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Nature of semiclassical spectrum in terms of classical trajectories.
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{Abstracts)

The mechanism of semiclassical quantization is examined in detail. We found an important
role of destructive interference in building quantum spectrum. Based on this analysis, we
propose an efficient method to calculate the semiclassical spectrum. This method is
particularly promising in multidimensional chaotic systems and also very useful to identify
which trajectories dominate a quantum spectrum. We numerically examine this method by
applying to a two-dimensional chaotic system and show an illustrative example of identifying
such a dominant trajectory that corresponds to an eigenstate.

(AFC-IT)

In this paper, we use an amplitude-free quasi-correlation function type-II (AFC-II) for the
calculation of semiclassical correlation function. (Note that our proposed method is general
and can apply to any semiclassical theory.) In AFC-II scheme, Fourier Transformation of the
following amplitude-free quasi- correlation function obtains semiclassical spectrum [1],
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where g is a central position of an initial wave packet and ¢ is its width. Only classical
trajectories, which start from g, with zero momentum

(called the turn-back orbits), are sampled (For the
details and reasons why pre-factor does not appear in
the above formula, see Ref. 1). One of the advantages of
AFC-II is that the correlation function is amplitude-free.
It is important for the application to chaotic systems,
since the pre-factor in a chaotic system becomes large
and tend to infinity. The other advantage is that the
sampling of trajectories is easy. Different from the
periodic orbit theory, we do not need to search periodic
orbits, which is tough task.

1

@y |

T Y

i
|
! {
{

¥
1
[
|
i
1
}

{
i
i
i
!
i

)

Power Spectaum

t
i
{
e . . . . o
(Mechanism of semiclassical quantization] oy i _
First, let us start from a one-dimensional simple case. 0 5 10 15 20
Here we use Morse potential V(x)=30(1—exp(—0.5x))2 Energy

as an example. We choose mass and # equal one. Fig.1 Semiclassical spectrums
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Spectrum obtained by AFC-II with 1000 sampling paths is shown in Fig. 1(a). We also show
analytic obtained quantum eigenvalues as dotted lines. Semiclassical spectrums are in good
agreement with the quantum eigenvalues.

Next, we analyze how to build semiclassical spectrum as follows [2, 3]. Power spectrum is
obtained by Fourier transformation of AFC-II. Here we change the order of sum and time
integral such as

P(E)= J'dt%lF(q,)F(qo)[exp(éS(q,qo,t)—%Mjexp[%Et)
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Single spectrum P, (E, (0);E) is calculated by only one single trajectory and the sum of the

single spectrum is equivalent to the total power spectrum. We analyze each single spectrum
and examine which classical trajectory and how each trajectory contributes to spectrum.

--Constructive interferences--

Figure 1(b) shows an example of single spectrums which gives the largest contribution to
the eigenstate n=4. The energy of the most contributing trajectory is almost equivalent to the
quantized energy, 12.02. The most important fact is quantized state can be obtained mainly by
one classical trajectory. However, only from one trajectory, we also obtain incorrect spectrums
(harmonic overtones of the correct spectrum) as seen in Fig.1 (b).

The stationary phase condition of the Fourier transformation of the semiclassical
correlation function is such as

g(S(q,qo,t)-i-Et) =-E, +£=0

800
This formula shows that the trajectory with energy
E, mainly contributes to the spectrum at ¢=E,.

Therefore the quantized spectrum can be built by a 0
single trajectory with quantized energy. We call
this contribution constructive interference (CI). CI
is interferences within one trajectory and builds a -800
correct spectrum. 1400  (b)
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--Deconstructive interferences-- 2 K it
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Next we examine how trajectories contribute 10 & ) feeenssali 5?_
each spectrum. Single spectrums at three target © ) Hi
energies E,... P, (E,(q);Eug ) are plotied as a -800 3

function of energy of sampling trajectories E, in 40 | ©
Figs. 2 (a)-(c). First we pick up Erge=5.528, which
corresponds to n=1 in a panel (a). In this case,
trajectory with quantized energy contributes to the
spectrum most. We next choose Eage=5.553, just
deferent from quantized energy. The contribution S
from a trajectory with E=5.553 is small in Fig.2 (b). 0 5 10
Because summation of all the contribution Classical energy (E-)
becomes spectrum at E=5.553, the sum of Fig.2 Single spectrum Ecl for selected E.
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vibrational parts must become zero. To converge this oscillatory integral, we need a huge
number of trajectories. Last example is Euge=7.210 in Fig.2 (c). It is just between quantized
energies and we cannot find any structure. In this case, the summation of all the contribution
to this energy should be zero, too.

As we see above, to erase incorrect spectrums, many trajectories with non-quantized
energies are necessary. We call this process deconstructive interference (DI). DI is
interference between trajectories and erases the incorrect spectrums. To do so, we need a huge

number of trajectories and this is why we need a huge number of trajectories to calculate
semiclassical spectrum.

(An efficient filtering technique to take account of CI and DI}

From the above investigations, we understand there are two types of interferences (CI and
DI) and both play an important role in building semiclassical spectrum. One of the numerical
difficulties in semiclassical theory is numerical evaluation of oscillatory integrals, which
represent DI. To perform efficient estimation of the oscillatory integrals, we introduce
window function in the power spectrum such as

By (E)= J.dt%AW (E—Ec,(qo))lF(q,)F(qo)lexp(-;:S(q,qo,t)—%M)exp(%Et)

where A, (E-E,(g,)) is a window function that filter out the components located out of
energy range [2, 3].

In the case of the quantized trajectories, if we use window function, only CI alive and
incorrect spectrums (harmonic overtones) disappear. On the other hand, in the case of
non-quantized trajectories, we cannot consider DI with narrow window functions. However, it
is not necessary because we neglect incorrect spectrums (harmonic overtones) constructed by
a quantized single spectrum. Although we must test several types of window functions, we
can expect that we need a small number of trajectories to evaluate semiclassical spectrums.
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with m, =1.0087, m,=1.0, and 7=0.005. Here -

we examine highly excited states, which locate
between 0.13 and 0.16. In this energy range,
almost all the phase space is filled with chaotic
sea.

First we choose the width of window as
small as the grid spacing of numerical Fourier
transformation. In this case, we simply note
W=1. Semiclassical spectrum with W=1, W=4,
W=10, and W=c0 are examined and shown in

Fig.3 (a), (b), (c), and (d), respectively. W=oo
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Fig.3 semiclassical spectrum with windows
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is equivalent to the original AFC-II spectrum. Quantum eigenvalues are shown as dotted lines.
As the width of window function becomes wider, the shape of spectrum becomes similar one
with W=00. In every case, the agreement of semiclassical spectrum and quantum ones is
excellent. Since we use the smallest number of trajectories in W=1, we recommend W=1] to
estimate semiclassical spectrum in this system.

Next, we examine the most contributing trajectory on spectrum [3]. Here we use delta
function as a window function, so that we can extract the trajectory, which corresponds to
each spectrum. In Fig.4, we show the most contributing trajectory to the spectrum at
E=0.13592 in a panel (a) which should be compared with the absolute square of the
corresponding eigenfunction displayed in a panel (b). Since the nodal pattern of eigenfunction
in Fig.4 (b) is irregular especially at a central part of eigenfunction, it seems to be difficult to
quantize by the ordinary EBK condition. The spatial distributions of the trajectory in Fig.4 (a)
and eigenfunction in Fig.4 (b) are similar to each other. One can find an apophysis around the
center of eigenfunction in Fig.4 (b). It corresponds to thin bundle of trajectory that appears
upper part of the thick bundle of trajectory located at the center of Fig.4 (a).

In this way, one can extract a few trajectories that are responsible for CI to build an
eigenfunction. This example shows that we can examine nature of eigenfunction in terms of
classical trajectories. For example, this technique seems to be very useful for the investigation
of scar in chaotic systems.
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Fig.4 The most contributing trajectory and corresponding eigenfunction

(Concluding remarks)

In this paper, we first analyze how to build semiclassical spectrum. We found that there are
two types of contribution, one is constructive and the other is deconstructive interference.
Quantized trajectories not only construct correct spectrums but also build incorrect spectrum
such as harmonic overtones. Non-quantized trajectories deconstruct incorrect spectrums. Both
types of trajectories are important for building semiclassical spectrum.

Based on the above analysis, we introduce filtering technique for the calculation of
semiclassical spectrum. We apply this method to a two-dimensional chaotic system and nature
of spectrum has been examined in terms of trajectories. This example shows that our proposed
method may give new insight into the quantum-classical correspondence.
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