Mixing and Segregation in Binary Clusters

Quantum chaos and semiclassical theory in molecular science and nuclear theory, Chaos and Nonlinear Dynamics in Quantum-Mechanical and Macroscopic Systems

YAMAMOTO, Norifumi; TAKATSUKA, Kazuo

物性研究 84(3): 503-504

2005-06-20

http://hdl.handle.net/2433/110200

Departmental Bulletin Paper

Kyoto University
Mixing and Segregation in Binary Clusters

Norifumi YAMAMOTO and Kazuo TAKATSUKA
Graduate School of Arts and Sciences, The University of Tokyo

1 Introduction

Mixing and segregation in binary systems are very familiar phenomena appearing in every field of physics. Recently experimental studies of mixing and segregation phenomena in binary molecular clusters have developed and its achievements have become a center of attraction. For example, Yasuda and Mori reported the behavior of spontaneous alloying process in bimetallic systems such as Au/Zn and Au/Cu nanoclusters by using the transmission electron microscopy (TEM) technique. On the other hand, the self-assembling process of cluster formation which leads to radial segregation and layering has been observed in binary Ar/Xe clusters in an adiabatic expansion by Tchaplyguine et al. by using photoelectron spectroscopy measurements. In this study we focused on the dynamics of clusters which composed of two species labeled A and B. To simplify a parameter space we suppose that distances are the same for two species i.e. \(r_{AA} = r_{BB} \). We further assume that \(\epsilon_{AA} = \epsilon_{BB} \equiv \epsilon_0 \). To correspond a topography of the model potential to that of the Lennard-Jones one we set the fixed parameters to \(\rho_0 = 6.0 \) and \(\epsilon_0 = 1.0 \). The only variable parameter of the model potential is defined as \(\eta = (\epsilon_{AA} + \epsilon_{BB})/2 - \epsilon_{AB} = \epsilon_0 - \epsilon_{AB} \). In this report we present our studies about the segregation process in 26-atoms binary clusters, \(A_{13}B_{13} \), setting the potential parameter to \(\eta = 0.5 \).

2 Model

The isoenergetic molecular dynamics (MD) calculations were performed to simulate \(N \)-atoms molecular clusters. The Hamiltonian we use is given by

\[
H(q,p) = \sum_{i=1}^{N} \frac{p_{i}^2}{2m_{i}} + \sum_{ij} V(r_{ij})
\]

where \(V(r_{ij}) \) is the pairwise potential function depended on the interatomic distances \(r_{ij} \) between \(i \)-th and \(j \)-th atoms \(r_{ij} = |q_i - q_j| \). The model potential we adopt here is the Morse-type function written as

\[
V = \sum_{ij} \epsilon_{\sigma_i \sigma_j} e^{-r_{ij} - r_{o}} \{ e^{-r_{ij} - r_{o}} - 2 \}
\]

where \(\epsilon_{\sigma_i \sigma_j} \) and \(\epsilon_{\sigma_i \sigma_j} \) are the equilibrium distance and potential depth determined by the species of interacting \(i \)-th and \(j \)-th atoms (\(\sigma_i \) and \(\sigma_j \)). In this study we focused on the dynamics of clusters which composed of two species labeled A and B. To simplify a parameter space we suppose that distances are the same for two species, i.e., \(r_{AA} = r_{BB} = r_{AB} \equiv \rho_0 \). We further assume that \(\epsilon_{AA} = \epsilon_{BB} \equiv \epsilon_0 \). To correspond a topography of the model potential to that of the Lennard-Jones one we set the fixed parameters to \(\rho_0 = 6.0 \) and \(\epsilon_0 = 1.0 \). The only variable parameter of the model potential is defined as

\[
\eta = (\epsilon_{AA} + \epsilon_{BB})/2 - \epsilon_{AB} = \epsilon_0 - \epsilon_{AB} \]

In this report we present our studies about the segregation process in 26-atoms binary clusters, \(A_{13}B_{13} \), setting the potential parameter to \(\eta = 0.5 \).

Figure 1: Mixing and Segregation

3 Results

To quantify the time dependence of the segregation process in binary clusters, we introduce the following parameter

$$\phi(t) = \frac{1}{N} \sum_{i} \frac{\eta_{i}^{\text{homo}}(t) + \eta_{i}^{\text{hetero}}(t)}{N_{i}}$$

(3)

where η_{i}^{homo} and η_{i}^{hetero} are the nearest neighboring homogeneous and heterogeneous atoms around the i-th atom at time t. Figure 2 shows the time dependence of mixing indexes, $\phi(t)$, obtained by the isoenergetic MD calculations. The initial energies of our calculations were selected in a range of $E_1 = -56.0$ to $E_4 = -59.0$, in which clusters are liquidlike and the particle evaporation is a rare event.

Lindemann index, as followed:

$$\delta(t) = \frac{2}{N(N-1)} \sum_{i<j} \frac{\sqrt{(r_{ij}^2(t) - \langle r_{ij} \rangle)^2}}{\langle r_{ij} \rangle}$$

(4)

where $\langle \cdot \rangle_t$ indicate the time average of the arbitrary quantity from t to $t + \Delta t$. In the early stage of $\phi(t)$ the Lindemann index is smaller than 0.1, which indicates that clusters are solidlike. From the time dependence of δ it is clear that as the mixing index decrease the Lindemann index rise rapidly. In the case of $\eta > 0$, the decay of $\phi(t)$ cause the generation of the heat of solution ΔH, which described by using the mixing index as $\Delta H \propto (1 - \phi)\eta$. As the heat of solution ΔH increase the fluctuating motions of atoms accelerate and cause rearrangement reactions frequently. After the segregation the Lindemann index δ is large than 0.1 and indicates clusters are liquidlike. It is considered that the segregation process occur with the solid-liquid phase transition. Finally, to characterize the growth of $\phi(t)$, we perform the coarse graining of neglecting the plateau part in the time evolution. Counting the rearrangement reactions in clusters as one 'step', we investigate the conditions of mixing over the change of each step.

In Fig.2, the mixing indexes $\phi(t)$ show directional evolutions from the mixing ($\phi \approx 0.5$) to demixing states and approaches to $\phi \approx 0.1$. Each index $\phi(t)$ evolves through a series of plateau and growth periods. Under the different initial energy the behavior of $\phi(t)$ has a different aspect in its time dependence. At the high energy simulations, the indexes show exponential increases and indicate smooth segregation of components in binary clusters. On the other hand, at the low energy simulations, the plateau parts in the lapse of the mixing index $\phi(t)$ persist for a longer time than those of the higher energy calculations. Furthermore, in these lower energy conditions, we found that even if at the very similar mixing index the duration of the plateau region are completely arbitrary for every trajectory. To quantify fluctuating and rearranging properties of atoms in clusters, we measured the

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Time Evolution}
\end{figure}

\textbf{Figure 2: Time Evolution}

The step evolutions $\phi(s)$ in Fig. 3 show the exponential decay of the mixing indexes, i.e., $\phi(s) \propto e^{-\tau s}$. Consequently, we extracted the fairly simple feature of the step-dependent dynamics successfully (in Fig. 3) from the complicated behavior of the time-dependent dynamics (in Fig. 2). Now we are attempting to clarify the origin and significance of them. Last, one of the authors (N.Y.) thanks to financial support from the JSPS research fellowships for young scientists.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Step Evolution}
\end{figure}

\textbf{Figure 3: Step Evolution}