反応平衡における熱揺動の生理学的役割

国立遺伝学研究所・論研大生命科学研究科 嶋本伸雄・富澤純一

教要

生物学で用いられる定量的方法は、一般的にはほぼ熟力学と反応速度論に限ら れ、平衡した反応には、共に適用されている。しかし、これらの物理的基礎は もともと異なっており、従って対象とする巨視的状態の定義にも差がある。二 つの巨視的状態の間のポテンシャル障壁が kT 程度以下の場合、二状態は反応 速度論では分離して取り扱えるが、熱力学では特殊な場合を除いて分離できな い。そのような低いポテンシャル障壁は、タンパク質の DNA 上の1次元的拡 散で実際に観測されており、DNA 上の高親和性部位の親和性は、局所構造だけ でなく DNA 長にも依存するという効果が生じ得る。この効果は数種のタンパ ク質で観測されており、反応速度論でしか解析できず、熱力学は無力である。

1. 巨視的状態を定義する微視的な枠組みの要約

タンパク質や核酸等の生体高分子は、特別な相手との複合体として機能することが多い。物理の物性定数のように、広い環境の元で一義的に決定できるものは、生物学に は少ないが、この相手との親和性は、重要な物性定数的情報であり、熱力学と反応速 度論で求められる。熱力学と反応速度論とは、古典的な巨視的科学として異なる仮定 に基づいて確立されたが、両方とも微視的な統計力学でも基礎付けられており、仮定 の差は、統計力学のレベルで比較検討が可能である。

巨視的な変化は、微視的な変化の総和に他ならない。微視的な変化を個々に同定す ることは、事実上不可能なので、微視的な運動についての特定の分布を仮定すること により、実際は推定されてきた。巨視的な変化が個々の分子の履歴には依存しないよ うな分布が仮定されるのである。

反応速度論は、物質の巨視的な時間変化を推定する方法論で、時間あたりの変化を、 時間に依存しない速度定数と、反応速度論が対象とする巨視的状態(kinetic state と以 下呼ぶ)中の物質の濃度との積で表現できるとする。この仮定を微視的に表現すると、 ある kinetic state 中の分子は大部分同一の確率で別の状態に変化するということであ る¹。

一方、熱力学は、古典的には3つの法則を仮定した公理系である。その仮定の中心 は、物質はエントロピー増大を伴うように不可逆的に熱力学的平衡状態に移行すると いう第二法則である。このような不可逆性は、微視的力学の基本方程式である運動方 程式が空間と時間の両反転に対して保存されるために、力学からは導くことが出来な い(ポアンカレの回帰定理)が、分子の状態の分布に関する統計的仮定から導くこと が出来る。この仮定は、J.W. ギブスによる(位相 Γ 空間での)等重率の仮定と呼ば れ、別に L. ボルツマンはエルゴード仮説と後に呼ばれる仮定によりこの不可逆性の 物理的意義を分析した²⁻⁴。実際には、等重率でなくとも、分子数が多くなると等重 率の結果と同様に収束するものならば十分であると考えられている。しかし、個々の 分子の履歴には依存しないような分布であることは必須である。

微視的な世界では、孤立系の全ての原子の挙動は、運動方程式と特定の初期条件に より一義的に決定される。この初期条件は、「空間の一点 (phase)であらわされ、運 動方程式は「空間の phase の時間的軌跡を決定する。一方、特定の分子に注目すると、 その挙動は「空間の部分空間であるµ空間の点として記述でき、その他の分子の影響 を background として考慮することが出来る。「空間でしか通用しない運動方程式はも はやµ空間では意味がない。µ空間の点は、background 分子との衝突等により変化を するはずであるが、この一見乱雑な変化はその分子の熱運動とよばれ、µ空間内の点 の間の shuffling として確率的に表現できると仮定する。これが決定論的運動の記述か ら確率論的な運動への移行の一方法である。統計力学の確率論は、あくまで古典力学 の範囲内の確率論であり⁵、量子力学の不確定性は、エントロピーの原点の定義にし か関係しない。

2.反応速度論と熱力学との基礎の差

kinetic state や熱力学の適用対象となる thermodynamic state は、 Γ 空間や μ 空間の部 分空間である。 μ 空間内で shuffling される複数の点は、shuffling よりずっと遅い反応 がおこる確率は等しくなる。このような点が μ 空間の部分空間の大部分を占める場合、 この部分空間は kinetic state と定義される。逆に言うならば、このような部分空間が 形成されるためには、shuffling がその部分空間内であまねく起こる間、shuffling され る点がその部分空間内にほぼ閉じこめられており、希にしかその部分空間から脱出出 来ないことが必要である。

つまり、Kinetic state は、熱運動の平均エネルギー(0.5kT)よりも遙かに大きなエネ ルギー障壁で囲まれていなければならない。逆に、十分大きなエネルギー障壁で囲ま れていれば、熱運動で結ばれる μ 空間内の点からの脱出確率は、共通になることが期 待できる。従って、Kinetic state の微視的な定義は、0.5kT よりも遙かに大きなエネル ギー障壁で囲まれた Γ 空間や μ 空間の部分空間である。

thermodynamic state は、古典的には公理系であるので、熱力学の三法則が成立する 状態という、tautological な定義しかできない。微視的には、同一 thermodynamic state に属する分子は、等重率の仮定により、巨視的性質に均等に貢献するので、その state からの脱出確率も同一である。つまり、thermodynamic state は kinetic state でもある。 ただし、thermodynamic state は、total entropy 等を定義できるために、全口空間や全 μ 空間に例外とされる部分がないように定義されていなければならない。つまり、ある thermodynamic state に隣接するものは thermodynamic states でなければならない。従っ て、二つの隣接する thermodynamic states は、0.5kT よりも遙かに大きなエネルギー障 壁で分離されていなければならない。

この条件は、等重率の仮定とともに kinetic state にはない拘束条件であり、それ故 に熱力学は反応速度論よりも制限的である。ときどき、反応速度論を、反応座標をパ ラメーターとした熱力学関数で基礎付けようとする教科書が見受けられるが、このよ うな方法論はあくまで熱力学であり、本来の反応速度論ではない。

図1. 反応速度論の基盤 A: 分子が2つのkinetic stateを経験する例。グラデーションはShuffling をあらわし、hatchは転移過程そのものに要する時間。B: DNA結合タンパク質が、DNA上をnonspecific sites上を一次元的に拡散して、specific complexになる場合の物理的仮定(上)、反応速度論での表 現(中)、熱力学での表現(下)。

kinetic state にしろ thermodynamic state にしろ、二つの異なる時間帯がその定義に関わっている。図1Aに示したのは、ある kinetic state (薄い灰色)が確立し、別の kinetic state (濃い灰色)に、ある分子が転移する場合を図示したものである。最初に background の分子 (溶媒分子や同種の他分子)の衝突による shuffling が起こる時間帯(最初のグラデーション)で、この間に分子固有の履歴の効果は解消され、やがて薄い灰色の kinetic state が確立する。このグラデーションの過程は relaxation とよばれ、local

equilibrium の成立という誤解を招きやすい名前でも呼ばれることがある。これが薄い 灰色の kinetic state が確立するまでの過程である。成立した kinetic state は、relaxation の時間帯よりももっと長い時間帯続き(図示の都合上数倍に書いてあるが遙かに長 い)そして次の状態に転移する。この二つの時間帯の差が大きくない限り、kinetic state が確立されることはない。転移自体に消費される時間(hatched)は短い。その後また shuffling (第二のグラデーション)により別の kinetic state (濃い灰色) が確立する。

3. 0.5kT 程度以下のポテンシャル障壁で分離される巨視的状態間の運動と平 衡

図1Bの3つのパネルは、タンパク質が nonspecific site に結合した後、一次元的拡散^{6,7}により specific complex が形成されるばあいである。nonspecific sites を隔てるエネルギー障壁は、0.5kT 程度以下になる場合があることが実証されている⁸。この過程において、nonspecific sites 上で起こる過程と kinetic state と thermodynamic state での近似例を図1B上のパネルで図示した。

まず、ある nonspecific site に結合した後、background 分子の衝突によって shuffling でもある一次元的拡散が起こる(グラデーションの繰り返し)。この shuffling の時間帯 の連続した状態 (nonspecific complexes) は、高いポテンシャル障壁では囲まれていな いため、独自の kinetic state とはならない。specific complex になって初めて shuffling の時間帯より長い状態が形成され、specific complex が kinetic state として定義するこ とができる。これが B 中のパネルの反応速度論的取扱いである。

一方、thermodynamic state は 0.5kT よりも遙かに大きなエネルギー障壁で分離され ていなければならず、DNA 上にはそのような障壁がないため各々は thermodynamic state ではない。しかし、nonspecific complexes の状態と specific complex の状態が merge された DNA-protein complex の状態は、タンパク質濃度が非常に高い場合を除くと、 タンパク質と DNA との衝突断面積が小さなことから、高いエネルギー障壁で解離状 態から分離される。したがって、merge された状態は、単一の thermodynamic state と なり得る (B下)。

このように、0.5kT 程度以下のポテンシャル障壁しか持たない nonspecific sites 上で 起こる一次元的拡散では、kinetic states は specific complex と解離状態(free state)との二 つが定義でき、その間に考えられる結合速度定数 k_{ass} と解離速度定数 k_{diss} との比とし て、specific site の親和性は(1)式で定義できる。ただし、reaction intermediate とな っている蛋白分子の数が1に比べて無視できる条件は必要である。この式は質量作用 の法則として熱力学成立以前から古典的に知られている式でもある。

$$K_{\rm D} = \frac{k_{\rm diss}}{k_{\rm ass}} = \frac{[\text{free protein}] [\text{unoccupied specific site}]}{[\text{specific complex}]} \dots \dots (1)$$

一方、熱力学では、DNA タンパク質複合体分子全体と free state が thermodynamic states となり、その間に(1)の左右辺と似た式で親和性が定義できる。この熱力学 的親和性を表す解離定数と(1)の解離定数との差は、同一の specific site を持つが DNA 長が異なる DNA に対して、(1)は specific site への親和性が DNA 長により変 化するかどうかを解析できるのに対して、熱力学では、merging のため異なる DNA 分子が異なる親和性を持つことしか示せない。また、実験的には、specific site の占有率 を直接測定する DNA footprinting の様な手段は、(1)には適用できるが、熱力学的測 定には意味をなさない。

4. 一次元的拡散の微視的実証とエネルギー障壁の高さの測定

微視的な変化を個々に同定することは、かっては不可能であったが、現在では、一分 子ダイナミクスにより可能になった。1993年に我々は、一次元的拡散の存在を微視的 に実証した⁸(図2)。誘電泳動を利用して二本鎖 DNA を平行に伸展して、両

端をタンパク質とガラスの接着性を利用して固定し、斜めに蛍光ラベルした DNA 結

合タンパク質(この場合大腸菌 RNA ポリメラーゼ)を流し込み(上パネル)、その軌 跡が DNA の進展方向にずれることから(下パネル)、一次元的拡散のうちのスライデ ィング運動の存在を実証した。

2004年には、このスライディング運動は DNA グルーブをたどる運動が含まれるこ とを、今度はタンパク質を固定して DNA の回転をナノ回転計を利用して実証した⁹。 このスライディング運動において、スライディング中の DNA 上の移動速度が、タン パク質を drag している流れの DNA 方向成分の半分程度であった(図3)。つまり、 各瞬間において、エネルギー障壁の上にいる確率と、下にいる確率とが等しく、エネ ルギー障壁の大きさは、平均熱運動エネルギー0.5kT ぐらいであることを示す^{8,10,11}。 このように、一次元拡散が早く起こるためには、連続する nonspecific sites を隔てるエ ネルギー障壁の高さが、0.5kT のオーダーであることが必要である。そうでなければ、 溶液中に解離するか、それとも非常に遅い移動となる。

5. specific site からの解離時よりも結合時に、スライディングが利用されていることの徴視的、巨視的証明

図3. nonspecific sitesを隔てるエネルギー障壁の大きさはkT程度以下

P. putida の CamR は、典型的なバクテリア型のリプレッサーであるが、上述した RNA ポリメラーゼと同様の一分子スライディング実験をすると、結合の前にはスライディ ングが必ず観測されたにもかかわらず、そこからの解離では、35 例中1 例しか有意な スライディングは観測できなかった¹¹。このことは、k_{ass} は DNA 長に依存して増大 するが、k_{diss} は DNA 長にほぼ独立であることを示した。すると(1)式より、CamR のオペレーター部位に対する親和性は DNA 長に依存することになる。

もともと1分子測定には、表面吸着等教師的測定にはない多くの artifacts があり得 るので、そこから予想される巨視的な推定について、巨視的な実験で確認することが 必須であり、多分子にわたる統計性も必要である。しかし、まだ多くの1分子実験が この基準を満たしていないことは、残念である。

そこで、CamR のオペレーター部位に対する親和性を異なる DNA 長で、巨視的に ゲルシフトで確認した。複合体の移動度が、DNA の移動度より小さいことを利用し て、両者を分離できる。 K_p の測定は、放射性ラベルされた一定量の DNA とさまざま な濃度の CamR を混ぜて 1min~2hr 静置してから電気泳動することにより、複合体と 解離した DNA の量を測定し、[free CamR]に対して、(1)式を当てはめて行った。

また、 k_{diss} の測定は、複合体を形成した後、大過剰のラベルされていない DNA を 加えて、さまざまな時間静置してから、電気泳動することにより、解離の時間経過が $exp(-k_{diss}t)$ に比例することでおこなった。さらに、 k_{ass} は、放射性ラベルされた一定 量の DNA とさまざまな濃度の CamR を混ぜた後、時間 t で大過剰のラベルされてい ない DNA を加えて複合体形成をそれ以上進行しないようにすると、複合体濃度が 1- $exp(-k_{ass}[free CamR]t)$ に比例することから求めた(表 1)。

1分子実験から予想さ わたりたり K は 20kg か	表1	Antenna effect of CamR			
40にとおり K _D は、320p から ら 410bp の長さの増加に	DNA length	Kd (nM)	affinity (relative)	k _{diss} (s ⁻¹)	k _{ass} (M-1 s-1)
対して、100 倍もの大きな	32 bp	570*	(1)	0.054	6 x 10 ⁴
変化を示し、その依存性	136 bp	80	7.1	0.032	3×10^{5}
は k _{ass} によるもので、 k _{diss}	410 bp	5	110	0.036	3 x 10 ⁶
はせいぜい2倍程度しか	3 kbp	0.5 >	1100 <	-	-
変化がなかった。この	*by fluorometric titiration				

DNA 長依存性は antenna effect と命名されており、*E. coli Eco*RI methyltransferase^{12, 13} では 20 倍、*E. coli* LacI¹⁴⁻¹⁶ では 10-30 倍が報告されている。ただし、これらのタン パク質の antenna effect の原因は、まだ不明である。

6. 一次元的拡散による antenna effect の生理的重要性: TrpR による repression

ー次元的拡散は、 k_{ass} の増加機構と普通位置づけられていた⁶。しかし、DNA とタン パク質の k_{ass} は、生理学的にはそれほど重要ではない。多くの場合、結合解離よりも それ以後の反応の方が律速になっており、 k_{ass} の増加が、そのままでは生理的反応の 加速にはならないからである。しかし、上に述べたように、 K_{D} の変化を一次元的拡散 がもたらすならば、結合・解離が律速でなくとも、律速段階の pre-equilibrium, post-equilibrium として、一次元的拡散は直接生理的反応の速度に大きな変化をもたら すことになる。 1. one-dimensional diffusion

site であるオペレーターへの結合が阻害されるというほど弱い特異性を持つタンパク 質である(多くの DNA 結合タンパク質は 10⁵~10⁷ 倍の特異性を持つ)。ところが、こ のタンパク質は細胞あたり 100 分子程度しか存在せず、10⁶ 以上細胞内で露出してい

るという nonspecific sites の存在下で もオペレーターへ結合することが出 来、リプレッサー機能の説明が不可 能であった。我々は、ゲルシフト法 で用いられた DNA が 42bp と短いも のであり、もし、100 倍以上の antenna effect を細胞内で持つならば、前述の nonspecific sites の存在下でもオペレ ーターへ結合するだけの特異性 10^4 が得られるはずだと考えた。まず、 巨視的な footprint 法で、オペレータ ーの占有率を測り、K_Dの DNA 長依 存性を測定すると、1000bp 程度の DNA で 42bp に比べ予想通り 100 倍 程度の antenna effect を観測した ¹⁷。

Ser					
DNA	Kd (nM)	Relative affinity			
36bp	15	(1)			
36+232bp	1.7	9			
avidin-bio	otin 14	1.1			
Avidin-bic	otin 15	1.0			

E2. TrpRのantenna effectはloopingにはよらない

- 642 -

一次元的拡散以外にも antenna effect をもたらす機構は存在する。looping と呼ばれ るもので、TrpR-オペレーター複合体は、オペレーター部分以外の nonspecific site でも タンパク質表面と相互作用するというものである(図 4)。DNA がエネルギーを用い ることなく円環状になるためには 150bp の長さが必要である。CamR の場合でも TrpR の場合でもこれより短い長さから antenna effect が観測されたので、looping による antenna effect は起こってないと推定できる。

TrpRのLooping機構を否定するために、avidin-biotinでDNA鎖を伸長すると、antenna effect は全くなくなってしまった(表 2)。avidin-biotin でのDNA 鎖の伸長は、looping は阻害せず、一次元的拡散は阻害すると考えられるので、この結果は、TrpRの antenna effect は、CamR と同様一次元的拡散によることを強く示唆する。

もし、細胞内でも TrpR が一次元的拡散による antenna effect を持つのであれば、オペレーター付近に、LexA というタンパク質を強く結合する部位を導入するならば、 TrpR の一次元的拡散が、結合した LexA により阻害され、antenna effect が減少し、TrpR のリプレッサーとしての機能が減少するであろう。

止めて無駄なエネルギーを使わないようにするための調節タンパク質である。もし、 多くのタンパク質分子が必要ならば、せっかくの節約のための調節は無駄になってし まう。このため TrpR の分子数は低く 100 分子程度に抑える必要があったのである。 本来特異性の低い TrpR は、その低レベルの発現を補うために、一次元的拡散による antenna effect という、人間の目からは巧妙に見える方法を用いたのであろう。

7. 再び理論的基盤へ:平衡時での circulation と熱力学的取り扱いの保証

熱力学では、第二法則(あるいは等重率の仮定)から、平衡時においては、すべての 反応は、正逆の流量が釣り合っていなければならない。CamR とオペレーターとの結 合では、我々の観察した生物学的な時間の範囲内(1min~2hr)において、結合は変化 せず平衡と考えられることを上に述べた。しかし、CamR の結合解離には、解離状態 →nonspecific complex→specific complex→解離状態という circulation が存在しているよ うに見える。つまり、もし、これが本当の circulation ならば、thermodynamic state は 確立されておらず (local equilibrium は成立せず)、もし、local equilibrium が成立して いるならば、circulation は存在しないはずである。

ここで注意して頂きたいのは、nonspecific complex \rightarrow specific complex の一次元的拡散である。これは、エネルギー障壁が 0.5kT 程度以下という非常に早いプロセスであり、shuffling の一部と考えることが出来る。そう考えると、circulation が有る立場では、local equilibrium は成立していない。このことは、なぜ、一次元的拡散による antenna effect が熱力学で解析できないかという説明の一つでもある。

local equilibrium が成立している立場からこの circulation を見ると、nonspecific complex→specific complex の過程は分離できない過程なので、circulation と見えたもの は、解離状態→(nonspecific complex+specific complex)→解離状態という釣り合った状態になり、circulation は存在しない、と言うことになる。何の矛盾も無いことになる のである。このことは、なぜ、thermodynamic state の形成になぜ merging が必要かと いう説明の一つでもある。

ー次元的拡散をしても antenna effect を示さない λ ファージの Cro というリプレッサ ーも存在する。この系では、 k_{ass} も k_{diss} も、大きな一次元的拡散による促進を示すの で、熱力学で取り扱える系ではない¹⁸。しかし、両者の DNA 長依存性が似ているた めに、KD は一見 DNA 長依存性がなく antenna effect はほとんど無い。この結果は、 antenna effect が無いという理由だけでは、熱力学は正当化できない、と言うことを意 味する。熱力学の正当化は、本来微視的にその仮定を正当化することしかできないも のなのである。熱力学に違反しない結果が大部分であることだけで、熱力学は普遍的 に成立するというのは、論理的には破綻しているのである。

8. 平衡時の circulation の微視的原因

このような一見平衡時の circulation と見える過程はどのような微視的現象によるも のであろうか。 λ ファージの Cro の結果から、一次元的拡散だけが平衡時の circulation の理由でないことは明らかである。Cro と CamR との差は、多分 specific complex の構 造によるはずであるから、specific complex の解離過程に原因がある可能性が高い。 CamR では、直接 free state になる解離課程が、結合の逆過程(sliding out して DNA か ら解離する)より効率的に起こっているから antenna effect が観測されるが、Cro では結 合の逆過程が解離課程のおもな pathway であるので、antenna effect は無いのである。

X線結晶構造解析の結果を見ると、この両者の差は、CamR(よく知られている TetR

と同様な構造と信じられている)は、DNA を歪ませずに、ちょこんと DNA の側面に 乗っているが、Cro は、DNA を歪ませて、より広い部位で結合していることである。 例えば、ちょこんと DNA の側面に乗っている CamR は、DNA と直角方向からの水分 子の衝突に対して容易に解離するという、非等方的な解離過程が原因の一例になるか もしれない。そのような解離機構は、もはやµ空間の統計的挙動では記述できず、水 も含めたより大きな空間でしか記述できない。このように、一次元的拡散と解離の両 方に水分子が積極的に絡むことから、平衡時の circulation は生まれてくる可能性があ る。今後の機構研究に結論は待たねばならない。もし、非等方的な解離が平衡時の circulation の一因ならば、このような系は、もっと普遍的に存在するであろう。平衡 時には絶対に circulation は起こらないはずだという熱力学に対する過信によって、葬 られたケースも有るかもしれない。このように、遺伝子発現という生物学的問題にも、 物理学は有る程度の深みをもってかかわっているのである。

- 1. van Kampen, N. G., "Stochastic Process in Chemistry and Physics", 171-172, North-Holland, Amsterdam (1992).
- 2. Toda, M., Kubo R. and Saito, N., Chapter 5.2 in "Statistical Physics I: Equilibrium Statistical Mechanics", second edition, pp 252 Springer (1956).
- 3. Haar, D. Ter, Supplements in "Elements in Statistical Mechanics", pp 416, Rinehart & Company, New York, (1954).
- Farquhar I. E. in "Ergodic theory in statistical mechanics", ch. 3, John Wiley & Sons Inc., London (1964).
- 5. Kinchin, A.I. in Mathematical foundation of statistical mechanics. pp179, Dover Publications, New York, N.Y.
- von Hippel, P. H. & Berg, O. G. Facilitated target location in biological systems. J. Biol. Chem. 264, 675-678 (1989).
- Shimamoto, N. One-dimensional diffusion of proteins along DNA. Its biological and chemical significance revealed by single-molecule measurements. *J. Biol. Chem.* 274, 15293-15296 (1999).
- Kabata, H.et al. Visualization of single molecules of RNA polymerase sliding along DNA. Science 262, 1561-1563 (1993).
- 9. Sakata-Sogawa, K., Shimamoto, N. RNA polymerase can track a DNA groove during promoter search. *Pro. Nat. U. S. A.* 101, 14731-14735 (2004).
- 10. Kabata, H., Okada, W., Washizu, M. Single-molecule dynamics of the *Eco*RI enzyme using streached DNA: its application to in situ sliding assay and optical DNA mapping.

Jpn. J. Appl. Phys. 89, 1441-1448 (2000).

- 11. Kabata, H.et al., Unpublished.
- Surby, M. A., Reich, N. O. Facilitated diffusion of the EcoRI DNA methyltransferase is described by a novel mechanism. *Biochemistry* 35, 2209-2217 (1996a).
- Surby, M. A., Reich, N. O. Contribution of facilitated diffusion and processive catalysis to enzyme efficiency: implications for the EcoRI restriction-modification system. *Biochemistry* 35, 2201-2208 (1996b).
- Winter, R. B. & von Hippel, P. H. Diffusion driven mechanisms of protein translocation on nucleic acids.
 The Escherichia coli repressor-operator interaction: equilibrium measurements. *Biochemistry* 20, 6948-6960 (1981).
- 15. Khoury, A. M., Lee, H. J., Lillis, M. and Lu, P. Lac repressor-operator interaction: DNA length dependence. *Biochim. Biophys. Acta* 1087, 55-60 (1990).
- Tsodikov, O. V. et al., Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping. *J. Mol. Biol.* 294, 639-655 (1999).
- 17. Kinebuchi, T. & Shimamoto, N.
- 18. Kim, J. G., Takeda, Y., Matthews, B. W. and Anderson, W. F.: Kinetic studies on cro repressor-operator DNA interaction. *J. Mol. Biol.* 196, 149-158, (1987).