<table>
<thead>
<tr>
<th>Title</th>
<th>Quantization of Open Systems and the Quantum-Classical Transition(2) Equilibrium and nonequilibrium statistical mechanics in systems showing chaos and quantum chaos, Chaos and Nonlinear Dynamics in Quantum-Mechanical and Macroscopic Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ohba, Ichiro; Ota, Yukihiro</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (2005), 84(3): 429-432</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-06-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/110227</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Quantization of Open Systems and the Quantum–Classical Transition

Department of Physics, Waseda University, Tokyo 169–8555, Japan
Ichiro Ohba and Yukihiro Ota

1 Introduction

The quantum–classical correspondence (QCC) is a fundamental problem in quantum mechanics, but particularly in a chaotic system, this correspondence is still unclear. While various studied have been done in Hamiltonian chaotic systems fruitfully, dissipative quantum chaos, where a definite Hamiltonian does not exist, has scarcely been analysed. Recently, we [1] studied the QCC for the quantum version of the Duffing oscillator, which is a nonlinear dynamical system with dissipation and external periodic force, assuming that the system evolves according to the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master equation [2, 3]. The GKSL master equation is a general expression for nonunitary Markovian dynamics. Both the positivity and the trace of the density matrix are preserved as long as the system evolves according to it. The effect of dissipation is represented by a set of operators, Lindblad operators. However, it is difficult to derive the relationship between the form of Lindblad operators and a dissipative phenomenon in the microscopic model in which the system concerned is a nonlinear dynamical one and the interaction between the system and the environment is complex. In this report, we discuss the classification of Lindblad operators through an effective model for open quantum systems with nonlinear dynamics.

2 The QCC in the Duffing oscillator

First, we review the QCC in the Duffing oscillator described by a following classical equation of motion: $m\ddot{x} + 2\gamma m\dot{x} + m\omega_0^2 x^3/l^2 - m\omega_0^2 x = m\omega_0^2 g\cos(\omega t)$, where l characterizes a size of the system. It is known that if one choose a set of dimensionless parameters, $(\Gamma, g, \Omega) \equiv (\gamma/\omega_0, g, \omega/\omega_0) = (0.125, 0.3, 1.00)$, a classical chaotic motion occurs in the Poincaré surface. In the following, we discuss the quantum version of Duffing oscillator. We assume that the reduced density matrix ρ evolves by the GKSL master equation: $\dot{\rho} = -\frac{i}{\hbar} [\hat{H}, \rho] + \hat{L}\rho\hat{L}^\dagger - \frac{1}{2}\hat{L}^\dagger\hat{L}\rho - \frac{1}{2}\rho\hat{L}^\dagger\hat{L}$.

We guess the Hamiltonian \hat{H} ($\hat{H}^\dagger = \hat{H}$) and the Lindblad operator \hat{L} phenomenologically and analyze the system by the use of an unraveled form of the master equation, the quantum state diffusion (QSD) [4], for discussing the QCC. It is convenient to define a scaling parameter.
\[\beta = \sqrt{\hbar/S_0}, \text{ where } S_0 = ml^2\omega_0 \text{ is a characteristic action of the system. We can suppose that} \]
\[\text{the region of } \beta \sim 0 \text{ corresponds to a classical case and the region of } \beta \sim 1, \text{ to a quantum case.} \]

What phenomena can occur between classical and quantum-region? We investigate the system as \(\beta \) goes from 0 to 1 with fixed \(S_0 \). To analyze the difference in temporal behavior for two different initial conditions, we calculate the following quantity: \(\Delta(\tau) = \frac{1}{H} \sum_{(1,2)} \{ \delta Q_{12}(\tau)^2 + \delta P_{12}(\tau)^2 \}^{1/2} \), where \(\delta Q_{12}(\tau) = \text{Tr} \{ \hat{Q}_1(\tau) - \text{Tr} \{ \hat{Q}_2(\tau) \} \} \) and \(\delta P_{12}(\tau) = \text{Tr} \{ \hat{P}_1(\tau) - \text{Tr} \{ \hat{P}_2(\tau) \} \} \). The calculation of \(\Delta(\tau) \) is similar to the derivation of a Lyapunov exponent in classical mechanics.

In order to determine \(\Delta(\tau) \) we require a reproduction of the equation of motion with respect to the expectation values for \(\hat{Q} \) and \(\hat{P} \): \(\dot{\hat{H}} = \hat{H}_D + \hat{H}_R + \hat{H}_{ex}, \) \(\hat{L} = \sqrt{\Gamma}(\hat{Q} + i \hat{P}) \) where \(\hat{H}_D = \hat{P}^2/2 + \beta^2 \hat{Q}^4/4 - \hat{Q}^2/2, \) \(\hat{H}_R = \Gamma(\hat{Q} \hat{P} + \hat{P} \hat{Q})/2, \) \(\hat{H}_{ex} = -g \hat{Q} \cos(\Omega t)/\beta. \) We choose the parameters, \((\Gamma, \gamma, \Omega) = (0.125, 0.3, 1.00) \). Before performing simulation, we have to determine a suitable value of \(\epsilon = \Delta(\tau) = 0. \) If two points in the phase space coexist inside the same Planck cell, they are not distinguishable each other. The size of the Planck cell is determined from the commutation relation \([\hat{Q}, \hat{P}] = [\hat{x}, \hat{p}]/S_0 = i\beta^2 \). The Planck cell has a volume \(\Delta Q \Delta P = \frac{1}{2} \beta^2 \) in the scaled phase space and has a linear size of effective Planck cell \(\beta \) in \(\text{Tr} \{ \hat{Q} \hat{P}, \hat{P} \hat{Q} \} \)-plane. With the fixed \(S_0 \) the smaller \(\beta^2 \) corresponds to the smaller \(h(= \beta^2 S_0) \).

We reproduced results similar to those of Ref. [5] for the constant phase maps and verified the existence of the strange attractor in the Poincaré surface. We show the results of simulation of \(\Delta(\tau) \) for each initial condition (10 samples). Figures (a), (b), (c), and (d) are for \(\beta = 0.01, 0.10, 0.40, \) and 1.00, respectively.

[FIG. 1: The time evolution of \(\Delta(\tau) \) with \(\epsilon \) fixed as 0.01. The quantities plotted are dimensionless by definition. The complex Wiener process is used in the QSD. Figures (a) and (b) are obtained with a single realization of the complex Wiener process for each initial condition (20 samples). Figures (c)–(d) are obtained by averaging over 100 realizations of the complex Wiener process for each initial condition (10 samples). Figures (a), (b), (c), and (d) are for \(\beta = 0.01, 0.10, 0.40, \) and 1.00, respectively.]
FIG. 2: The time evolution of $\Delta(\tau)$ with $\epsilon = \beta$. The quantities plotted are dimensionless by definition. The complex Wiener process is used in the QSD. The asymptotic value of $\Delta(\tau)$, Δ_{asym}, is indicated by the dotted line. The right-hand side of Eq. (??), $D(\tau)$, is expressed by the broken dotted line. Figure (a) is obtained with a single realization of the complex Wiener process for each initial condition (20 samples). Figures (b)–(f) are obtained by averaging over 100 realizations of the complex Wiener process for each initial condition (10 samples). Figures (a), (b), (c), (d), (e), and (f) are for $\beta = 0.10$, 0.40, 0.60, 1.00, 1.50, and 2.00, respectively.

which is the time for which the value of $\Delta(\tau)$ becomes smaller than the size of effective Planck cell. Using these data, the upper bound for $\Delta(\tau)$ is expressed by a equation derived from QSD,

$\Delta(\tau - \tau_0) \leq \left\{ \left(1 + \frac{1}{\beta} \right) e^{2(\tau - \tau_0)} - 1 \right\}^{-\frac{1}{2}}$, which is shown by the broken dotted line in Fig. 2. We find in the case of $\beta \geq 1$ this inequality gives a good approximation of the upper bound.

Finally we remark that while, in case of $S_0 \gg \hbar$, the existence of dissipation is very important for occurrence of chaotic dynamics, in case of $S_0 \sim \hbar$ (in quantum and deep quantum cases) effect of dissipation suppresses even the occurrence of chaotic behavior.

3 Some consideration of Lindblad operators

In this section, we show some trials to inquire the source of Lindblad operator, based on the method of Ref. [6]. We assume that a total system is closed and consists of (system) + (environment) with coupling between two systems represented by an extra stochastic force. This force is modeled by a bosonic field.

First, we consider a particle in a one-dimensional potential $\Phi(x)$. The classical equation of motion is $\ddot{z}(t) = -\Phi'(x) - \dot{f}(t)$ and $\dot{x}(t) = \frac{1}{m}p(t)$, where $\dot{f}(t) = i\hbar\sqrt{\frac{1}{2}}(\dot{a}(t) - \dot{a}^\dagger(t))$, $[\dot{a}(t), \dot{a}^\dagger(t')] = \delta(t - t')$, and $[\dot{a}(t), \dot{a}(t')] = 0$. We quantize $x(t)$ and $p(t)$ by the canonical commutation relation, $[\dot{x}(t), \dot{p}(t)] = i\hbar$. Then, the Heisenberg equation becomes $\dot{\rho}(t) = -\frac{\partial \Phi}{\partial x}|_{\dot{z}} dt - i\hbar\sqrt{\frac{1}{2}}(d\dot{A} - d\dot{A}^\dagger)$, $d\dot{A} = \dot{a}dt$, and $d\dot{A} = \dot{a}dt$ and $d\dot{A} = \frac{1}{m}\dot{p}(t)dt$. It is easy to check that $\langle (\dot{p})^2 \rangle_0 = m^2 \hbar^2 dt$, where $\langle \rangle_0$ means an expectation value with respect to a vacuum state of operator \dot{a}. If an operator $\dot{z} = \dot{z}(\dot{x}(t), \dot{p}(t))$ is an arbitrary polynomial of \dot{x} and \dot{p}, then we obtain the Heisenberg equation of \dot{z} as $\dot{d} \dot{z} = \left\{-i\hbar \left[\dot{z}, \frac{\partial \Phi}{\partial x} + \Phi \right] - \frac{1}{2}\left[\dot{z}, \dot{x} \right] \right\} dt - \sqrt{2}\Re\left\{ [\dot{z}, \dot{x}] |dA \right\}$. We can change it to the Schrödinger picture $\text{Tr}(\dot{z}(t)\dot{p}(0)) = \text{Tr}(\dot{z}(t)|dA \rangle \langle dA|$ using a density matrix $\rho(t)$, $d\rho(t) = \left\{-i\hbar \left[\dot{\rho}(t), \frac{\partial \Phi}{\partial x} + \Phi \right] - \frac{1}{2}\left[\dot{\rho}(t), \dot{x} \right] \right\} dt$. This is the GKSL master equation of continuous measurement process with Lindblad operator \dot{x}.

Next, we consider the Hamiltonian, $H_{\text{int}} = -x_* f(t)$, with $x_+ = x + ip$. From the Heisenberg equation, $\dot{d} \rho(t) = -\frac{\partial \Phi}{\partial x}|_{\dot{z}} - i\hbar\sqrt{\frac{1}{2}}(d\dot{A} - d\dot{A}^\dagger)$, $d\dot{A} = \dot{a}dt$, and $d\dot{A} = \frac{1}{m}\dot{p}(t) + \hbar\sqrt{\frac{1}{2}}(d\dot{A} - d\dot{A}^\dagger)$.
We obtain the time evolution of operator $\hat{z}(t)$, $d\hat{z} = \left\{ -\frac{i}{\hbar} \left[\hat{z}, \frac{\hat{p}^2}{2m} + \Phi \right] - \frac{1}{4} \left[[\hat{z}, \hat{x}_+], \hat{x}_+ \right] \right\} dt - \sqrt{2\lambda} \text{Re}[[\hat{z}, \hat{x}_+]d\hat{A}]$ and master equation of this system, $d\hat{\rho}(t) = -\frac{i}{\hbar} [\hat{\rho}(t), (\frac{\hat{p}^2}{2m} + \Phi)] dt - \frac{1}{4} \times [[\hat{\rho}(t), \hat{x}_+], \hat{x}_+] dt$. In this case the Lindblad operator is \hat{x}_+.

Furthermore, we consider a certain type of kicked top with dissipation. The Hamiltonian is $\hat{H} = \alpha \hat{J}_z + \frac{\hbar^2}{2m} \hat{F}(t)$, $\hat{F}(t) = \sum_{n=-\infty}^{\infty} \delta(t-n)$. Let us bosonize this system using the following correspondence: $\frac{1}{4} (\hat{a}^2 + \hat{a}^{12}) \leftrightarrow \hat{J}_z$, $\frac{1}{4} (\hat{a}^{12} - \hat{a}^2) \leftrightarrow \hat{J}_y$, $\frac{1}{2} (2\hat{a}^{12} \hat{a}^2 + 1) \leftrightarrow \hat{J}_z$, with the usual commutation relations, $[\hat{a}, \hat{a}^\dagger] = 1$, $[\hat{x}, \hat{p}] = i$, where $\hat{x} = \frac{1}{\sqrt{2}} (\hat{a} + \hat{a}^\dagger)$, $\hat{p} = \frac{1}{\sqrt{2}} (\hat{a} - \hat{a}^\dagger)$. Substituting \hat{a} and \hat{a}^\dagger for \hat{J}_i and \hat{x}, \hat{p} by order, we obtain a Hamiltonian, $\hat{H} = \frac{\hbar^2}{2} \left(\frac{\hat{x}^2}{2} + \frac{\hat{p}^2}{2} \right) + \frac{\hbar}{\sqrt{2}} \hat{K}(\hat{x}, \hat{p}) F(t)$, $\hat{K}(\hat{x}, \hat{p}) = \left\{ \frac{1}{4} (\hat{x}^2 - \hat{p}^2) \right\}^2$. Based on the Heisenberg equations derived from the Hamiltonian, we can assume stochastic equations, $d\hat{\rho} = -\frac{i}{\hbar} \hat{x} dt - \frac{\hbar}{4} \left(\frac{\partial K}{\partial \hat{p}} \right)_{\hat{x}, \hat{p}, \hat{F}(t)} F(t) dt + i \sqrt{\frac{\hbar}{2}} (d\hat{A} - d\hat{A}^\dagger)$, $d\hat{x} = \frac{\hbar}{2} \hat{p} dt + \frac{\hbar}{2} \left(\frac{\partial K}{\partial \hat{p}} \right)_{\hat{x}, \hat{p}, \hat{F}(t)} F(t) dt$. Then the time evolution of arbitrary operator \hat{z} is determined by the equation, $d\hat{z} = -i [\hat{z}, \hat{H}] dt - \frac{1}{4} \left[[\hat{z}, \hat{x}], \hat{x} \right] dt - \sqrt{\frac{\hbar}{2}} [\hat{z}, \hat{p}] (d\hat{A} - d\hat{A}^\dagger)$. Finally we obtain a continuous measurement of kicked quantum top, $\frac{d\hat{\rho}}{dt} = -i [\hat{H}, \hat{\rho}] + \frac{\hbar}{2} (2\hat{z} \hat{p} \hat{\rho} - \hat{\rho} \hat{z}^2 - \hat{z}^2 \hat{\rho})$. Mapping the variables back to top, the Hamiltonian is expressed as follows: $\hat{H} = \alpha \hat{J}_z + \frac{\hbar}{\sqrt{2}} \hat{J}_x F(t)$, $\hat{J}_\pm^2 = \frac{1}{2} (\hat{a} + \hat{a}^\dagger)^2 = \hat{J}_+ + \hat{J}_- + 2\hat{J}_z$, $\hat{x} = \frac{1}{\sqrt{2}} (\hat{a} + \hat{a}^\dagger)$, $\hat{J}_+ + \hat{J}_- + 2\hat{J}_z$.

4 Concluding remarks

First we simulated the quantum version of a dissipative chaotic system using the QSD (stochastic Schrödinger eq) and found the crossover from classical to quantum behavior in the quantum version of the Duffing oscillator through the analysis of $\Delta(\tau)$. This analysis is expected to be an effective one for investigating the QCC in the dissipative chaotic systems. The QSD is powerful to analyse quantum open systems.

Secondarily we presented some trials to make physical explanation of Lindblad operators.

Acknowledgements

This work is supported partially by a Grant-in-Aid for the COE Research at Waseda University and that for the Priority Area B (No.763), MEXT, by a Grant for the 21st Century COE Program at Waseda University, and by a Waseda University Grant for Special Research Projects (No.2004B–872).

References