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Recently a great number of theoretical and experimen-
tal efforts have been devoted to Bose-Einstein conden-
sates (BECs). As well as single-component BECs, the
trapping techniques can create multi-component conden-
sates which involve inter-component nonlinear interac-
tions. The multi-component BEC, far from being a triv-
ial extension of the single-component one, presents novel
and fundamentally different scenarios for its ground state
and excitations. In particular, it has been observed that
BEC can reach an equilibrium state characterized by the
separation of the species in different domains.

BEC has a dual aspect of waves and particles. The
wave nature is high-lightened in the phenomenon of in-
terference leading to fringe patterns. On the other hand,
the particle nature of BECs can be seen in typical local-
ized states like vortices and solitons. In fact solitons were
observed in the quasi-one dimensional BEC1, 2].

Among the works that emphasize a role of the parti-
cle picture for BEC in high-dimensions, those of Pérez-
Garcia’s group are the most noteworthy[3-6]. We focus
on two important assertions by their group. The first
assertion made for a single-component BEC with a har-
monic potential is as follows[5]: If the phase of BEC wave
function will be suitably corrected, the center of mass for
a wavepacket obeys Newtonian dynamics and Ehrenfest’s
theorem is valid even for the nonlinear Schrédinger equa-
tion (NSE). Furthermore the center of mass is decoupled
from dynamics of the shape of a wavepacket. The second
assertion is concerned with the multi-component BEC
with a harmonic trap[6]: Under the condition that the
distance between wavepackets associated with individual
components is much larger than their typical widths, the
particle picture still holds for the multi-component BEC
and dynamics of interacting wavepackets is replaced by
that for interacting centers of mass. The above condi-
tion is satisfied so long as the centrifugal force due to
non-vanishing angular momentum competes well with
the harmonic trap and guarantee the suitable separation
between wavepackets.

Although the second assertion of Pérez-Garcia’s group
is much more interesting than the first one, we have sev-
eral criticisms: (1) Degrees of freedom for the width and
phase of wave packets are not taken into consideration.

As stated repeatedly by Pérez-Garcia’s group in other
works of their own([3, 4], the width and phase are affected
by the nonlinearity and vary as time elapses; (2) Nonlin-
ear inter-component interaction {NICI) has a tendency to
quickly broaden the width of individual wavepacket and
breaks a many particles picture for the multi-component
BEC, as will be evidenced below. However, by overcom-
ing the above problems, we wish to propose a model for
conservative chaos with a finite degrees-of-freedom em-
anating from the multi-component BEC in high dimen-
sions.

In this talk, by applying the variational principle, we
derive an effective nonlinear dynamics with a finite de-
grees of freedom from 2-d multi-component BEC with
a harmonic trap. Then we show how the non-vanishing
NICI makes the breathing of individual wavepackets un-
stable. In particular we shall investigate the transition
of wavepacket breathing from regular to chaotic oscilla-
tion which is caused by increasing the amplitude of the
time periodic NICI. We numerically analyze the subject
on the basis of the “three-body problem” corresponding
to three-component BEC.

The multi-component BEC at zero temperature is de-
scribed by the nonlinear Schrodinger equation (NSE)
(or Gross-Pitaevskii(GP) equation). We shall consider
a system of n complex fields ¥1 (¢, r), ¥2(t, 1), ..., ¥Yn(t,r)
ruled by the equations
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for 3 = 1,...,n (in units of atomic mass m =

and confining length 4/ % =1). V() = r?/2 =
(z% + y?)/2 stands for a harmonic trap and Uj(t,r) =
3"k 95k ¥k (¢, 1)|? is the nonlinear term. The coefficient is
gij = 4mhZa, where a is the scattering length tunable by
Feshbach resonance. We consider the case of repulsive
nonlinearity, g;; > 0 and choose g;; = g and g;; = Ag.
In the absence of the inter-component interaction, each
component has stationary states, namely Gaussian wave
packet or vortex solutions with their center of mass at
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the origin. Pérez-Garcia’s group indicated that these so-
lutions with the center of mass displaced from the origin
can behave like solitons and that the inter-component
interaction among solitons may yield soliton-soliton in-
teractions. To materialize their idea, however, one must
investigate a crucial role of breathing or self-similar na-
ture of above localized structures together with suitable
corrections to the phase.

To begin with, we apply the variational principle to
derive from (1) the evolution equation for the collective
coordinates of wavepackets. The collective coordinates
are phase variables besides the center of mass and width.
We Taylor-expand the phase with respect to space coor-
dinates relative to the center of mass. The trial Gaus-
sian wavepackets are constructed from the circularly-
symmetric ground state solution of (1) with NICI sup-
pressed:

_ 1 (r—R;)? ,
Yi(r) = ;u? exp [__2103—1_} exp(10;(r))
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(One may also choose excited states responsible for vor-
tices.) The meaning of collective coordinates is as fol-
lows: R = (X,Y) is the center of mass; w is width of the
circular wavepacket.

a=(a*,aY) (3)
and
XX aXY
B= ('gyx gYY ) , XY = g¥X (4)

are respectively the first- and second-order coefficients of
Taylor-expansion of the phase © with respect to r — R.
A trivial constant phase has been suppressed. The ex-
pansion of the phase in Eq.(2) is the most physical and
natural, although the existing works(3, 4] employ another
expansion, i.e., with respect to r rather than r - R.

According to the variational principle, Eq.(1) can be
derived by minimizing the action function obtained from
Lagrangian density for field variables,
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where the asterisk denotes a complex conjugate. In fact,
the multi-component GP equation is obtained from La-
grange equation:
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We now insert (2) into (5) and obtain the Lagrangian L
for the collective coordinates by integrating £ over space
coordinates:
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* Lagrange equations of motion for the phase variables a

and 3 lead to
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The issue in Egs.(8) and (9) shows that a and B adiabat-
ically follow the center of mass R and width w. Therefore
we can rewrite Lagrange equations for R and w by elim-
inating e« and @: Equation of motion for R,

d { oL oL
== )-=——_L=0 10
dt (8RJ> 8R] ( )
becomes
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(11)
while the equation for w,
d [ 0L oL
dt (awj) 6wj ’ ( )
results in
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It is interesting that, although the expansion of the phase
in Eq.(2) differs from the conventional ones, the resultant
equations for R and w in case of Ag = 0 agrees with those
of Pérez-Garcia’s group for a single-component BEC.
However, our scheme is more logical and the results for o
and B in (8) and (9) directly correspond to the velocity of
center of mass and breathing of wavepacket, respectively.
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FIG. 1: Potential in w-Q space (A = 10,g = 10, M = 1) and
normal modes.

In the following, we concentrate on the two-component
BEC with a harmonic trap in two dimensions and explore
the stability of wavepacket breathing against NICI (Ag).
Effective Lagrangian leading to Egs.(11) and (13) is ex-
pressed as

1 g A - By
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(14)
with
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Let us define the center of mass of two components Ry
and the relative displacement Q as:

R R. —
Ro = 1+ 2 2 — Ry

R
vz YT
and suppress the global translational degree of freedom
(Ro = Ry = 0). Further, because of rotational symme-
try, the angular momentum is a constant of motion:
oL
a6

(16)

M= Q2. (17)

0 denotes a polar angle for Q. Choosing a synchronous
width dynamics (w; = wp = w) with the canonical mo-
mentum p,, = g—ffu, the effective Hamiltonian is given by

1. 1,
Her = 5 P4 + 30, + V(Q,w)

4
with
1 M? 1 g
V(Q,w) = 5Q2+—2-Q-§+w2+m<1+2—1r)
Ag _e
+ ogoe (18)

We see that the competition between a centrifugal force
due to the non-zero M and the harmonic trap leads to an
equilibrinmn distance Q. In the absence of NICI (A = 0)
both w and @ show independent elliptic motions around
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the stable fixed points (minima of the individual poten-
tials, w = wo = (1+g/27)/* and Q = Q¢ = VM) which
has the common frequency(wg = 2,w, = wd = 2). This
means that decrease in the relative displacement has no
effect on the breathing oscillation of the width, which
provides another logical basis for supporting Ehrenfest
theorem for the single-component BEC.

On the contrary, in the presence of nonvanishing NICI,
the width and relative displacement will constitute com-
pound normal modes: In “fat or optical mode”, the de-
crease of Q is accompanied by the increase of w, while
in “skinny or acoustic mode”, @ and w change syn-
chronously (see Fig.1). The emergence of the fat mode
leads to the wave interference between two wavepackets
whenever @ decreases, invalidating the effective nonlin-
ear dynamics based on the particle picture.
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FIG. 2: Time evolution of wavepacket width: Q dependence.
Ag = 3. (a) © = 0(solid line) and Q = 100(dotted line),
(b)2 = 3,(c)2 = 10.

We here introduce a time-periodic NICI defined by
912 = Agcos(Qt) (19)

rather than the static one (gi2 = Ag). If Q@ >> wf
with w8 (= 2) for a typical frequency of breathing of
wavepacket, the system has a vanishing NICI in the time-
averaging sense, and each of wavepackets is expected to
show the stable and regular breathing oscillation. When
Q is decreased but keeps a value larger than w0, the
breathing oscillation will be able to show no signature of
blow-up. However, when < w?, the breathing oscil-
lation becomes unstable and wave interference occurs,
breaking an interacting particle picture for the multi-
component BEC. The above conjecture is supported in
our direct numerical interaction of the two-component
GP equation. Fig.2(a) shows a blow-up of the breathing
oscillation for = 0 and a recovery of stable oscillation
for Q = 100, and Figs.2(b) and 2(c) show stable oscilla-
tions for Q = 3 and 10.

Under a fixed value of Q in the range Q > w3, we
find the transition from regular to chaotic oscillations of
the breathing when the amplitude Ag is increased. In
fact, in the case of 0 = 5, the oscillation is irregular
for Ag = 2 and 4 (see Figs.3(b) and 3(c)), while it is
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FIG. 3: Time evolution of wavepacket width: Ag depen-
dence(upper panel) and Power spectrum (lower panel). Q =
(a)(a)Ag = 0,(b)(b*)Ag = 2, (c}(c)Ag = 4.
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FIG. 4: Phase diagram in Ag-Q space. (O, A,0 stands for
blow-up, chaotic and regular regions, respectively.

regular for Ag = 0 (see Fig.3(a)). The corresponding
broad power spectrum characterizing chaotic oscillation
is given in Fig.3(b’) and 3(c’), while the line spectrum
corresponding to Fig.3(a) is given in Fig.3(a’).

We have systematically investigated the wave dynam-
ics in the two-component BEC under the oscillating
NCIC. Figured is a phase diagram in Ag-Q) space, which
shows three distinct regions, (i)blow-up, (ii)stable and
chaotic and (iii) stable and regular regions. The result
suggests that two-component BEC with harmonic trap
under the oscillating NICI is clearly characterized by an
interacting particle picture which describes the transition
from regular to chaotic motions.

To develop the effective nonlinear dynamics in the
multi-component BEC with the harmonic trap in two
dimensions, we have examined a novel idea proposed by
Pérez-Garcia’s group. Firstly we assign to a particle the
Gaussian wavepacket for each BEC component and have
obtained the effective equation of motion for the width
and inter-particle separation by using the refined collec-
tive coordinate method. The inter-component interac-
tion (ICI) is found to generate normal modes that con-
bine the breathing oscillation of each wavepacket with
relative displacement between wavepackets. In “fat or
optical mode”, decrease of the displacement yields in-
crease of the width of wavepacket. This fact leads to
breaking of a particle picture of Pérez-Garcia’s group for
the multi-component BEC. We propose and show that a
high-frequency time-periodic ICI with zero average sta-
bilizes the breathing motion of each wavepacket. Pro-
vided that the frequency is larger than the characteris-
tic breathing frequency, one can also see the interesting
transition from regular to chaotic oscillations as the am-
plitude of ICI is increased. We have shown this transi-
tion in 3-body problem, i.e., in the case of 3 component
BEC. In the case of the attractive BEC, the oscillat-
ing nonlinearity is known to stabilize high-dimensional
wavepackets in the absence of harmonic trap. In the
similar way, in the case of the multi-component BEC
with harmonic trap, the analogous picture holds for the
high-dimensional wavepackets which are mutually inter-
acting through time-dependent ICI with zero average and
non-zero variance. The variance is found to control the
chaoticity of breathing motions of wavepackets.

This talk is based on the latest joint work with
H.Yamasaki and Y.Natsume.
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