The path integral formulation of a polymer chain with stiffness and its phase transitions: Analytic theory of DNA condensation (Soft Matter as Structured Materials)

Author(s)
Ishimoto, Yukitaka; Kikuchi, Norio

Citation
物性研究 (2005), 84(6): 861-862

Issue Date
2005-09-20

URL
http://hdl.handle.net/2433/110331

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
The path integral formulation of a polymer chain with stiffness and its phase transitions

— Analytic theory of DNA condensation —

Theor. Phys. Lab., RIKEN Yukitaka Ishimoto ¹
Johannes Gutenberg University Mainz Norio Kikuchi ²

完全屈曲性高分子鎖の連続理論は、場の理論による相転移の記述等よく知られている。一方、より一般的な半屈曲性高分子鎖については、MD法やモンテカルロ計算で一定の理解は得られたが、予言性を持つ解析理論に至っていない。我々はこのモデルを経路積分において引力項付きで定式化し、DNA凝縮に特徴的なトロイド状態を導出した。更にウィップ・トロイド相転移を議論する。

As simple models of DNA condensation [1], semiflexible homopolymers in a poor solvent condition have been much investigated by simulations using Monte Carlo, Langevin approaches or Gaussian variational method for its phase diagram [2], and by theoretical works estimating such toroidal properties [3]. It becomes increasingly probable that toroid is the ground state. However in the theoretical side, they assume a priori toroidal geometry as the stable lowest energy state. Compared to the theory of coil-globule transition of flexible chains [4, 5], which are well described by field theoretical formalism [4], there is no simple microscopic theory, which demonstrates whip-toroid transition of the semiflexible polymer [6]. In this talk, we show such a transition using path integral method and the nonlinear sigma model on a line segment.

In the continuum limit, the Green function of a stiff polymer chain with attractive interactions can be given by the path integral with a constraint $|\vec{u}|^2 = 1$ [6]:

$$G(\vec{0}, \vec{R}; \vec{u}_i, \vec{u}_f; L, W) = \mathcal{N} \int_{\vec{r}(0)=\vec{0}, \vec{u}(0)=\vec{u}_i}^{\vec{r}(L)=\vec{R}, \vec{u}(L)=\vec{u}_f} \mathcal{D}[\vec{r}(s)] e^{-\mathcal{H}[\vec{r}, \vec{u}, W]}.$$

(1)

s is the proper time along the chain of length L. $\vec{r}(s)$ is the 3-d pointing vector at s while $\vec{u}(s) \equiv \frac{\partial \vec{r}(s)}{\partial s}$ is the unit orientation vector at s. \mathcal{N} is the normalisation constant. The dimensionless Hamiltonian can be written by $\mathcal{H}[\vec{r}, \vec{u}, W] = \int_0^L ds \left[H(s) + V_{AT}(s) \right]$ with $H(s) = \frac{1}{2} \left[\frac{\partial_s^2 \vec{u}(s)}{\partial s} \right]^2$, $V_{AT}(s) = -W \int_0^s ds' \delta (\vec{r}(s) - \vec{r}(s'))$. l is the persistence length and W is a positive coupling constant of attraction between polymer segments. The Boltzmann weight is implicit.

Our Hamiltonian with the constraint $|\vec{u}(s)|^2 = 1$ can be interpreted as the low energy theory of the $O(3)$ nonlinear sigma model on a line segment. The constraint $|\vec{u}|^2 = 1$ in $\mathcal{H}(\vec{u}) = $

¹E-mail:y.ishimoto@riken.jp
²E-mail:kikuchi@uni-mainz.de
\[\frac{1}{2} \int_0^L ds \left| \partial \bar{u}(s) \right|^2 \] in the polar coordinates gives

\[\mathcal{H}_{\text{bending}} = \frac{l}{2} \int_0^L ds \left[(\partial \theta_u)^2 + \sin^2 \theta_u (\partial \varphi_u)^2 \right]. \tag{2} \]

By solving the classical equations of motion, we obtain two types of classical solutions such as \(\bar{u}(s) = \text{const.} \), or \(\theta = \frac{a}{l} \) and \(\varphi_u = as + b \) where \(a, b \) are constants. Introducing the winding number of the solutions \(N(s) \equiv [as/2\pi] \) with Gauss' symbol, we obtain their Hamiltonian:

\[\mathcal{H}_{cl}(a, l, L, W) = \frac{Ll}{2} a^2 + \frac{\pi W}{a} N(L) \left(N(L) + 1 \right) - WL \cdot N(L). \tag{3} \]

The non-zero winding number of the classical solution in the \(\bar{u} \) space means a "Toroid state" of radius \(1/a \) which stabilises itself by attracting neighbouring segments. When \(0 < \frac{\pi}{L} \), as long as the total energy of the chain does not exceed the bending energy of \(\frac{2\pi^2}{L} \), they can whip with zero winding number. We call such low-energy states "Whip states."

By rewriting the above form as follow, one can easily see that the functional shape of the energy level is governed by the value \(c \equiv \frac{W}{2l} \left(\frac{L}{2\pi} \right)^2 \)

\[\mathcal{H}_{cl}(a, l, L, W) = \frac{WL}{2} \mathcal{H}(c, x) \quad \text{where} \quad \mathcal{H}(c, x) = \frac{x^2}{2c} + \frac{1}{x} [x]([x] + 1) - 2[x], \tag{4} \]

with a new variable \(x \equiv \frac{aL}{2\pi} \), \([x] = N(L)\). By plotting this with different values of \(c \), one can find that there is a critical value \(c = \frac{1}{2} \) where the meta-stable state with \(N(L) = 1 \) vanishes. This is a critical point where the phase transition from a Toroid state to a Whip state is accomplished.

References

