of these findings. Our results show that it 

is crucial to optimize the computing timescale， by 
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