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電極につながれたメゾ系は無限量子系と考えることができ、その非平衡状態はσ-代数の方法で

厳密に扱うことができる。詳細は参考文献に譲り、びー代数の方法の工、ソセンスについて説明する。

1 Introd uction 

Recent progress in mesoscopic systems hωopened a new direction in nonequilibrium statistical 

mechanics since an interplay of dynamical and statistical behaviors might be seen in these 

systems. One of the essential features of such systems is their openness， namely， the coupling 

with larger environments， and they can be well modeled by a finite system coupled with infinitely 

extended systems within the framework of the C* -algebraic approach[l]. 

The C* algebra was originally introduced to deal with phase transitions in quantum sys-

tems [1， 2] and nonequilibrium properties has also been rigorously investigated. Those include 

analytical studies ofωnequilibrium steady states (NESS) of an isotropic XY-chai叫3]， a one-

dimensional quantum conductor[4] ， systems with asymptotic abelianness[5ヲ 6]，an interacting 

fermion-spin system[7]， fermionic junction systems[8] ， a quasi-spin model 0ぱfs叩uperc∞or凶 uctors[例9到]，

ab加附Oωso似n凶山icjunction system w羽it出hoωrw羽it出ho州u凶tB加Oωse-Ein払ns似句

some dynamical property of NESS wωdiscussed[12]. Entropy production has been rigorously 

studied as well (see [13， 14， 15， 16， 17， 5]， and the references therein). 

In this article， the essential features of the C'仁algebraicapproach are briefiy explained. 

2 CにDynamicalSystems 

Contrary to the conventional quantum mechanics， C'九algebraicapproach starts仕oma set F of 

finite observables， which is a Banach九algebraand whose norm satisfies the C* condition: 

(i) F is a Banach space with norm 11・iト

(ii) Products AB (VA， B E F)町 edefined and 11 AB 11三IIAIIIIBII.

(iii) An antilinear involution * is defined and it satisfies the C* -property: IIAホAII= IIAII2. 

The time evolution is described by a strongly continuous one-parameter group of *-automorphisms 

η(tεR)， namely，ηis a linear map satisfying Tt(AB) = η(A)η(B)， Tt(A*) = Tt(A)ペァb= 1 

(I is the identity map) ，ηT8 =巧+8and， for VA， 11η(A) -AII -→O加 t→ o. Then， the theory of 
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semigroup tells that the generator O ofηis well-defined on a dense domain D(O) and 

民IIO(A)ート件A}II= 0， (VA E卯))

Then， states are introduced by listing expectation values. Namely， each state is identified 

with a linear mapωfrom Aε:F to an expectation value ω(A). The conditions ω(A*A)とO

and ω(1) = 1 (1 E :F is the identity) are required. The former asserts the positivity of the 

expectation value of positive observables and the latter is the normalization condition. From 

the practical point of view， such a speci五cationis natural since states are determined through 

me舗 urementsof physical quantities. 

Canonical states play an important role in dealing with thermal properties. If the system is 

described by a finite dimensional Hilbert space， one can e出 ilyseen that the canonical average 

(・・・)c at inverse temperature βsatisfies (BA)c = (Aσ4β(B))c where σs(A) = eiHs Ae-iHs is a 

'time evolution' generated by the Hamiltonian H and σzβis the analytic continuation ofσs 

to s = iβ. This argument can be generalized to the C* -algebraic approach because the 'time 

evolution' can be defined as a strongly continuous one-parameter group. One then introduce 

an analog ωof a canonical stateぅ calleda σ-KMS (KゆかMartir凶 chwir伊 r)state， as the one 

satifyingω(A的β(B))= ω(BA) where σs is a strongly continuous one-parameter group of *-

automorphisms and A， B are arbitrary elements of a norm dense 九subalgebraof :F. 

An important aspect of this approach is that one can avoid infinite quantities. To show it 

explicitly， let us consider the Fano-Anderson model formally described by the Hamiltonian: 

H=HL+HR十εgcLcσ +Hr+HLR，

ぬ =J仇 α;川入(入=LR) 

め =μ{UKL4σLCσ十仰いcσ+(H.c.)} 

HLR = w J dkdqいkLUqRe仰い

(1) 

(2) 

(3) 

(4) 

where Eg， W，ψ訂 ereal parameters，旬以(入 =L， R) is a squ訂 eintegrable function of the wave 

number k and the energy ωk入isan increasing function of 1 k 1. The Ferrr山 nicoperatorsαkσ入 and

Cσsatisfy canonical a凶 commutationrelations (CAR): 

{αk(J")..， akl(J"1 >.'} = OσσIO)..>.'O(k -k')， {cσ ， C~/} = Oσσ" (Other Anticommutators) = o. (5) 

These formal de五nitionshave apparent diffi.culties. Firstly，旬以 isnot bounded 部 itsanticom-

mutator may involve Dirac's delta function. Secondly， the Hamiltonian H is meaningless凶 the

integrand of (2) is not bounded. 

Here we observe two facts: Let f be square integrable Ifl2
三 Jdk If(k)12 < +∞ぅ thenan 

operator ασ入(f)三 Jdkf(k)αk(J").. has finite norm: 11ασ入(f)1I= Ifl. Also， formal calculation gives 

O (a(J"L(f))三帆似(f)]= -iaσ山 f)-i J州 (k)UkL[cσ + Wetr{Jασ山)] (6) 
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where (ωLj)(k)三 ωkLf(k)and (句)(k)三 UkR.

N ow we turn to the Cヘalgebraicapproach. The first difficulty mentioned after (5) can be 

removed by restricting ourselves to observables generated by bounded variables ασ入(f)and 

Cσ， namely observables which can be approximated with arbitrary precision by a finite sum 

of products of fi凶tenumber ofασ入(f)， cσand their adjoints. The set of these observables is 

nothing but:F. The second difficulty can be avoided by defining the time evolution Tt asη=est， 

where d : :F → :F is defined by the left-hand side of (6). As seen from (6)， d is well defined for 

ασ入(f)ifω以 f(k)is square integrable and， actually， it has a dense domain D(d). In this way， 

one can formulate the problem in terms of the finite observables and avoid the use of ill defined 

quantities such as the Hamiltonian H. 

3 Nonequilibrium steady states of Fano圃 Andersonmodel 

Within this framework， nonequilibrium steady states are rigorously constructed錨 thelong-term 

1imit of the state WOOTt. The initial state ωo is a tensor product of the reservoir states at different 

temperatures s-;l and chemical potentials μ入(入 =L， R) and is defined as a a-KMS state at 

β-1  with respect to the 'evolution'σS = edws where the generator d，ωcorresponds to the 

commutator-t12KL，RA{H入一 μ入N入}， .] with N.入=J dka'kσ入α加入 thereservoir number op-

erator. One hぉ九 (αu入(f))=ぬσ入(s入(ω入一μ入)f) ，for example， and ωo (Aσ-i(B)) =ωo(BA). 

Then， one can show 

Proposition (Takahashi， ST[18]) 

If the system does not admit bound states， the limits limt→土∞ ωo0 Tt(A)(三 ω土(A))exist 

for any Aε:F and are quasi-企eeinvariant states. The state ω+ is characterized by the twか

point function between the incoming五eldsskaA: w+(sk，σr入Iskσ入)= F.入(ωk)dσ'σdA'入d(k'-k) 

where F入(Wk)is the Fermi distribution with inverse temperature s入andchemical potential μ入-

Moreover，ω_ is the time reversed state ofω+:ω=ω+0山→一ψwhere ~ is a time-reversal 

operation. 

Evaluation of the long-term limits as the weak limits limt→土∞ωo0 Tt(A) is crucial for having 

the unidirectional evolution since 11ω00η-ω::f:: 11 does not admit long-term limits and states can 

evolve towards the steady state only in the weak sense. This argument is natural from practical 

point of view since we can follow the state evolution only through measurements. 

The above proposition implies the consistency between the dynamical reversibility and irre-

versible state evolution. To show it， we reinvestigate the thought-experiment by Loschmidt: 

(i) The initial state Wo naturally evolves according to η. 

(ii) At time t = to， the time reversal operation ~ and the phase inversion ψ→一ψareperformed. 

(iii) Again， the state evolves naturally. 
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When to is sufficiently large， we have Iωo 0 TtO (A) -ω+(A)I < E for any E > 0 and fixed 

Aε F. Then， just after the time reversal operation t = to + 0，ωto+o(A) = ωo 0 アー句(A)and 

|ω叩 (A)-ωー(A)I= Iωo 0 T_to(A) -ω_(A)I < ε. After t = t句0，0附neh加部 tJ5r乳弘LL。fFω崎t叩0
J空乳弘:L。ω。叫Tηt一句以(μ凶A刈)= ω叫叫+刊(A刈).Thus， the natural evolution η always derives the system towards 

ω十 andthe time reversal operation immediately brings back the state ω00 η。nearω+ to the 

one ωto+o near ωー・ Inshort， the time reversal operation does not lead the reversed motion， but 

the sudden jump to the ‘opposite' state and the dynamical reversibility is fully consistent with 

the irreversible state evolution. 
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