
Author(s)
Makino, Hironori; Tasaki, Shuichi

Citation
物性研究 (2005), 84(3): 423-424

Issue Date
2005-06-20

URL
http://hdl.handle.net/2433/110229

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Long-Range spectral statistics of systems with infinitely many components
— Investigation of classically integrable systems based on the Berry-Robnik theory —

Hironori Makino \(^1\) and Shuichi Tasaki \(^2\)
\(^1\)Department of Human and Information Science, Tokai University
\(^2\)Department of Applied Physics, Waseda University

(2005年1月30日受理)

By extending our previous argument\(^3\) to the long-range spectral statistics of systems with infinitely many components, the level number variance\(^4\) of classically integrable quantum systems is investigated. This observable is obtained by applying the theory proposed by Berry and Robnik\(^1\) and the mathematical framework of Pandey\(^2\) to systems with infinitely many components.

The Berry-Robnik theory relates the formation of the eigenenergy levels to the phase-space geometry by assuming that the sequence of the energy spectrum is given by the superposition of statistically independent sub-spectra, which are contributed respectively from eigenfunctions localized onto the invariant regions in phase space. Such independent sub-spectra is a consequence of the condensation of energy eigenfunctions on disjoint regions in the classical phase space and of the lack of mutual overlap between their eigenfunctions, and thus can be expected only in the semi-classical limit where the Planck constant tends to zero, \(\hbar \to 0\). This mechanism is sometimes referred to as the principle of uniform semi-classical condensation of eigenstates\(^5\).

This picture by Berry and Robnik is expressed by the statistical observable of eigenenergy levels as follows: Consider a system whose classical phase space is decomposed into \(N\)-disjoint regions which provide independent spectral components. When the entire level sequence is a product of the statistically independent superposition of \(N\) sub-sequences, the number variance
\(\Sigma^2(L) \) (i.e., the average variance of the number of levels in an interval containing on average \(L \) levels) can be described by using those of sub-sequences, \(\Sigma_i^2 \) as

\[
\Sigma^2(L;N) = \sum_{i=1}^{N} \Sigma_i^2(\rho_i L).
\]

(1)

This formula is first proposed by Pandey[2], where \(\rho_i (i = 1, 2, 3, \ldots, N) \) denotes the statistical weights of individual spectral components. In the Berry-Robnik theory, the statistical weights of individual components are equivalent to the phase volume (Liouville measure).

In terms of the cluster function \(Y_{2,i}(r) \) of a sub-sequence[6], \(\Sigma_i^2(\rho_i L) \) is described as

\[
\Sigma_i^2(\rho_i L) = \rho_i L - 2 \int_0^{\rho_i L} (\rho_i L - r) Y_{2,i}(r) dr,
\]

(2)

where \(Y_{2,i}(r) \) satisfies: \(\int_{-\infty}^{+\infty} Y_{2,i}(r) dr = 1 \).

In addition to equations (1) and (2), we assume the following two conditions for the statistical weights (Liouville measures):

- Assumption (i): The statistical weights of individual components uniformly vanish in the limit of infinitely many regions: \(\max_i \rho_i \to 0 \) as \(N \to +\infty \).

- Assumption (ii): The weighted mean of the cumulative cluster function \(c_i(L;\rho_i) = 2 \int_0^{\rho_i L} Y_{2,i}(r) dr \) uniformly converges as \(\lim_{N \to +\infty} \sum_{i=1}^{N} \rho_i c_i(r;\rho_i) = \bar{c}(r) \).

Under assumptions (i) and (ii), the equation (1) leads to the following formula in the limit of \(N \to +\infty \),

\[
\Sigma^2(L) = L - \int_0^{L} \bar{c}(r) dr,
\]

(3)

When the mean level spacings of individual components are sparse enough, one may expect \(\bar{c}(r) = 0 \), and the limiting number variance (3) of the whole energy sequence reduce to that of the Poisson statistics: \(\Sigma_{\infty}^2 = L \). In general, one may expect \(\bar{c}(L) \neq 0 \) which corresponds to a strong clustering of levels of individual components leading to the singular cluster function \(Y_{2,i}(L) \) and the non-zero cumulative function \(c_i(L;\rho_i) \). Thus, deviations from Poisson statistics are possible even when the energy levels of individual components are statistically independent.