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We present a reweighting method for nonequilibrium Markov processes. With nonequilibrium 
Monte Carlo simulations at one temperature, one calculates the averages of time dependent physical 
quantities for a range of temperatures. We propose that reweighting for nonequilibrium is most 
useful when combined with dynamical finite size scaling. The procedure is demonstrated for the 
Ising model and the driven diffusive lattice gas model in this paper. 

I. BACKGROUND 

Most phenomena occurring in nature are in nonequilibrium states and models for nonequilibrium 
systems have captured a lot of attention. Monte Carlo simulation has been a standard tool in sci­
entific computing, and advanced simulation methods have been developed. However, many advanced 
Monte Carlo methods are not applicable to nonequilibrium systems. Efficient Monte Carlo algorithms 
for nonequilibrium simulation are highly demanded. 

Quite recently, the present authors [1, 2] have proposed a reweighting method for nonequilibrium 
systems based on the Sequential Importance Sampling (SIS) [3, 4]. With reweighting, only simulation 
at a single temperature is required to obtain information for a range of temperatures. Moreover, the 
nonequilibrium relaxation method has been successfully applied to the study of critical phenomena [5, 6]. 
In the nonequilibrium relaxation method, simulation..,,> were performed for several temperatures; the critical 
temperature, the dynamical exponent and other quantities are estimated using the scaling behavior 
of nonequilibrium process. If we combine the strength of nonequilibrium relaxation method with a 
reweighting technique, we can expect an effective method of simulation. 

II. METHOD 

In a Monte Carlo simulation, a sequence of points in the phase space (J'i are visited. Consider a 
simulation up to tth Monte Carlo steps and define a path as the points in phase space being visited from 
the 1st Monte Carlo step to the tth Monte Carlo steps as, 

(1) 

where (J't is the system configuration at time t. Hereafter, we refer to the Monte Carlo step simply as the 
time of simulation. Such a path Xt can be generated using any Monte Carlo method at a temperature T. 
Suppose many simulations were performed at an inverse temperature (3 = 1/kKT to obtain a set of paths 
if{, j = 1,· .. ,n (From now on, (3 shall be referred to as temperature). The dynamical thermal average 
of some quantity Q(t) can be calculated by (Q(t))f3 = (lin) 'L.j'=l Q(x{). Our objective is to calculate 

the thermal average of Q(t) at another temperature (3'. This can be achieved by reweighting Q(x{) with 
a set of weights 114. For the same set of paths x{, the thermal average at (3' is, 

(Q(t))f31 = L 1l4Q(x{)('[:, 114 (2) 
j=l j=l 

Although not labeled explicitly in Eq. (2), the set of weights 114 depend on the simulation temperature (3 
and the new temperature (3'. As presented in Lee and Okabe [1, 2], the weights can be calculated using 
the following algorithm, 

1. Assume that the Monte Carlo simulation is carried out at a temperature (3 and a path x{ for some 
arbitrary time t is sampled. 

2. To go from time t, let (J"j be a trial configuration and T«(J'ljl~) be the probability to select this 
configuration. If the trial move is accepted with the acceptance probability Af3(djl~), then the 

new configuration at t + 1 becomes 01+1 = (J'lj. If the move is not accepted, 01+1 = 01. 
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FIG. 1: Values of (m(r)4)/(m{r)4? for several reweighted temperatures from simulations at T = 2.270. From 
top to bottom, T = 2.272, 2.271, 2.270, 2.269, 2,268, 2.267. To check the range of reweighting, an additional 
simulation was performed at T = 2.268 and reweighted to T = 2.270. Dashed line shows (m{r)4)/(m{r)2)2 at 
T = 2.270 reweighted from T = 2.268. Insert shows that the difference between the dashed line and solid line is 
about 5 X 10-4 while error bars on (m{r)4)/(m{r)2)2 are of the order 10-3

• The system size is L = 32. 

3. In terms of transition probability P,a(ai+1Io1), we write it as P,a(01+1Io1) = T(o-'jlo1)A,a(o-~j 101) if 

the move is accepted. P,a(ai+1lo1) = T(o-'jlai)[l - A,a(o-~jlai)l if the move is not accepted. 

4. We can now define an incremental weight as, c5w{+1 = P,a' (01+1101)/ P,a(01+1Io1) and the required 
weights are, 

(3) 

5. Repeat steps 2 to 4 until t reaches some predetermined maximum simulation time. 

For each path xl, j = 1,' .. ,n, these steps are repeated. The observant reader may notice that in this 
method, essentially the usual 'Monte Carlo update is carried out, and at the same time, the weights are 
updated. 

III. THE ISING MODEL 

To illustrate how this method can be implemented, we use the ferromagnetic Ising model on a square 
lattice. Its Hamiltonian is given by, 

1{ = - 2:SkSl 

(kl) 

(4) 

where the sum is over nearest neighbors and Sk takes the values ±l. Periodic boundary conditions are 
used on a L X L lattice. We use the single spin-flip update with the Metropolis acceptance rate. The 
simulation is performed at a temperature f3 and reweighted to several temperatures f31.,.{h,···. The 
initial system configuration at time t = 1 is set to Sk = 1 for all k = 1,"" N. Where N is the total 
number of lattice sites. The ratio of the moments of the order parameter is used for the analysis of 
the phase transition. Fig. 1 shows plots of (m(r)4)/(m(r)2)2 for several reweighted temperatures from 
simulations at T = 2.270. From top to bottom, T = 2.272, 2.271, 2.270, 2.269, 2,268, 2.267. The lattice 
size was L = 32 and accuracy of reweighting was checked by performing an additional simulation at 
T = 2.268. This simulation was then reweighted to T = 2.270 and compared to the curve from the 
original simulation. The dashed line in Fig. 1 shows (m(r)4)j(m(r)2)2 at T = 2.270 reweighted from 
T = 2.268. Insert shows that the difference between the dashed line and solid line is about 5 x 10-4 while 
error bars of (m(r)4)j{m(rf? are of the order 10-3. Average...., were taken with 1.28 x 106 samples. The 
systematic errors due to reweighting are smaller than the statistical errors for this temperature shift. 
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FIG. 2: Plot of order parameter with in­
finite drive for 64 X 32 lattice with actual 
simulation performed at T = 3.160 shown 
with a bold line. From top to bottom val­
ues of T are 3.150) 3.155) 3.160) 3.165) 
3.170. Averages were taken over 4.096 X 106 

samples. 
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FIG. 3: Plot of order parameter with finite 
drive for 32 X 32 lattice with actual simu­
lation performed at (T) E) = (2.765) 0.515) 
and (T, E) = (2.780,0.500). From top to 
bottom values of T and E are (T) E) = 
(2.760,0.520), (2.765,0.515), (2.770,0.510), 
(2.775,0.505), (2.780,0.500), (2.785,0.495). 

IV. DRIVEN DIFFUSIVE LATTICE GAS 

To illustrate reweighting for a perpetually nonequilibrium system, we use the driven diffusive lattice 
ga..<;. This model was proposed by Katz, Lebowitz and Spohn (KLS) [7] a..'i a model for super-ionic 
conductors. It is constructed as a Lx X Ly square lattice with half-filled lattice sites having periodic 
boundary conditions. Its Hamiltonian is given by, 

H = -4 L nklnk'l' 

(kl,k'l') 

(5) 

where the summation is over nearest lattice sites. The variable nkl = 1 when the site is filled and nkl = 0 
otherwise. The probabilities for each particle to jump to an empty nearest neighbor site are given by, 

A,a = min[l, exp( -{3(flH - tb'))] (6) 

flH represents the change in energy due to the jump, E is a constant driving force, t = -1,0 or 1 
depending on whether the jump is against, orthogonal or along the direction of the drive, and {3 is the 
inverse temperature of the thermal bath. The KLS model exhibits an order-disorder second order pha..<;e 
transition. In the ordered pha..<;e, strips of high- and low-density domains are formed along the direction of 
the drive. In the final steady state, the particles are condensed into a single strip parallel to the direction 
of the drive. Hence the order parameter can be defined as the density profile along the direction of the 
drive, and moments of the order parameters are given by 

(7) 

where nij = 0 or 1 as defined in Eq. (5), and k = 1,2,4 represents the first, second and fourth moments 
of the order parameter, respectively. 

We make a comment on the technical detail of calculating the weights. For case of infinite drive 
(E = 00), possible values of incremental weights t5Wi are, 

t5wo 
t5wl 
8W2 

8W3 

8W4 

8W5 

t5w6 

1, 
exp ( -12 ({3' - {3)), 
exp( -8({3' - {3)), 
exp( -4({3' - {3)) 
(1- exp(-12{3'))/(I- exp(-12{3))), 
(1 - exp( -8,$'))/(1 - exp( -8{3))) , 
(1 - exp( -4{3'))/(1 - exp( -4{3))). 
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FIG. 4: Scaling plot of (p4)j(p2)2 versus TL;z for z = 2.09, Ly = 64 (solid line) and Ly = 128 (dotted line) at 
T = 3.175. Initial system configurations were prepared with po = O. 

The weights can then be written as a product of incremental weights, 

(9) 

where h{ (t) ... h~(t) are the number of hits on the incremental weights c5Wl ... c5W6 during the course of 
simulation from time 1 to t. Note that c5wQ is irrelevant in Eq. (9). Generalization of this counting method 
to the case of finite E is trivial. Since the calculation of weights has been reduced to accumulating a 
histogram, the multi-spin coding technique can be implemented not only for the spin update p~ocess 
but also for the calculation of histogram of incremental weights. Once the histogram hi (t) ... h~(t) is 
obtained, using Eq. (9) allows us to reweight to a large number of temperatures (drives) with negligible 
extra computational efforts. 

For dynamical scaling, we use the scaling relation [2J which is valid at Te , 

(10) 

where 9 is the scaling function, T is Monte Carlo steps, z is the dynamical exponent and Ly is the lattice 
size in the direction of the drive. 

We now show the results of the Monte Carlo simulation for the KLS model. We first illustrate the 
reweighting for the order parameter, and then show how reweighting can be combined with dynamical 
finite-size scaling (Eq. (10)) to calculate the critical temperature and dynamical exponent. Figure 2 shows 
how data over a range of temperatures can be extracted from simulations at a single temperature. The 
temporal evolution of the order parameter p for the infinite drive (E = 00) was investigated for 64 x 32 
lattice. Simulations were performed at T = 3.160, and data were reweighted to nearby temperatures, 
T = 3.150,3.155,3.165,3.170 (from top to bottom). Averages were taken over 4.096 x 106 samples. 
We made independent calculations directly at T = 3.150, for example, to check the effectiveness of the 
reweighting. The deviation of the data between the reweighted ones from T = 3.160 and the direct ones 
at T = 3.150 are found to be the same within statistical errors. 

We also made simulations for the finite drive (E :::::: 0.5). We illustrate the reweighting over both E 
and T. We performed two simulations at (T, E) = (2.765,0.515) and (2.780,0.500) for 32 x 32 lattice. 

The combination of the order parameter is made by using p = (E%=lPk/ ~~)/(E%=ll/ ~~), where Pl,2 
and ~1,2 are the order parameter and error estimates from the first and second simulations, respectively. 
Figure 3 shows the temporal evolution of the order parameter for several temperatures and drives. Data 
was reweighted to several values at (T, E) = (2.760,0.520), (2.770,0.510), (2.775,0.505), (2.785,0.495). 
Average...., were taken over 2.048 x 106 samples for each simulation. Generally, we found that reweighting 
is effective when the distributions P{3,E(X~) and P{3"E'(X~) have sufficient overlaps. Error bars and 
fluctuations of weights can also be used as quantitative measures on the effective range of reweighting. 

To determine Te , we use the dynamical finite-size scaling of the ratio-of-moments (Eq. (10)). Here we 
concentrate on the infinite drive (E = 00). We simulated 64 x 64 and 64 x 128 lattices, and calculated 
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the ratio of the moments, (p4) j (p2)2. Fitting wa...., performed for several temperatures near Te , which 
were reweighted from the data obtained at a single temperature, and for each temperature we adjusted 
the value of z. The best fit was found to be at T = 3.175 and z = 2.09. Figure 4 shows the scaling 
plot of (p4)j(p2)2 a...., a function of7L:;/ for 64 x 64 (solid line) and 64 x 128 (dotted line) lattice sizes at 
T = 3.175 and z = 2.09. The curves are almost indistinguishable at this scale although some corrections 
to scaling can be observed below 7 L;z = 0.02. To study the corrections to scaling, similar fitting 
procedure wa...., performed for 64 x 32 and 64 x 64 lattices. The best fit occurs at T = 3.155 ± 0.005 with 
z = 2.23 ± 0.03. The estimate for Te increa....,es with the system size, wherea...., that for z decrea....,es. Our 
estimates of Te and z are compatible with the recent estimates for infinite lattice, Te = 3.1980 ± 0.0002 [8], 
Te = 3.200 ± 0.010 [9], z = 2.016 ± 0.040 [9]. A more systematic analysis of the corrections to scaling 
to get a precise estimate of Te and several critical exponents for infinite lattice will be left to a separate 
publication. Before closing we show the actual procedure of the reweighting for each system size. For 
64 x 32 lattice, 4.096 x 106 samples were used for the simulation at T = 3.16. For 64 x 64 lattice, 8.19 x 105 

samples were used for each simulation at T = 3.174 and 3.180. Results were then reweighted to other 
temperatures and combined using weighted mean, if = (L~=l rkj ~~)j(2=~=11j ~~). Here rl,2 and ~1,2 
are the ratio-of-moments and error estimates from the first and second simulations, respectively. For 
64 x 128 lattice size, 1.64 x 105 samples were used for each simulation at T = 3.174,3.177 and 3.180, and 
reweighted results were combined using the same procedure. 

v. DISCUSSIONS 

We have shown how reweighting can be done on nonequilibrium systems and presented two examples of 
its applications. We propose that the nonequilibriumreweighting method is most effective when combined 
with finite size scaling of the nonequilibrium relaxation process. 

Finally, we make a remark on possible applications. The nonequilibrium reweighting method should 
be applicable with other Monte Carlo updates, such a..<; cluster updates and N-fold way. The nonequilib­
rium reweighting method ha...., very interesting properties. For example, for nonequilibrium systems, the 
derivatives of thermodynamic quantities cannot be calculated using the fluctuation-dissipation theorem. 
With reweighting, the derivatives can be calculated directly by differentiating the weights explicitly, that 
is, 

d(Q(t))f31 
d(3' 

(11) 

Here, d~14jd(3' can be obtained by differentiating Eq. (9) with respect to (3'. We believe that the nonequi­
librium reweighting method would have several directions for applications. 
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