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Nonequilibrium Phenomena in Junction Systems
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1 Introduction

Recent progress in mesoscopic systems has opened a new direction in nonequilibrium statistical
mechanics since an interplay of dynamical and statistical behaviors might be seen in these
systems. One of the essential features of such systems is their openness, namely, the coupling
with larger environments, and they can be well modeled by a finite system coupled with infinitely
extended systems within the framework of the C*-algebraic approach[1].

The C* algebra was originally introduced to deal with phase transitions in quantum sys-
tems [1, 2] and nonequilibrium properties has also been rigorously investigated. Those include
analytical studies of nonequilibrium steady states (NESS) of an isotropic XY-chain[3], a one-
dimensional quantum conductor[4], systems with asymptotic abelianness[5, 6], an interacting
fermion-spin system[7], fermionic junction systems[8], a quasi-spin model of superconductors(9],
a bosonic junction system with or without Bose-Einstein condensates[10, 11]. Furthermore,
some dynamical property of NESS was discussed[12]. Entropy production has been rigorously
studied as well (see [13, 14, 15, 16, 17, 5], and the references therein).

In this article, the essential features of the C*-algebraic approach are briefly explained.

2 C*-Dynamical Systems

Contrary to the conventional quantum mechanics, C*-algebraic approach starts from a set F of
finite observables, which is a Banach *-algebra and whose norm satisfies the C* condition:
(i) F is a Banach space with norm | - ||.
(ii) Products AB (VA, B € F) are defined and ||AB| < ||Al/||B]l-
(iii) An antilinear involution * is defined and it satisfies the C*-property: ||A*A| = || A]*.
The time evolution is described by a strongly continuous one-parameter group of *-automorphisms
7t (t € R), namely, 7; is a linear map satisfying (AB) = 7e(A)1e(B), 7(4*) = (A)*, o =1
(1 is the identity map), 77s = Ts4s and, for VA, ||7:(A) — A|| — 0 as t — 0. Then, the theory of
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semigroup tells that the generator § of 7; is well-defined on a dense domain D(4) and

lim
t—0

lé(A) - %{Tt(A) - A}H —0, (VA€ D))

Then, states are introduced by listing expectation values. Namely, each state is identified
with a linear map w from A € F to an expectation value w(A). The conditions w(A*A) > 0
and w(1) = 1 (1 € F is the identity) are required. The former asserts the positivity of the
expectation value of positive observables and the latter is the normalization condition. From
the practical point of view, such a specification is natural since states are determined through
measurements of physical quantities.

Canonical states play an important role in dealing with thermal properties. If the system is
described by a finite dimensional Hilbert space, one can easily seen that the canonical average
(-++)c at inverse temperature 3 satisfies (BA). = (A0ig(B)). where o,(A) = 15 Ae 45 is a
‘time evolution’ generated by the Hamiltonian H and oy is the analytic continuation of o
to s = i8. This argument can be generalized to the C*-algebraic approach because the ‘time
evolution’ can be defined as a strongly continuous one-parameter group. One then introduce
an analog w of a canonical state, called a 0-KMS (Kubo-Martin-Schwinger) state, as the one
satifying w (Ao;3(B)) = w(BA) where o, is a strongly continuous one-parameter group of *-
automorphisms and A, B are arbitrary elements of a norm dense *-subalgebra of F.

An important aspect of this approach is that one can avoid infinite quantities. To show it

explicitly, let us consider the Fano-Anderson model formally described by the Hamiltonian:

H=Hp+ Hp+eychc, + Hr+ Hrp (1)
Hy = /dk‘%wl,ﬂakm\ (A=LR) (2)
Hp = /dk{ukLaLaLca + ukRa,Tchg + (H.c)} (3)
Hip = W/dkdq{ukl,uq}zewa};daqgg + (Hee)} (4)

where €4, W, ¢ are real parameters, ugy (A = L, R) is a square integrable function of the wave
number k and the energy wgy is an increasing function of |k|. The Fermionic operators axy) and

¢, satisfy canonical anticommutation relations (CAR):
{akor, @ g} = 00 Oan0(k — k'), {co,Ci} =850:, (Other Anticommutators) =0 . (5)

These formal definitions have apparent difficulties. Firstly, ax,» is not bounded as its anticom-
mutator may involve Dirac’s delta function. Secondly, the Hamiltonian H is meaningless as the
integrand of (2) is not bounded.

Here we observe two facts: Let f be square integrable |f|2 = [dk|f(k)|> < +oo, then an

operator ay)(f) = [ dkf(k)aksx has finite norm: ||asx(f)|| = |f|. Also, formal calculation gives

8 (aor(f)) = i[H, asL(f)] = —taor(wrf) — i/dk‘f(k)ukL [Ca + We“’aaR(uR)} (6)
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where (wr, f)(k) = wir (k) and (ug)(k) = ukgr.

Now we turn to the C*-algebraic approach. The first difficulty mentioned after (5) can be
removed by restricting ourselves to observables generated by bounded variables a,x(f) and
¢, namely observables which can be approximated with arbitrary precision by a finite sum
of products of finite number of ayx(f), ¢, and their adjoints. The set of these observables is
nothing but F. The second difficulty can be avoided by defining the time evolution 7 as 13 = e‘”,
where § : F — F is defined by the left-hand side of (6). As seen from (6), ¢ is well defined for
aoA(f) if wgrf(k) is square integrable and, actually, it has a dense domain D(§). In this way,
one can formulate the problem in terms of the finite observables and avoid the use of ill defined

quantities such as the Hamiltonian H.

3 Nonequilibrium steady states of Fano-Anderson model

Within this framework, nonequilibrium steady states are rigorously constructed as the long-term
limit of the state wgo;. The initial state wq is a tensor product of the reservoir states at different
temperatures ﬂ;l and chemical potentials uy (A = L, R) and is defined as a o-KMS state at
B = —1 with respect to the ‘evolution’ o, = e%* where the generator ¢, corresponds to the
commutator —i[3-y_1 g Ox{Hx — uaNy}, - | with Ny = [ dkaj,yakex the reservoir number op-
erator. One has 4, (asa(f)) = taxx (Ba(wx — pr)f) , for example, and wo (Ao_;(B)) = wo(BA).

Then, one can show

Proposition (Takahashi, ST[18])

If the system does not admit bound states, the limits lim; 400 wp © T¢(A)(= w+(A)) exist )

for any A € F and are quasi-free invariant states. The state w, is characterized by the two-
point function between the incoming fields Bror: Wi (BiipnBror) = Fr(wk)doraxr0(k' — k)
where F)\(wg) is the Fermi distribution with inverse temperature 8y and chemical potential p.
Moreover, w_ is the time reversed state of wy: w_ = wy o t|,—_, where ¢ is a time-reversal
operation.
Evaluation of the long-term limits as the weak limits lim; 4o wg © 7:(A) is crucial for having
the unidirectional evolution since |lwg o 7 —w<+|| does not admit long-term limits and states can
evolve towards the steady state only in the weak sense. This argument is natural from practical
point of view since we can follow the state evolution only through measurements.

The above proposition implies the consistency between the dynamical reversibility and irre-
versible state evolution. To show it, we reinvestigate the thought-experiment by Loschmidt:

(i) The initial state wp naturally evolves according to ;.
(ii) At time ¢ = to, the time reversal operation ¢ and the phase inversion ¢ — —¢ are performed.

(iii) Again, the state evolves naturally.
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When tg is sufficiently large, we have |wp o 7¢(A) — wi(A)| < € for any € > 0 and fixed
A € F. Then, just after the time reversal operation t = tg + 0, wiy+0(A) = wp © 7—¢,(A) and
|wtg+0(A) — w_(A)] = |wo 0 T—¢,(A) — w_(A)] < e. After t = ¢y, one has tli+moowt0+0+t(A) =

tliin w o Ti—ty(A) = wt(A). Thus, the natural evolution 7, always derives the system towards
—+00

wy and the time reversal operation immediately brings back the state wgy o 74, near w to the
one wy,o near w—. In short, the time reversal operation does not lead the reversed motion, but
the sudden jump to the ‘opposite’ state and the dynamical reversibility is fully consistent with

the irreversible state evolution.
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