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Electron transport in the Fre出 el・Kontorova(FK) model is studied. The survival probability 
and， in particular， the dependence of the survival probability on the system size， is investigated. 
Based on these results， we obtain an approximate phase diagram of the FK model. The FK 
model is either Harper-like or Fibonacci-like， and there is a critical point separating these two 
states. It seems that this point corresponds to the breaking of analyticity transition critical 
point in the classical FK model. 

Much eflort has been devoted to the study of electron transport in 1D tight-binding models such as the disordered 
model， the Harper model， the Fibonacci chain and the Frenkel-Kontorova (FK) model. The Schrodinger equation 
describing these models is given by: 

dψn(t) 
Z一一一=九+l(t)+九一l(t)+凡九(t)， dt 十

(1) 

where九(t)is the wave function at the nth site. The nearest-neighbor hopping integral is set to 1.九 isthe 
external potential defining di百erentmodels. For the Harper model [1]，凡=入cos(27r0"η);the Fibonacci model [2]， 
九 =αbααbαbα・…(入=% -1); the FK model [3]，凡=入COS(Xn)，where Xn is the configuration of an incommensurate 
ground state. The electron transport behavior is determined by the external potential， whose periodicity and strength 
are two important parameters. These models exhibit a variety of behaviors such as ballistic motion， diffusion， and 
localization. Various quantities have been introduced to characterize the dynamics of a wave packet， for example， the 
variance [4]， the front shape [5]， the temporal correlation functions [6]， and the sur¥'ival probabi1ity [7]. The survival 
probability is an important tool to investigate a wave packet localized initially inside an open system for classical [8] 
and quantum systems [9]. Recently it has been applied to the Harper model and the Fibonacci model [司.In this 
paper， the survival probability and， in particular， the dependence of the survival probability on the system size in the 
electronic FK model will be investigated. 

The equation of motion of the electronic FK model is described by 

dψn(t) 
z一五一 =ψn+l(t) +九一1(t) +入cos(7rXn)ψπ(t) 

n+l 

=乞 Hn川 m(t)

(2) 

m=n-l 

入isthe strength of the external potential and H nm a real symmetric three band matrix. Xn is determined by the 
ground state of the corresponding classical FK model: 

H=乞j(zn+1-ZRーら)2+ KV(川 (3) 

where lo is the naturallength of the spring， V(Xn) = ~(1 -cos(弓且))，αthe periodicity， and K the strength of the 

ex泊…t

The numerical simulation proceeds as follow: (1) The time-dependent Schrodinger equation is integrated numerically 
by using a Cayley scheme [10]. (2) The initial wave function at one end of the boundaries is ψπ(t = 0) = Dn，1・(3)
Attach 20 additional sites at the ends when the boundary ψπ(t) is larger than 10-14. Eq. (2) then becomes 
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FIG. 1: Log-1og p10t of the surviva1 probability P(t) at K = 0.15 and various入(a)入=1ふ (b)入=2.2; (c)入=2.3.
In Fig. l(d)， P(N) rv Nβfor di百erent入attime t rv 2 X 105. The inset of Fig. l(d) shows β(入). 

(l+;tH6榊 +6t)=(1-jmt)ψ(t) (4) 

The Cay1ey scheme is accurate to second-order in time and it is unitary. Moreover， it's stab1e for the time-dependent 
8chrodinger equation. In this paper， we use a time step Ot = 0.1， which is comparab1e to ot rv 0.0005 in the fourth-
order Runge-Kutta method. Thus a faster simu1ation speed can be used to study the 10ng-time dynamica1 behavior. 
The surviva1 probability P is defined as 

P(t) =乞バ(t)， (5) 
n=l 

where N is the size of an open system. In the paper， N = 2~ (i = 6・…17)，Kε[0，0.4]， and入ε[0，10].
The simu1ation results are reported in Figs. 1 and 2 for two typica1 cases: K = 0.15 and 0.3， respective1y. Figs. 

l(a) -(c) show the surviva1 probability P(t) for K = 0.15. In Fig. l(a)，入=1.3， the curves P(t) are paralle11ines 
and show the power-1aw behavior P(t) rv t-1 for all system sizes. 80 the system is in a pure1y ballistic state. In Fig. 
l(b)，入=2.1， the curves P(t) converge to a line which is paralle1 to the x-axis for the smallest size (N = 26). For 
1arge system sizes， the curves converge to different va1ues， the 1arger the system size the 1arger the converged value. It 
shows that the system is in a 10calized state for a fixed system size. But the details of the 10calized states are different 
for di百erentsystem sizes. In Fig. l(c)，入=2.3， all curves converge to a 1ine which is paralle1s to the x-axIs for al1 
system sizes. 80 the system is in a pure1y 10calized state. Fig. l(d) shows the curves P(N) at t rv 2.0 X 105 • The 
inset of Fig. l(d) shows β(入).When入;s1.65， the system is in a pure1y extended state. When入と1.65，the system 
becomes a semi-1oca1ized (or semi-extended ) state. When入と 2.25，the system becomes a pure1y 10calized state. It 
seems that there is a meta1-insu1ator transition at入rv 1.65. Figs. 2(a)・ (c)show the surviva1 probability P(t) at 
K = 0.3. For each入andall system sizes， the curves P(t) are paralle1 and disp1ay a power-1aw behavior P rv tーβ.In 
the simu1ation，βdecreases from 1 to 0邸入 increases，and β=  0 for入>3.5. Fig. 2(d) shows the curves P(N) at 
t rv 2.0 X 105. The inset of Fig. 2(d) shows β(入).When入;s3.53， the system is in an anoma1ous1y diffused state. 
The diffusion exponent is a slow1y decreasing function of入.When入と 3.53，the system is in a pure1y 10calized state. 
It seems that no meta1-insu1ator transition exists in this parameter range. The system's behavior is similar to that of 
the Fibonacci model. 

By studying other va1ues of K， an approximate phase diagram of the FK mode1 is given in Fig. 3. The insets (1) 
and (2) show β(入)for K = 0.19， 0.2， resp回 tive1y.The line connecting the points is to guide the eyes on1y. From 
the insets， it su邸 eststhat the purely extended state will disappear at K ε[0.19，2.0]. It su邸 eststhat there is a 
transition at Kc E [0.19，2.0]， and Kc corresponds to the critical point of the breaking of ana1yticity transition in the 
classica1 FK model. The phase diagram is divided into three parts: a pure1y 10calized s 

ウ
t

門

i
円
〈

d



研究会報告

0.1 

pOO1 

lE-3 

叩淘 暗 闇 咽初曲

N 

FIG. 2: Log-log plot of the survival probability P(t)叫 K= 0.3 and various入(a)入=0.5; (b)入=1.5; (c)入=3.75. 
In Fig. 2(d)， P(N) '" Nβfor di百erent入attime t '" 2 X 105 • The inset of Fig. 2( d) shows β(入).
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FIG. 3: An approximate phase diagram of the FK model. The insets (1) and (2) show β(入)at K = 0.19 and 0.21， 
respectively. 
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a Fibonacci・likestate. The curve between the extended sta七eand Fibonacci state su邸 ests出epossible exis七enceof 
a phase transition. The dotted curve between the Fibonacci state and the localized state does not imply a phase 
transition; it only shows that the region above the line is in the purely localized state. Therefore， in the quantum 
electronic FK model， the classical FK model's critical point Kc controls whether the system is Harper-like (K < Kc) 
or Fibonacci-like (K > Kc). 
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