Anomalous fluctuations in the annulus billiard: Magnetic-field-induced bifurcations

Current topics of quantum chaos in nanosciences, Chaos and Nonlinear Dynamics in Quantum-Mechanical and Macroscopic Systems

Author(s): Hotta, Daiki; Miyamoto, Masanori; Masuda, Syunpei

Citation: Property Research (2005), 84(3): 374-375

Issue Date: 2005-06-20

URL: http://hdl.handle.net/2433/110246

Type: Departmental Bulletin Paper

Publisher: Kyoto University
Anomalous fluctuations in the annulus billiard: Magnetic-field-induced bifurcations

Daiki Hotta, Masanori Miyamoto, Syunpei Masuda
Department of Applied Physics Osaka City University, Japan

We investigate energy spectrum and magnetization for the mesoscopic annular quantum dot in the presence of magnetic field. We elucidate anomalous fluctuations of magnetization, which will be explained in terms of magnetic-field-induced orbital bifurcations.

We consider the annulus billiard with R_1 and R_2 as the radii of the outer and inner disks, respectively. The magnetic field B is assumed to be applied perpendicularly to the billiard. The system is described by the Hamiltonian

$$H = \frac{1}{2m} \left(\hat{p} + \frac{e}{c} \hat{A} \right)^2, \quad \hat{A} = \frac{B}{2} (-y, x, 0).$$

For the electron with energy $E = (\hbar k)^2 / 2m$, its cyclotron radius and frequency are $R_c = \hbar k / eB$ and $\omega_c = eB / m$, respectively.

In the annulus billiard in B field, there are bouncing orbits and the cyclotron orbits. Bouncing periodic orbits are classified into three types 1-3: types 1, 2 and 3 consist of periodic orbits colliding with, both inner and outer walls, the inner one only, and the outer wall only, respectively. The cyclotron orbits (type 4) can be classified into two types: one that winds around the inner disk (type 4-a), and one that doesn’t (type 4-b). The type 4-a orbit exists when $R_2 < R_c < R_1$, and the type 4-b orbit exists when $R_c < (R_1 - R_2) / 2$.

First we describe orbit bifurcations (FIG.1). With increase of B field, a pair of POs become degenerate and disappear at $R_c = R_1 \sin \theta$ ($\theta = \pi / n$, $n = 3, 4, \ldots$), which is a phenomenon of tangent bifurcations. Type 2 orbits also bifurcate at $R_c = R_2 \sin \theta$. At the bifurcation points, the normal trace formula diverges.

FIG.1 Bifurcation of type 1 orbit: $R_c > R_1 \sin \theta$ (a), $R_c \approx R_1 \sin \theta$ (b), $R_c < R_1 \sin \theta$ (c), where $\theta = \pi / 4$ in this case. (Here we neglect the inner disk for simplicity.)
At the bifurcations, the trace formula should be improved. In the uniform approximation, the trace formula incorporating the effect of the interference is given as

\[\delta g(E) = \frac{1}{\pi h} \left[\frac{2\pi \Delta S}{3 h} \right]^{1/2} \left(\tilde{A} \cos \left(\frac{\tilde{S}}{h} - \frac{\pi}{2} \tilde{\nu} \right) \left(J_{-1/3} \left(\frac{\Delta S}{h} \right) + J_{1/3} \left(\frac{\Delta S}{h} \right) \right) \right. \\
\left. - \text{sign}(\Delta S) \Delta A \sin \left(\frac{\tilde{S}}{h} - \frac{\pi}{2} (\tilde{\nu} - 1) \right) \left(J_{-2/3} \left(\frac{\Delta S}{h} \right) + J_{2/3} \left(\frac{\Delta S}{h} \right) \right) \right) , \] (2)

before the bifurcation. Exactly at the bifurcation point,

\[\delta g(E) = \frac{T_0 R_{1/3}}{\pi \nu \sqrt{6 \pi h^{5/3}}} a^{1/3} \cos \left(\frac{S_0}{h} - \frac{\pi}{2} \nu - \frac{\pi}{2} \sigma \right) . \] (3)

This trace formula has been derived by Schomerus and Sieber (1997). By comparing (3) with the normal trace formula, we see that the amplitude is enhanced by $h^{-1/6}$, which might leads to novel shell structure.

Next we describes the magnetization of this system at finite temperature. FIG.2 shows the magnetization in the B-k plane at $\epsilon = R_2/R_1 = 0.1$. In this case, the cyclotron orbit is dominant in the strong field regime. At $\epsilon = 0.4$ (FIG.3), the Landau-level bunching gets weaker, and there appear novel shell structure corresponding to the bifurcations of the type 2 orbits. (The dotted lines show the Landau levels and the broken lines show the bifurcation lines.)

\[\text{FIG.2 } \epsilon = 0.1 \quad \text{FIG.3 } \epsilon = 0.4 \]

This presentation is based on the work by D.Hotta, T.Okada, A.Sugita, and K.Nakamura.