Evaporation dynamics of clusters

Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo
Mikiya Fujii and Kazuo Takatsuka

1 Introduction

In the statistical rate theory for the unimolecular dissociation, molecules are approximated to rigid bodies[1]. However, we have great difficulties to approximate flexible molecules like clusters to rigid bodies, because clusters undergo the evaporation accompanying structural isomerizations. In this report, we present our studies about dynamics and statistical rate theory for the cluster evaporation.

2 Model

We have carried out constant-energy MD simulations for an Ar₈ cluster where the pairwise Morse potential are employed to describe the atom-atom force field. The Hamiltonian in reduced unit is given by,

\[
H = \frac{1}{2} \sum_{i=1}^{8} \left[\left(\frac{dz_i}{ds} \right)^2 + \left(\frac{dy_i}{ds} \right)^2 + \left(\frac{dx_i}{ds} \right)^2 \right] + \sum_{i<j} \left(e^{-\rho_0 r_{ij}} - 2e^{-\rho_0 (r_{ij}-1)} \right),
\]

where \((x_i, y_i, z_i), r_{ij},\) and \(s\) represent the position of the \(i\)th atom with respect to the Cartesian frame, the reduced interatomic distance between \(i\)th and \(j\)th atoms, and the reduced time, respectively. \(\rho_0\) is the parameter, which is set to 6.0.

3 Dynamics

The Ar₈ cluster has eight local minima, which connect with the local minima of Ar₇ or Ar₆ clusters. Figure 1 shows the index of the local minimum in the dissociation process. The index 0 represents the global minimum. In figure 1, \(t_{in}\) is the time when the relative translational velocity is equal to zero before the evaporation, and \(t_{out}\) is the time when the two fragments are separated. As one can see from figure 1, this dissociation reaction accompanies structural isomerizations. Such a dissociation was frequently observed in MD simulations.

![Figure 1: The index of local minimum. The index 0 represents the global minimum. \(t_{in}\) is the time when the relative translational velocity is equal to zero before the evaporation, and \(t_{out}\) is the time when the two fragments are separated.](image-url)
4 Statistical rate theory

The statistical expression for the microscopic rate coefficient \(k(E) \) for a given energy \(E \) is written as,

\[
k(E) = \frac{W(E)}{\Omega(E)},
\]

(2)

\[
\Omega(E) = \int \prod_{i=1}^{N} d\mathbf{r}_i d\mathbf{p}_i \delta[H(\{\mathbf{r}_i\}, \{\mathbf{p}_i\}) - E],
\]

(3)

\[
W(E) = \int \prod_{i=1}^{N} d\mathbf{r}_i d\mathbf{p}_i \delta[H(\{\mathbf{r}_i\}, \{\mathbf{p}_i\}) - E]
\times \delta[r_{re} - r_{re}^+],
\]

(4)

where \(\Omega(E) \) and \(W(E) \), respectively, represent the phase space volume of the reactant and the flux crossing the dividing surface. In this study, the reaction coordinate \(r_{re} \) is chosen as the distance between the centers of mass of the two fragments. By integrating \(\Omega(E) \) and \(W(E) \) over the momentum space with fixed total momentum and total angular momentum, \(\Omega(E) \) becomes,

\[
\Omega(E) = \frac{(2\pi)^{\frac{5}{2}}}{\Gamma\left(\frac{5}{2}\right)8^{3/2}} \int \prod_{i=1}^{7} \frac{d\mathbf{R}_i}{\sqrt{\det I_c}}
\times (E - V(\{\mathbf{R}_j\}))^{\frac{5}{2}},
\]

(5)

and \(W(E) \) becomes,

\[
W(E) = \frac{(2\pi)^{\frac{7}{2}}}{\Gamma\left(\frac{7}{2}\right)8^{3/2}} \int \prod_{i=1}^{7} \frac{d\mathbf{R}_i}{\sqrt{\det I_c}}
\times (E - V(\{\mathbf{R}_j\}))^{\frac{7}{2}} \delta[r_{re} - r_{re}^+],
\]

(6)

where \(V(\{\mathbf{R}_j\}) \), \(I_c \), and \(\Gamma() \) represent the potential energy, the inertia tensor, and gamma function, respectively. Although equation (5) and (6) are formulated under total momentum and total angular momentum equal to zero, it is easy to extend this formula to any total momentum and total angular momentum. Equation (6) is integrated over the dividing surface, which makes us be able to count the contributions of any configurations to the flux. Therefore, our formulation is applicable in the evaporation accompanying structural isomerizations.

Figure 2 shows the evaporation rates obtained by MD simulations and those estimated by our method. The both results are found to be in good agreement to within the statistical uncertainties.

Figure 2: The evaporation rates obtained by MD simulations and those estimated by our method for monomer and dimer evaporation. Simulation data are given by dots, predictions of the statistical theory are given by curve. Black and gray represent monomer and dimer, respectively.

5 Conclusion

The MD simulation indicated that clusters evaporate accompanying structural isomerizations. Although the evaporation accompanying structural isomerizations have not been treated by the past formulation employing rigid bodies approximation, our formulation is applicable in such a evaporation dynamics.

References