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The triangular Heisenberg antiferromagnets play an
important role in our understanding the resonating va-
lence bond (RVB) state, in which the scalar chirality for
three spins S; - (S2 x S3) is expected to have a nonzero
expectation value[1-4]. This subject has been a focus of

recent experimental activities. We investigate a triangu- -

FIG. 1: Triangle with antiferromagnetic spins.

lar cluster model of the Heisenberg antiferromagnet in
which quantum spins are coupled with lattice vibrations,
for the purpose to see magnetic properties of its high-
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Next we introduce the interaction between the spins
and lattice vibrations, noting the dependence of J4, Jp
and Jeo on distances between spin sites. As for the lattice
vibration, we employ the normal modes for the triangle;
The normal e, modes, Q1 and Q2 which are degenerate
are given in Fig.2. The remaining a;4 mode(:the breath-

lying states in relation to a typical dynamical Jahn-Teller
system. The spin-lattice interaction is introduced by ex-
panding the exchange interaction with respect to devia-
tion of lattice displacements from equilibrium. We shall
address the issue: the present model becomes equivalent
to that of the well-known vibronic problem for £, ® e,
Jahn-Teller system.

Let us consider the quantum spin system where three
spins of spin=1/2 are localized at lattice sites 1,2 and 3
on triangle. The coupling between neighboring spins are
expressed by the antiferromagnetic exchange interactions
Ja, Jg and J¢ as shown in Fig.1.

The corresponding Heisenberg Hamiltonian is

H=JAsl'S2+JBS2'S3+JCS3'Sl. (1)

We concentrate our attention on the spin state where 2
component of the total spin satisfies s1, + s2, + 83, =
1/2. Therefore, these bases are expressed explicitly as
| 1TT), 1 741),] T71), where arrows denote s;, for site j.

By using these bases, we obtain the Hamiltonian ma-
trix,

[T 1111
2JA 2JC

—Ja—Jg+ Jo 2Jg . (2)
2Jp Ja—-Jdg—-Jc

ing mode) has a much higher strain energy and is ignored
hereafter. (There are other global degrees of freedom re-
lated to translation of the center of mass and to rotation
around the axis perpendicular to the triangular plane.
They however have nothing to do with lattice vibrations
and are also ignored.) Then the spin-lattice interaction
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FIG. 2: The normal modes @1 and @2 in the triangle.

is obtained as a result of the the expansion of J4, Jg and

1

k=0 = —

| ) 7
2r 1
]c:— = —_——
k=3 7
2 L

T
o

Il
g

3

These bases reflect clockwise and anticlockwise rotations
of a spin configuration on the plane of the triangle. The
wave numbers k = 0, 27 /3 correspond to phase factors
in Bloch’s theorem for the system with discrete rotational
symmetry. From a viewpoint of the ligand-field theory(8],

From Eq.(5) we find that the k = 0 manifold is com-
pletely separated from other manifolds, i.e., H = Hx—0®
Hi=+2r/3- Hir=o and Hiy./3 correspond to A and E,
representation, respectively. The interaction Hamilto-
nian Hig—t2/3 can result in a pair of adiabatic en-
ergy surfaces, which together with the harmonic term
(x @% + Q3), forms the Mexican hat potential. In fact,
by applying the unitary transformation:

() e

Hictons = U Hymson/sU

_ 3.2 3o Q1 +Q2
= Pt 4’”(+Q2 —Q1>'(7)

we obtain

Jc linearly in the ey modes as follows:

Ta = J-[1+5(Q - V3Q2)]
Jg = J-[1-0aQ] 3)
Jo = J-[1+3(Qu+V3@2)],

where « is the coupling constant.

Concerning the spin system, on the other hand, we
introduce the following bases introduced by Nakamura
and Bishop for the triangular spin plaquet{5-7):

(110 + 1 701+ T10))
(1110 + ¥ 1) + e F 110) 4)

(11D +e®un +e%9110).

the construction of the bases (4) from | [11),] T1T) and
| T71) is regarded as a formation of E, and A repre-
sentations in D34 symmetry from the triply-degenerate
Ty, ones in Oy symmetry. By using this new bases, the
Hamiltonian matrix (2) can be transformed to

k=2 k=-3)
0 0
-1 a(—Qy —1iQ2) |. (5)
a(-Q1 +iQ2) -1

This expression accords with the electron-lattice interac-
tion part of the vibronic Hamiltonian for the Jahn-Teller
system E, ® ey,

1 '
Hyr = §W2(Q21) +Q3) +a ( _{_QQI2 igi > - (8)
Thus, we would like to emphasize that the present system
for quantum spins on the triangle coupled with doubly-
degenerate vibrational e, modes is equivalent to E; ® e,
vibronic system intensively investigated in the context of
the dynamical Jahn-Teller problem.

Before proceeding to the argument on the chiral order
parameter of the spin system, we shall recall the defini-
tion of the electronic orbital angular momentum in the
dynamical Jahn-Teller system. For the quantal Hamilto-
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nian consisting of the kinetic energy ((P? + P#)/2) and
Hyr of (8), the p-th eigenstate of the £ = 1/2 manifold,

1

Wp1/2 = a1p%1,00+ + a2 p¥2,19- + a3,p¥3,00+ + Qg pPa 10— + ...

where the ¥, ,’s are the eigenfunctions of the isotropic
two-dimensional harmonic oscillator (n and m are radial
and azimuthal quantum numbers, respectively), and ¢
and ¢_ are degenerate electronic states ¢4 = d, + id,.
The expansion (9) was found by rewriting H ;7 in (8)
into a suitable form with the use of ¢4[9]. In the context
of the spin-lattice system under consideration, the block
matrix Hr—t2n/3 in (5) already takes such a suitable form
with the use of Nakamura-Bishop’s bases |k = +27/3),
and the whole wave function takes the same form as (9).

In the vibronic state ¥,/ in the dynamical Jahn-
Teller system, the expectation value of the electronic or-
bital angular momentum fz is given as

<éz>p (‘Ilp,l/2|ézl\1’p,1/2>

SlanplP (-1 (p=1,2,...).(10)
n=1

il

Here, =, is the expectation value of éz in the electronic
states ¢, and ¢_:

Ze = (¢+lzl¢+) = —(¢-|Lz]0-). (11)
TAhe emergence of an outstanding regular oscillation of
(£2)p as a function of energy(p) was pointed out three
decades ago[10], and has received a renewed attention
recently in the context of nonlinear dynamics[9].

Now let’s come back to the argument of the charac-
teristic operator for the frustrated quantum spin system.
With use of the bases (4), we evaluate the expectation
values for chiral order parameter

2 =8;- (Sz X S3) (12)
which characterizes the degree of frustration of the tri-
angular antiferromagnet(4]. The expectation values of ¥
in each of k = 427 /3 states (4) are

2m 2n V3 R
<k_—3 !x[k——g) = -7 =5
2 2 N

(The value (k = 0|¢|k = 0) = 0 is now irrelevant since
|k = 0) is coupled only with the higher frequency aiq
mode.) Thus, the states |k = +3) and chiral order pa-
rameter x in the spin-lattice system correspond to states

[BEFRBIVUY 7 URIIBIT D74 AL IR 3]

V¥, 1/2 is given by

9)

—

|¢+) and i - In the dynamical Jahn-Teller system, respec-
tively. Taking the eigenstates similar to (9), the value
(X)p in the p-th eigenstate is given by

K)p =D lan 2 (-1)"Z,. (14)
n=1

This means that the behavior of (%), can be revealed by

applying the analysis of (£,), in (10). In fact, the expec-
tation value (X)p in (14) shows regular oscillation with
increasing the energy(see Fig.3(a)), just as in the case of
(£,), in the dynamical Jahn-Teller system[10]. This is a
consequence of the integrable system which includes no
anharmonic term. If chiral order parameter of one tri-
angular lattice is observed, we can propose chiral order
parameter as a new precursor of quantum chaos.

Finally we note a role of the anharmonic term involved
in the triangular three particle system. Let us introduce
Toda-lattice potential{11]
ge"h +cz — %,
where z is the deviation of inter-particle distance from
the equilibrium lattice constant. ¢ and d are constant
with the condition ¢d > 0. The total lattice potential
is a sum of U(zx) with = the three kind of deviations
for three segments of the regular triangle. In the limit
d << 1 under the constraint ed = constant, we obtain
the following expansion in x:

Ulz) = (15)

d2 3
Ux) = 2(1——dx+§a:2—g—'z3+...)+ca:—§
2
= ﬁzz—g—x3+.... (16)

2 6

Suppressing a high-frequency a4 mode and noting the
symmetry of the e, modes in Fig.2, the bilinear term
in (16) leads to the 2-d harmonic oscillator potential.
On the other hand, the cubic term in (16) leads to the
trigonal(anharmonic) potential
Va=Va(@Q) = -3(Q} -3Q:0) (1)
with v = ¢d?/2 in terms of normal e, modes Q; and
Q2. Equation (17) is just the Hénon-Heiles potential{17]
and the resultant semiclassical dynamics (quantal spin +
classical lattice vibrations) can show a chaotic behavior.
Then, in the fully quantized system (x) has the largest
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FIG. 3: Energy(e) dependence of partially-averaged chirality x(e)de(= E; |32 (=1)"a2 ,|de) with dz = 0.25 in unit of =,.

n=1

Figures 3(a), 3(b) and 3(c) correspond to v = 0, 0.2, 1.50, respectively.(y is strength of the trigonal field, i.e., anharmonicity
defined below Eq.(17).) o = 0.50 and the unit of energy is hw. Envelop function in Fig.3(a) is constructed by Gaussian

coarse-graining of each peak.

value at low energies and shows a rapidly decaying irreg-
ular oscillation with respect to energy by increasing the
anharmonicity(chaoticity)v(see Figs.3(b) and 3(c)).

In real triangular antiferromagnets like NaTiO; or
LiNiO,, the ground-state degeneracy due to the intrin-
sic frustration is serious. To remove such degeneracy,
quntum spins are expected to be coupled with lattice
vibrations. These extended lattices should correspond
to the cooperative Jahn-Teller system where individual
Jahn-Teller clusters are mutually correlated. As shown
in Fig.3, in the case of coupling with lattice-vibrational
modes a chiral order parameter for a three-spins cluster
takes the largest value in low energies. Therefore this
novel order parameter will keep to play a vital role in
quantifying the ground-state frustration in extended tri-

angular lattices coupled with harmonic or anharmonic
phonons.

In conclusion the frustrated quantum spin system on
a triangle coupled with lattice vibrations is equivalent to
E4 ® ¢4 Jahn-Teller system. The chiral order parameter
X should signify a quantum chaos (or quantum regular-
ity) induced by the interaction between quantum spins
and anharmonic (or harmonic)lattice vibrations, and the
energy dependence of (¥) that quantifies the spin frustra-
tion shows the transition from regular to irregular oscilla-
tions by increasing anharmonicity. We hope the present
work will stimulate further experimental activities on the
chiral order in frustrated triangular antiferromagnets.

This talk is based on the joint work with Y.Natsume,
A .Terai and K.Nakamura[13]
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