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Dynamics of Traveling Patterns under Spatio-Temporal Forcing
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1 INTRODUCTION

Various self-organized patterns emerge in non-equilibrium open systems. Spatio-temporal
structures of these patterns have been studied extensively both experimentally and theoretically
for many years [1, 2]. The effects of external forcing of these patterns have also been investigated
with tremendous interest due to their potential application for nano/mesoscopic domain control
in material sciences.

However, there are less extensive studies for the effects of external forcing of non-uniform
systems having a spatially regular structure. Only recently, experiments and theoretical con-
sideration have began for Turing patterns influenced by spatio-temporal forcing. For example,
effects of illuminating light on a spatially periodic structure are investigated in chemically re-

acting systems (3, 4].

2 CHEMICALLY REACTIVE TERNARY MIXTURES

We employ the model system of phase separation undergoing chemical reactions introduced
previously [5]. This mixture is composed of three chemical components A, B and C where A

and B species tend to segregate each other and there is a cyclic chemical reaction
ASLBZCc B4 (1)

with the reaction rates 1, 2 and 3. We assume that other components are also involved in the
chemical reaction, which are supplied to and removed from the system and their time scale is
sufficiently rapid to be regarded as constant in both space and time. Therefore these components

modify only the reaction rates.
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By introducing the local concentrations ¢ 4, ¥ and ¥¢ of A, B and C components respectively,

the time-evolution equations are given by [5]

oY OF

ot = Vg W) (2)
9 _
50 = 9®:9), 3)

where ¥ = 4 —¥p and ¢ = ¥4 +1¥ 5. We have imposed the condition 14 + ¥ g +¥¢c = 1 which
is justified by the assumption of the uniformity of other chemical species as mentioned above.

The free energy functional F is given by
D 2 T 2,14
z 4
F /dr[2(V¢) 211) +4¢]’ (4)

where D and 7 are positive constants. For simplicity, we have ignored (V¢)? term and ¢
dependence of 7. The last terms in egs. (2) and (3) arise from the chemical reaction (1) and are

given, respectively, by
)
f(¢,¢)=—(71+52)¢—(71-%+73)¢+73, (5)

9w, ¢) = X 1/) ( +73)¢+73 (6)

It has been shown that the set of equations (2) and (3) has a motionless periodic solution and
a traveling wave solution depending on the parameters [5].
The uniform stationary solution of egs. (2) and (3) are readily obtained by putting f = g = 0.

The linear stability analysis gives us the bifurcation diagram as shown in Fig. 1 [5].

3r
25}
14 2 L
P h b X X
Stationary uniform state

1 1 e 1 n i A 1
0 005 0.1 015 0.2 0.25 0.3 0.35 04
Y2

B 1: Bifurcation diagram for the uniform stationary solution for D = 1, y; = 0.3 and 73 =
0.05. The full line and the dotted line are the Hopf-type bifurcation line and the Turing-type
bifurcation line respectively.
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3 NUMERICAL SIMULATIONS

In order to study the behavior above the bifurcation lines we have carried out numerical
simulations of egs. (2) and (3) in one dimension. The Euler method is employed and a periodic
boundary condition is imposed. A motionless periodic pattern appears in the region indicated
by x in Fig. 1 whereas a propagative wave pattern appears in the region +. The value of 7 at
the Hopf-type bifurcation point for v9 = 0.16 is 7, & 1.46 at which the critical wave number is
¢c =~ 0.9 and the critical frequency w. =~ 0.07. Hereafter we choose (by the initial condition) a
wave traveling to the right without loss of generality.

The spatio-temporal forcing is added to the right hand side in egs. (2) and (3) as
['(z,t) = ecos(gsz — Nt). (7)

This is a sinusoidal force traveling to the right at the velocity ©2/qs. Here we suppose that the
system is exposed through a periodically arrayed slits by illuminating light with an oscillating
intensity. As a result, we assume that the reaction rate «y3 is modified such that v3 — 3 + I'.
We have ignored a term I'¢ arising from the 3¢ term in egs. (5) and (6) providing a sufficiently
small forcing e.

Here we show only the results for g5 = g.. The parameters are chosen as 7 = 1.6 and v = 0.16.
Figure 2 summarizes the behavior on the 2 — ¢ plane. The region indicated by + shows that the
traveling wave is entrained with the external force so that it propagates at the velocity 2/qy.
When the frequency 2 of the external forcing is far away from w,, entrainment breaks down and
the traveling wave is modulated. These respective behaviors are shown in the space-time plot

of the concentration ¢ in Fig. 3.
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B 3: Space-time plot of ¥. The value of 1
is large (small) for lighter (darker) regions.
The parameters are ¢ = 0.006,Q = 0.07,
e = 0.005,Q = 0.01, e = 0.006,Q = 0.0,

[ 2: Phase diagram for v = 0.16, 7 = 1.6
and qf = ¢.. The solid line is the theo-
retically obtained stability limit of the un-

modulated traveling wave having the same
velocity as the external force.

€ = 0.006, = 0.01 and € = 0.006, 2 = 0.11
from top-left to bottom-right.
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4 THEORETICAL ANALYSIS

Now we perform a theoretical analysis to understand the dynamics for g; = g.. When the
external forcing is not considered, the amplitude equation near the Hopf-type bifurcation has
been derived from egs. (2) and (3) [5]. When the external force is weak as in the present study,

the amplitude equation is modified as

OWg PWpg B

57 = AWR+ B — g|Wp['Wg + i@, (8)

where we have considered only a wave traveling to the right, whose amplitude is denoted by
Wg. All the coefficients are complex, which we write as A = A; + iA,. The coefficient € is
proportional to the strength € in eq. (7). |
We have examined the stability of the uniform stationary solution of eq.(8), which is written
in the form of W = Re!®"we)t _ The linear stability analysis of this solution gives us the
eigenvalues
A~ A —20:Q% 40 — W, (9)

where we have used the approximations €,? + ¢, < 1 and [ — wf| >> 1 with wf = w, + 43 —
g2@Q2. The solid lines in Fig. 2 are obtained in this way and are the stability limit of a completely
entrained traveling wave. Note that the imaginary part of the eigenvalue is finite indicating that
this is a Hopf bifurcation. This is consistent with the observed oscillatory modulation of traveling
waves beyond the threshold. It is emphasized that the simulations for the stability limit agree
quantitatively with the theory without any adjustable parameters.

To be summarized, we have investigated, for the first time, entrainment and modulation of
a traveling wave under external forcing which depends on both space and time. We have also

performed theoretical analysis based on the amplitude equation.
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