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半古典量子化のメカニズムを詳細に検討し、半古典スペクトルの構成には、量子化される軌道だ

けでなく、量子化されるスベクトルの倍音等の間違ったスベクトルを消す軌道が重要な役割を果

たすことを明らかにした。こうした研究に基づき、効率的に半古典スペクトルを計算する方法を

提案し、 2次元カオス系に適応した。さらに、この方法の利点を生かして固有状態に対応する古

典軌道を抜き出し、その性質について議論した。

(Abstracts) 

The mechanism of semic1assical quantization is examined in detail. We found an important 
role of destructive interference in building quantum spectrum. Based on this analysis， we 
propose an e百icientmethod to calculate the semiclassical spectrum. This method is 
particularly promising in multidimensional chaotic systems and also very useful to identifシ
which trajectories dominate a quantum spectrum. We numerically examine this method by 
applying to a two-dimensional chaotic system and show an illustrative example of identiがng
such a dominant trajectory th剖 correspondsto an eigenstate. 

(AFC-II) 
In this paper， we use an amplitude-free quasi-correlation function type-II (AFC-II) for the 
calculation of semiclassical correlation function. (Note that our proposed method is general 
and can apply to ，any semic1assical theory.) In AFC-II scheme， Fourier Transformation ofthe 
following amplitude-合eequasi-correlation function obtains semiclassical spectrum [1]， 

fα1世~_.._(α(ωq一q弘ωm)2t.:_( 抗 i~.，_(α(ω% 一q弘ωm)2ì
C叫ω州(や付tの)ト=(付'l'(仏仏州0の仰)
where qm is a central posi悩tionof an initial wave packet and αis its width. Only classical 

trajectories， which start合omqo with zero momentum 

(cal1ed the tum-back orbits)， are sampled (For the 
detai1s and reasons why pre-factor does not appear in 
the above formula， see Ref. 1). One of the advantages of 
AFC-II is that the correlation function is amplitude-企'ee.
It is important for the application to chaotic systems， 
since the pre-factor in a chaotic system becomes large 
and tend to infinity. The other advantage is that the 
sampling of trajectories is easy. Different from the 
periodic orbit theory， we do not need to search periodic 
orbits， which is tough task. 
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(Mech~lßism of semiclassical quantizationJ 
First， let us start from a one-dimensional simple case. 

Here we use Morse potential V (x) == 30 (1-exp (一O.5x)r

example. We choose mass and h equal one. 
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Spectrum obtained by AFC-II with 1000 sampling paths is shown in Fig. l(a). We also show 
analytic obtained quantum eigenvalues as dotted lines. Semiclassical spectrums are in good 
agreement with the quantum eigenvalues. 
Next， we analyze how to build semic1assical spectrum as follows [2，3]. Power spectrum is 
obtained by Fourier transformation of AFC-II. Here we change the order of sum and time 
integral such as 

ペ市刷E司)= fμ崎均d勾勾5F|伊Fペ的均削(ωμωq仏ω山州()F川)F川Fパ内附削州(ω仏ω川q仇ω州仰0)1

= 5νjμμ州仲州dt例咋州tバ市例判判i伊阿附附州Fペ均均刷(ω似ωq仏ωげ()Fペ(仇ω州仰)1同α叫pや(ω仰仙叫W川，ぺ必ルωq仇島ν川0わo，t)斗tけ)一Z子?判Mり1)e飢叫吋x布pベ(白jド炉判Et司tう) 
=エ弓。(Ec，(qo);E) 

Single spectrum弓。(Ec，(qo);E)is calculated by only one single trajectory and the sum ofthe 
single spec甘umis equivalent to the total power spectrum. We analyze each single spectrum 
and examine which classical trajectory and how each trajectorycontributes to spec廿um.

--Constructive inte，げerences--
Figure 1 (b) shows an example of single spectrums which gives the largest con甘ibutionto 
the eigenstate n=4.τbe energy of the most contributing trajectoηis almost equivalent to the 
quantized energy， 12.02. The most important fact is quantized state can be obtained mainly by 
one classical廿吋ectory.However， only from one trajectory， we also obtain incorrect spectrums 
(harmonic overtones of the correct spectrum) as seen in Fig.l (b). 
The stationary phase condition of the Fourier transformation 
correlation function is such as 

ま(s(q，qo，t)+ Et) == -Ec/ +ε=0 
This formula shows that the trajectory with energy 
Ec/ mainly contributes to the spectrum at & = EC/ . 

Therefore the quantized spectrum can be built by a 
single廿ajectorywith quantized energy. We call 
this contribution constructive inteゆrence(CI). CI 
is interferences within one tr吋ectoryand bui1ds a 
correct spectrum. 

semic1assical of the 
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-Deconstructive inte約rences--
Next we examine how trajectories contribute to 
each spectrum. Single spec廿umsat three target 

energies 広明et' 弓。(Ec/(qo);E叩)，訂eplo批判 asa 
function of energy of sampling trajectories Ec/ in 

Figs. 2 (a)・(c).First we pick up Etarget=5.528， which 
corresponds to n=1 in a panel (a). In this case， 
trajectory with quantized energy contributes to the 
spectrum . most. We next choose Eta耶t=5.553，just 
deferent from quantized energy. The contribution 
from a trajectory with E=5.553 is small in Fig.2 (b). 
Because summation of all the contribution 
becomes spectrum at E=5.553， the sum 、of
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vibrational parts must become zero. To converge this oscillatory integral， we need a huge 
number oftrajectories. Last example is Etarget=7.210 in Fig.2 (c). It is just between quantized 
energies and we cannot find any structure. In this case， the summation of all the contribution 
to this energy should be zero， too. 
As we see above， to erase incorrect spectrums， many trajectories with non-quantized 
energies are necessary. We call this process deconstructive inteψrence (01). DI is 
interference between trajectories and erases the incorrect spectrums. To do so， we need a huge 
number of trajectories and this is why we need a huge number of tr吋ectoriesto calculate 
semiclassical spectrum. 

[An efficient filtering technique to take account of CI and DI) 

From the above investigations， we understand there are two types of interferences (CI and 
01) and both play an important role in building semiclassical spectrum. One ofthe numerical 
difficulties in semiclassical theory is numerical evaluation of oscillatory integrals， which 
represent 01. To perform efficient estimation of the oscillatory integrals， we introduce 
window function in the power spectrum such as 

ιiバ(州d5苧企仰一叫古叫ιι以Iベ(ω仇ω州0))リ刈)IF附附Fペ均均刷(ωωωq仏ωげ州，)F川川)F川附Fペ巾仇刷州(ω仏ω川q仇ω叫仰0)1
AパE 一 Eι~(ωq仇ω0)リ) i包sa window function th幻 filterout the components located out of 

energy range [2， 3]. 
In the case of the quantized trajectories， if we use window function， only CI alive and 
incorrect spectrums (harmonic ov出ones)disappear. On the other hand， in the case of 
non-quantized trajectories， we cannot consider 01 with narrow window functions. However，江
is not necessary because we neglect incorrect spectrums (harmonic overtones) constructed by 
a quantized single spectrum. Although we must test several types of window functions， we 
can expect that we need a small number oftrajectories to evaluate semiclassical spectrums. 

where 

[Numerical examples) 

Here we test the above-proposed method in 
the modified Henon-Heiles system [3]. 
Hamiltonian is written such as 

H dd  d+y2/}  
コー+一一+一一一+刈O.6y2+ y} 
2mX2mY21/  
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mx = 1.0087， my = 1.0， and n = 0.005. Here 
we examine highly excited statesョwhichlocate 
between 0.13 and 0.16. In this energy range， 
almost all the phase space is filled with chaotic 

with 

sea. 
First we choose the width of window as 
small as the grid spacing of numerical Fourier 
transformation. In this case， we simply note 
W=l. Semiclassical spectrum with W=l， W=4， 
W=10， and W=∞ are examined and shown in 

Fig.3 (a)， (b)， (c)， and (d)， respectively. W=∞ 
0.13 0.14 0.15 0.16 
Fig.3 semiclassical spectrum with windows 
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is equivalent to the original AFC-II spectrum. Quantum eigenvalues are shown as dotted lines. 
As the width of window function becomes wider， the shape of spectrum becomes similar one 
with W=∞. In every case， the agreement of semiclassical spectrum and quanωm ones is 
excellent. Since we use the smallest number of tr司jectoriesin W=l， we recommend W=l to 
estimate semiclassical spectrum in this system. 
Next， we examine the most contributing tr吋ectoryon spectrum [3]. Here we use delta 
function as a window function， so that we can extract the甘吋ectory，which co汀'espondsto 
each spectrum. In Fig.4， we show the most contributing trajectory to the spectrum at 
E=O.13592 in a panel (a) which should be compared with the absolute square of the 
corresponding eigenfunction displayed in a panel (b). Since the nodal pa抗emof eigenfunction 
in Fig.4 (b) is irregular especially at a central part of eigenfunction， it seems to be difficult to 
quantize by the ordinaηEBK condition. The spatial distributions ofthe trajectory in Fig.4 (a) 
and eigenfunction in Fig.4 (b) are similar to each other. One can find an apophysis around the 
center of eigenfunction in Fig.4 (b). It corresponds to thin bundle of甘吋ectorythat appears 
upper p訂tofthe thick bundle oftrajectory located at the center ofFig.4 (a). 
In this way， one can extract a few trajectories that are responsible for CI to build an 
eigenfunction. This example shows that we can examine nature of eigenfunction in terms of 
classical trajectories. For example， this technique seems to be very useful for the investigation 
of scar in chaotic systems. 
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Fig.4 The most contributing trajectory and corresponding eigenfunction 

(Concluding remarksJ 
In this paper， we first analyze how to build semiclassical spec廿um.We found that there are 
twoザpesof contribution， one is constructive and the other is deconstructive interference. 
Quantized trajectories not only construct correct spec廿umsbut also build incorrect spectrum 
such as harmonic overtones. Non-quantized trajectories deconstruct incorrect spec甘ums.Both 
types oftrajectories are important for building semiclassical spec甘um.
Based on the above analysis， we introduce fi1tering technique for the calculation of 
semiclassical spectrum. We apply this method to a two-dimensional chaotic system and nature 
of spectrum has been examined in terms of tr吋ectories.This example shows that our proposed 
method may give new insight into the quantum-c1assical correspondence. 
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