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Abstract 

本稿では、光誘起構造相転移に関する理論的研究の現状を、遍歴電子モデルを中心にして、随

時、実験とも関連させながら紹介する。基本となる概念は、固体結晶に潜在する多重安定性である。

フェルミ面の極く近傍のみを観測する種々の熱力学的測定では、殆ど明瞭に観測されない場合でも、

対象となる固体結晶が、潜在的に多重安定性を有する事が様々に予想され、これは、僅かな光励起

で非平衡相転移となって実際に観測される。有機電荷移動型錯体結晶、有機金属錯体、ぺロプスカ

イト型誘電体、等々を具体例として、この種の研究を通覧する。

Theories for photoinduced structural phase transitions are reviewed in c10se connection with various 

recent experimental resuIts related to this new optical phenomenon. There are two key concepts: the hidden 

multi-stability of the ground state， and the proliferations of optically excited states. Taking the ionic(I)→ 

neu甘al(N)phぉetransition in the organic charge transfer(CT) crys臼1，TTF-CA，出atypical example for this 

type transition， we， at first， theoretically show an adiabatic path which starts合omCT excitons in the I-phase， 

but finally reaches to a N-domain with a macroscopic size. In connection with this I-N transition， the concept 
of the initial condition sensitivity is also developed soぉ toc1ari命 experimentallyobserved nonlinear 

characteristics of this material. 

In the next， using a more simplified model for the many-exciton system， we theoretically study the 
early time qu如何mdynamics of the exciton proliferation， which finally results in the formation of a domain 
with a large number of excitons. For this pu中ose，we derive a stepwise iterative equation to describe the 

exciton proliferation， and clari命theorigin of the initial condition sensitivity. 

Possible differences between a photoinduced nonequilibrium phase and an equilibrium phase at high 

temperatures are also CI紅白ed仕omgeneral and conceptional points of view， in connection with recent 

experiments on the photoinduced phぉetransition in an organo-metallic complex crys旬1.It will be shown 

that the photoinduce phase can make a new interaction appe訂おabroken symme句，only in this phぉe，even

when this interaction is almost completely hidden in all the equilibrium phases， suchぉ theground state and 
other high-temperature phぉes.The relation between the photoinduced nonequilibrium ph出eand the 

hysteresis induced nonequilibrium one is also qualitatively discussed. 

We will be concemed with a macroscopic parity violation and a fe汀0・(or super-para-) electricity， 

induced by a photogenerated electrons in the perovskite type quan旬mdielectric SrTiO 3・τhe

photogenerated electron in the 3d band ofTi， is assumed to couple， weakly but quadratically with 

soft-釘由訂monicT1 u phonons， and strongly but line訂lyto the breathing (A 19) type high energy phonons. 

These two types of electron-phonon couplings result in two types of polarons， a “super-para-elec汀iclarge 

polaron" with a quasi-global parity violation， and an“o任centertype self.;回 ppedpolaron 
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directly by using x-ray measurements. 
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Large varieties of materials are now around us. These materials are such ones, that few kinds of macroscopic 

numbers of atoms or molecules are condensed with a definite composition ratio. While, without changing 

this chemical composition, a material can take various phases from gaseous and liquid phases to crystalline 

ones, as temperature decreases from high to low. Even at low temperatures, a material can take various 

crystalline phases, whose lattice structure and electronic state change as temperature decreases. However, all 

these states are so-called equilibrium phases, in the sense that the free energy of each state takes its global 

minimum at each temperature. 

Let us now proceed to nonequilibrium phases generated from an equilibrium one by some external 

excitations or stimulations. Usually, these states are transient ones having higher energies than the 

equilibrium one, but, depending on the way of the stimulations or excitations, we can get much more 

varieties of states, even if the starting equilibrium phase is same. They also surely relax down to the starting 

equilibrium one after a period of time. However, if they are locally stable state, in the sense that their free 

energies take local minima separated from the global one by substantial energy barriers, the time required for 

the relaxation will be long. In that case, we can complete necessary observations to determine their 

characteristics within this period of time. Hence, such a long-lived locally stable nonequilibrium phase is 

effectively same as the equilibrium ones. 

Various amorphous crystals are well known as typical examples for these nonequilibrium phases. 

They are brought about by cooling materials down rapidly from their high temperature phases. The lifetime 

of the relaxation is believed to be much longer than the time scale of our daily life. Unfortunately, however, 

these amorphous crystals have no well-defined long range periodic crystalline or electronic order, since they 

are just amorphous. 

Very recently, on the other hand, there discovered a new class of insulating solids, which, being 

shone by only a few visible photons, become pregnant with a macroscopic excited domain that has new 

structural and electronic orders quite different from the starting ground state (equilibrium phase). This 
phenomenon is called "photoinduced phase transition" and we can generate new long lived locally stable 

macroscopic nonequilibrium phases through the excitations or stimulations by a few visible photons. The 

purpose of this paper is to review recent theoretical studies on this phenomenon, in close connection with 

various recent experiments. 

2. Relaxation of optical excitations, hidden multi-stability and photoinduced phase transitions 

As is already well known, an electron in an insulating crystal induces a local lattice distortion around itself, 

when it is excited by a photon. A sudden change of charge distribution appeared through this optical 

excitation, induces a motion of the crystal lattice surrounding the excited electron, so that the whole 

electron-lattice system will reach a new equilibrium position within the excited state. This phenomenon is 

called "lattice relaxation" of an optical excitation, and the resultant state is often called "photoinduced 

structural change", as schematically shown in Fig.I. This relaxation phenomenon has been studied in detail, 

in various kinds of insulating crystals for these fifty years. According to the original concept of this lattice 

relaxation, however, it is tacitly assumed to be a microscopic phenomenon, in which only few atoms and 

electrons are involved[I]. 
In the recent years, on the other hand, there have been discovered many unconventionally 

photoactive solids, where the relaxation of optical excited states results in various collective motions 

involving a large number of atoms and electrons. In some cases, it results in a macroscopic excited domain 

with new structural and electronic orders quite different from the original ones. This situation can be called 

"photoinduced structural phase transition (pSPT)"[2-5]. 

These problems are closely related with the hidden multi-stability intrinsic to each solid. If the 

ground state of a solid is pseudo-degenerate, being composed of true and false ground states with each 

structural and electronic orders different from others, we call it multi-stable. In this case, the 

photo-absorption, being initially a single-electron excitation from the true ground state, can trigger local but 
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macroscopic instabilities. The photo-absorption can induce low-lying collective excitations during the lattice 

relaxation, and can finally produce a false ground state at the expense to create boundaries between the two 

states. Thus a local but macroscopic excited domain appears. In other words, the initially created 

single-electron excitation proliferates during the relaxation, and grows up to be a macroscopic order, as 

schematically shown in Fig.l. 

The origin of the pseudo-degeneracy can be understood from the conceptional point of view related 

with the cohesive mechanism of each solid. As mentioned before, the solid is composed of macroscopic 

numbers of few kinds of atoms or molecules with a definite composition ratio. However, even if the 

constituent atoms (molecules) are defined, the structural and electronic orders, which will be realized in the 

macroscopic ground state, are not always determined straightforwardly. For example, in the case of alkali 

halide, the ionic state and the covalent one are two well-known candidates for the ground state[6]. Moreover, 

ifthere are two predominant but mutually conflicting elements in the original Hamiltonian, there appear two 

candidates that inherit this conflict. Thus, it is quite Ubiquitous that we have the multi-stability or the 
pseudo-degeneracy with the true and false ground states. 

It is also very important to see the relation between photoinduced phase transitions and the ordinary 

ones due to the thermal excitation. When the false ground state is so fortunate to be just above the true one, 

being easily excited by the thermal energy, we may get the ordinary phase transition, and can recognize the 

presence of this false ground state. However, there will be various other cases that the energy of the false 

ground state is too high to be excited thermally. Ordinary thermodynamic measurements can be concerned 

only with the true ground state or small excitations therefrom, and hence, they can never detect such hidden 

states. Even in these difficult cases, we can create the false ground state by the photo-excitation and the 

lattice relaxation therefrom, as schematically shown in Fig.I. 

Such a false ground state always disappears finally within a finite life-time, and can never be permanent, 

as mentioned before. However, according to the recent progress of our laser spectroscopy techniques, an 
infinite life time is no more necessary for each state to be recognized as a well-defined state, provided that 

can last long enough to be clearly observed by other photons to detect it. At present, the time required for 

this type observation is usually less than 10-12 second, and in some case, even 10-15 second is enough. 

Incidentally, let us briefly see, the difference between the present photoinduced phase transition and 
the so-called "new material design (or search)", which is the most contemporary trend in the field of the 

material science. The one of most standard techniques for the new material design (or search) is to apply 

static external fields such as magnetic fields or pressures onto a material, which is expected to give novel or 

anomalous properties absent in other materials existing already. The other most standard technique is to 

design or synthesize the material by changing its chemical composition, little by little, so that it will show 

quite new properties. 

In the case of static external field, however, it changes all the electronic state of the material, both 

ground and excited states, unselectively. While photons have definite momentum, phase, helicity and energy. 

Hence, they can create only particular excited states, selectively and quite intensively. In contrast to the 

chemical design or synthesis, the photoinduced phase transition does not change the chemical composition 

of the material, but can realize new states. Thus the research for photoinduced phase transitions will be able 
to open a new multistoried concept for materials. 

3. Photoinduced ionic - neutral phase transition in organic molecular crystal TTF-CA 

As one of the typical examples for the PSPT, here, we will be concerned with the photoinduced ionic(I)~ 

neutral(N) transition in an organic molecular crystal Tetrathiafuluvalene-p-Chloranil, and review the present 

stage for its experimental studies. Both Tetrathiafuluvalene (TTF) and p-Chloranil (CA) are planar organic 

molecules as schematically shown at the top of Fig.2, and their crystal has a quasi I-d chain like structure, in 
which these two molecules are alternately stacked along this I-d chain axis. 
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In the true ground state of this crystal at absolute zero of temperature, both TTF and CA become a 

cation and an anion, respectively, and make a dimer with each other as shown in Fig.2a. This is called the 

I-phase. On the other hand, we also have the N-phase, in which neutral TTF and CA are stacked alternately 

without dimerization, as shown in Fig.2d. This is the accidentally pseudo-degenerate false ground state, and 

at absolute zero of temperature, it is just above the ionic true ground state. 

Keeping this material in the low enough temperature, but shining a strong laser light of about 

O.6eV~2.3eV on to it, we can generate the N-domain even in the ionic true ground state, as shown in Fig.2c. 

This change was experimentally confirmed by the change(= .1.R)of the optical reflectivity. Figure 3 shows 

the spectral shape of original optical reflectivity (= R) of the TTF-CA crystal in the I-phase at 2K, where the 

exciting light is polarized perpendicular to the I-d chain axis[7]. In this spectrum, we can see a characteristic 

peak structure at around 3e V, and this peak corresponds to an intra-molecular electronic excitation of TTF+. 

Hence its intensity can be used as a macroscopic indicator for the presence of the cationic TTF molecules in 

this crystal. 

In fact, when this crystal is shone by a light with an energy of 2.3e V, we can get a relative change 

(=.1.RJR) of this reflectivity, as shown in Fig.4[8]. The intensity of the aforementioned peak is clearly seen to 

decrease. It means that a macroscopic number of neutral TIF molecules (N-domains) have been generated in 

the I-phase. This is nothing else but the PSPT. From this decrease of the peak intensity, we can determine 

that the domain is composed of about 200~ 1000 neutral pairs, and it can last for about 10-3 second[8]. 

4. Threshold excitation intensity and initial condition sensitivity 

For this transition, we can think of the following simple and intuitive scenario as schematically shown from 

Fig.2b to Fig.2c. That is, a single photon can make a single charge transfer (CT) excitation between 

neighboring molecules, which is just equal to a neutral pair generation. After that, the number of this neutral 

pair will increase like a domino game. However, by the recent experimental studies shown in Fig.5[9], this 

simple scenario is proved wrong. 

In this figure, we have shown the photo-absorption spectrum of TTF -CA, as a small inset. It has two 

peaks at 0.6eV and also at 2.2eV. The first one, being the elementary optical excitation of this crystal, 

corresponds to the aforementioned inter-molecular CT excitation. Among a macroscopic number of 

neighboring ion pairs (TTF+ and CA -) in Fig.2a, only a single neighboring ion pair returns back to a 

neutral pair (TTF and CA) by this excitation as shown in Fig.2b, and this neutral pair also itinerates along 

the crystal axis, keeping all other pairs still ionic. This is nothing else but the so-called inter-molecular CT 

exciton, wherein a hole and an electron (a positive charge and a negative one relative to the I-phase) are 

bound together, so that they are always at neighboring two molecules with each other, even if their center of 

mass itinerates. While, the second peak at 2.2e V corresponds to an intra-molecular electronic transition of 

TTF, just like the case of the aforementioned 3e V peak. The thick solid line in Fig.5 denotes the efficiency of 

the N-phase generation as function of the exciting photon intensity, when the photon energy is fixed at this 

CT exciton (0.6e V). We can clearly see that there is a threshold in the intensity, below which the 

macroscopic N-phase can never be generated. It means that a single CT exciton alone can never result in the 

macroscopic N-phase, but only through a nonlinear cooperation between several photo-excited CT excitons, 

the new phase can be attained. The presence of this threshold is the first note-worthy characteristic of the 

TTF -CA crystal. 

The second note-worthy characteristic, which we can see from Fig.5, is the difference between the 
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dashed line and the aforementioned thick solid line. Exactly speaking, the horizontal axis of this figure does 

not simply denote the photon intensity itself, but denotes the total photon energy which is absorbed in the 

unit volume of the TTF-CA crystal. This total energy is calculated by taking the three quantities into account, 

the absorption coefficient, the energy of the photon and its intensity. Thus, we can compare the 0.6eV 

excitation and the 2.2eV excitation (the thick dashed line) on an equal footing. For example, if we focus on 

the point with a value 0.25 of the horizontal axis in Fig.5, we can find that the efficiency becomes very high 

or almost zero, depending sensitively on the photon energy, although the total absorbed photonic energies are 

same each other. Not only these two cases, we can also excite using various other photons in between 

( 0.6eV~2.2eV ), keeping the total absorbed photonic energies are same. However all these excitations give 

the efficiencies different with each other, and ranging between the two lines in Fig.5. 

From this fact, we can immediately conclude that it is not the ordinary thermal phase transition. In the 

experimental studies for photoinduced phase transitions, the first thing we have to examine is, whether it is 

the ordinary thennal phase transition or not. Because, the absorbed photons may often be converted into heat 

in the crystal, raising up its temperature, and may indirectly result in the ordinary thennal phase transitions. 

In the case of this indirect thennal phase transition, however, its generation efficiency will depend only on 

the total absorbed photon energy, and will never sensitively depend on the way or type of the excitation. 

While, Fig.5 shows that the generation efficiency quite sensitively depends on the type of the excitation, that 

is, the exciting photon energy, even if the total absorbed photonic energies are same. If we return back to 

Fig. I , the aforementioned two types of excitations start from the common ground state minimum equally, 

and moreover, the energies of the final states of the Franck-Condon transition are almost same. 

Here, we should emphasize the so-called Franck-Condon principle. The optical transition can 

complete within a time of the order of 10-15 second, provided that its transition energy is in the visible 

region. While, the period of oscillation of a crystal lattice or phonon is of the order of 10-12 second. Thus, 

the configuration of the crystal lattice can never change during the optical transition, and hence, it can occur 

only vertically as schematically shown in Fig.I. Consequently, possible differences between the 

aforementioned two transitions are only in the electronic natures of these Franck-Condon type excited states, 

from which the lattice relaxation and the proliferation start. However, this small difference in the initial state 

of the relaxation, afterwards diverges and finally detennines occurrence or nonoccurrence of the 

photoinduced phase transition. This is the so-called "initial condition sensitivity", peculiar to the dynamics 

of nonlinear systems. 

As is well known, the initial condition sensitivity has been studied mainly from the mathematical point 

of view, by taking classical nonlinear model systems with only a few degree offreedoms[lO]. The setting up 

the initial condition, in this case, is also purely mathematical and artificial procedure in order to solve 

nonlinear differential equations that describe these model systems. On the other hand, the present case is the 

fonnation of a macroscopic order in a real material, and the setting up the initial condition itself is also a real 

physical process. As mentioned before, it is set by choosing the spatiotemporal pattern of the exciting photon 

pulse, and hence, it is in compliance with the quantum uncertainty. Thus the studies for the photoinduced 

phase transitions will open new aspects of the nonlinear dynamics and self-organization phenomena. 

s. Adiabatic path of photoinduced ionic -+ neutral phase transition in TTF -CA crystal 

Keeping these points in mind, very recently, Huai et al have theoretically clarified the adiabatic relaxation 

path, which starts from a Franck-Condon type optical excitation in the ionic ground state of the TTF-CA 

crystal, and tenninates up to the large N-domain fonnation in this crystal[lI]. Let us review it in detail. In 

order to clarify the photoinduced phenomena in TTF -CA theoretically, we have to specify our microscopic 

model to describe the many-electron system strongly coupling with lattice distortions (phonons) in this 

molecular crystal. The constituent TTF and CA molecules are, of course, originally neutral. However, when 
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they are condensed as a crystal at low enough temperatures below 84K, the whole system becomes the ionic 

and dimerized phase shown in Fig.2(a). While, at higher temperatures than 84K, it returns back to the neutral 

and monomeric phase as shown in Fig.2( d), and this ordinary thermal phase transition is the first order 

one[12]. 

As shown by Soos theoretically[13], the change from the original neutral state to the ionic one in 

TTF-CA can be described as an electron transfer from the highest occupied molecular orbital (HOMO) of 

TTF to the lowest unoccupied molecular orbital (LUMO) of CA. The main energy gain in the ionic state 

relative to the neutral one is the long range Coulomb interaction between electrons and ions, in particular, the 

Coulomb attraction between a cation and an anion thus generated, and this energy gain increases if the 

inter-molecular distance decreases after the ionization, as firstly shown by Sakano-Toyozawa[14]. 

5.1 Model Hamiltonian 

Theory by Huai et al[ll] is intended to take these essential points into account straightly, and based on the 

extended Peierls-Hubbard model for valence electrons in the HOMO of TTF molecules and the LUMO of 

CA molecules as schematically shown in Fig.6. The inter-molecular Coulomb repulsion in this model is 

assumed to depend nonlinearly on the inter-molecular distance. This model also takes weak interactions 

between I-d chains into account, so that we can describe the N-domain formation in the three dimensional 

TTF -CA crystal more realistic. Our Hamiltonian (= H ) reads, 

H = Hel + Hph + Hintep (1) 

where Hel ,H ph and Hinter denote the Hamiltonians of the electron part, the phonon part and the 

inter-chain interaction. The electronic part H el is given as 

- I Ve(qe,qf+d[2- ne]ne+l - I Ve(qe,qe+l)[2- ne+l]ne, (2) 
e Eodd e Eeven 

nf,a == Ce,aC f,a' nf == L nf,a , (3) 
a 

where Tj is the transfer energy of an electron between a HOMO and its neighboring LUMO. Ce,a is the 

creation operator of an electron with spin a( = n, ~) at I! th lattice site, which is numbered from left to 

right along the I-d chain as shown in Fig.6, and odd sites correspond to the HOMO, while the even ones 

correspond to the LUMO. /). in eq.(2) is the energy difference between the HOMO and the LUMO, while 
U is the intra-molecular Coulomb repUlsive energy of electrons, and is assumed common to both the HOMO 

and the LUMO. Vf in the second line of eq.(2) is the Coulomb interaction between neighboring two 

moleculeS~ wherein the total charge in the TTF site (I! E o~d ) is +[2- n e], while that in the CA site 

(I! E even) is - nf. As mentioned before, this interaction is assumed to depend nonlinearly on the change of 

the inter-molecular distance (qe - qf+l)' where qf is the displacement of each molecule along the chain 
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axis as shown in Fig.6. The unit oflength is the original inter-molecular distance. Thus, V£ is given as 

where Vo is the original value of V£, while ~l and ~2 are its first and second order expanding 

coefficients with respect to (q£ - q£+d. 

It is well known that the electron-phonon coupling leading to the dimerization may have two origins. 

The first one is the present case shown in eq.(4), being the modulation of V£, and this model is proposed 

firstly by Sakano-Toyozawa[ 14]. While, the second one is the modulation of Ti [IS-17]. Our model is not 

this second one. Because of the small overlap between the HOMO and the LUMO, this Ti becomes so 

small, that its distance variation can be neglected. Moreover, as we will show later in detail, our model is 
rather straightforward to make the N-I phase transition to be the first order one, in contrast to the SSH 

model[IS], which makes the transition to be the second order. 

The phonon part Hph ofeq.(l) is given as, 

(S) 

wherein a fourth order potential with a coefficient 82 is introduced, as well as the ordinary second order 

one with the coefficient 8 1 ' while the kinetic energy of phonons are neglected because of the adiabatic 

approximation. 

As for the inter-chain interaction Hinter, we neglect it in the study for the ground state properties. 

This inter-chain interaction is tacitly assumed to be so small as to give almost no contribution provided that 
the ground state is uniform for all over the chains in the crystal, no matter what it will be the dimerized 

I-phase or the monomeric neutral one. Only if a large and macroscopic domain appears in the I-phase, this 

inter-chain interaction is assumed to bring an appreciable energy increase. We will give its practical form 
later in detail. 

Using this model Hamiltonian, let us now set up our simple-minded picture for both the 1- and N­

phases. The N-phase is such that the HOMO of the ITF is filled up with two electrons of opposite spins 

(t and~), while the LUMO of the CA is vacant, as schematically shown in Fig.6(a). Thus, the two 

constituent molecules are literally neutral, while, the electronic state realized in this system is just equal to 
the charge density wave (CDW ) state of the double period. On the other hand, the I-phase is such that the 

HOMO and the LUMO are alternately occupied by the electrons of t and ~ spins as shown in Fig.6(b). 

Within this simple-minded picture, this state is just equal to the spin density wave (SDW) state of the double 
period. However, as shown in Fig.6(b), this I-phase also has the dimerization between neighboring ITF and 

CA molecules. 
Here we should note why eq.(4) is nonlinear and eq. (S) is anharmonic. Ifwe retain only the linear term 

in eq.(4), the energy gain due to the dimerization in the I-phase cancels between left and right of each 
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molecule, since our system is not a single ionic pair but a 1-d chain crystal. For this reason, the nonlinear 

term is introduced in eq.(4). Accordingly, the quartic anhannonicity is also introduced in eq.(5). It comes 

from the inter-molecular repulsion, and prevents unphysically large dimerizations. 

In our theory, we have eight parameters I j , t:. ,U, Vo ,~ I' ~2' S 1 and S2 . The values of these 

parameters are determined so that, they, as a set, reproduce main experimental and theoretical results existing 

already prior to our theory. For Tj , we use the ab-initio calculation by Katan[ 18]. On the other hand, from 

spectroscopic studies in the visible and infrared regions, the total charge induced at the CA site of the I-phase 

(== PI) is determined to be PI = 0.8 [19]. While, by the same experiment, the total charge induced at the 

CA site of the N-phase (== PN ) is also determined as PN = 0.3. Unlike the simple-minded picture shown 

in Fig.6, these induced charges PI and PN are not natural numbers such as I or 0, but are fractional, 

because the valence electrons are quantum-mechanically itinerant, or I j is not zero. In addition to these, 

there are following five well-known experimental results. By the x-ray structure analysis, the dimeric 

displacement of each molecule in the ionic ground state is determined to be 2.5% of the original 

intermolecular distance[12]. More over, in the light absorption spectrum of the 1- phase, two CT absorption 

peaks appear at 0.6eV and 1.0eV with an intensity ratio 1: 0.5, while, in the N-phase, only a single CT peak 

appears at 0.6eV[19]. Using these data, we can determine our eight parameters without serious ambiguity as, 

Tj =0.17eV, L\ =2.716eV, U= 1. 528eV, Vo =0.604eV, ~I =l.OeV, ~2 =8.54eV, S 1 = 4.86eV and 

5.2 Ground state properties 

Let us now see the properties of the ground state given by this Hamiltonian H, using. the unrestricted 

Hartree-Fock approximation. Within this approximation, we can reduce the two-body terms of Hel into 

one-body terms as 

Ve{< ne(ne+!) + (ne )ne+! -(ne)(nl+!»- ~(mt,o)me,o + mt,o(me,o) -(mt,o)(me,o»)}' 

(7) 

(8) 

where ( ... ) denotes the expectation value of an operator It is unknown at present stage, but will 

be determined later self-consistently. Since our system is the half-filled system wherein the total number of 
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the lattice sites (;;:= Nt) is equal to the total number of electrons as 

(9) 

we assume for (ne,cr>' (me,cr> and q.e the following forms with the double period, 

(10) 

where &n cr , rncr, &mcr and qo are to be determined within the Hartree-Fock and adiabatic 

approximations. 

The Hartree-Fock type self-consistent equation for these &n cr , rncr and &rncr gives two 

solutions for a given qo, and they correspond to the I-phase with &na ~ -&n/3 (SOW) and to the N-phase 

with &na ~ &n/3 (COW). In Fig.?, we have shown the total energy (;;:= Eg) thus theoretically calculated as 

a function of qo, and these 1- and N-phases are shown to be pseudo-degenerate with each other[ 11]. The 

energy minimum of the I-phase is 0.002eV lower that of the N-one, and they are separated by an adiabatic 

energy barrier of about 0.0045e V. Thus the I-phase is the true ground state, while the N-phase is the false one, 

and both these two phases are locally stable. Furthermore, the I-phase is theoretically shown to be dimerized 

about 2.9% of the lattice constant, while the N-phase is not dimerized (qo = 0). Although we have been 

concerned only with the adiabatic energy at absolute zero temperature, the presence of the aforementioned 

adiabatic energy barrier means that the ordinary thermal phase transition between N-phase and I-one is the 

first order. 
In Fig.8(a), we have illustrated the charge and the spin density distributions calculated for the I-phase. 

This phase is characterized by the strong SOW order (&na ~ -&n/3 ~ 0.4 ) mixed with a weak COW type 

order. The calculated induce charge PI is 0.95, being quite large but still fractional. Fig.8(b) demonstrates 

the N-phase, and there is only the COW type order (&na ~ on/3 ~ 0.4 ). The calculated induced charge PN 

of this phase is 0.2, being comparatively small, but still significant due to the finiteness of Tj • 

5.3 Energy band structure and lowest excited state 

Fig.9(a) presents four one-electron energy bands of the I-phase, obtained as functions of a 

wave-vector (;;:= k), by using this unrestricted Hartree-Fock approximation. It has an anti ferromagnetic 

broken symmetry in the spin space. There are two bands for each up- and down-spin electrons as 

distinguished by the corresponding arrows in Fig.9(a). In the ground sate, the lower two bands are occupied, 

while others are vacant. The lowest band, being occupied by up-spin electrons, is mainly composed by the 
LUMO of ITF, while the second lowest band, being occupied by down-spin electrons, are mainly composed 

of the HOMO of CA. In this system, the elementary optical excitation is such that a down-spin electron goes 
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from the second lowest band to the third one, as shown by a dashed arrow in Fig.9(a). This third band is 

mainly composed of the HOMO, which is already occupied by an up-spin electron, and hence the excitation 

energy partly due to U in eq.(2). 

If we change our picture from the wave-vector space to the real space, this excitation results in a 

doubly occupied HOMO and a vacant LUMO, while all other sites still keep original single occupancy. The 

electron and the hole thus created by light, attract with each other through - V£, and make the 

aforementioned bound state called the CT exciton, as schematically shown in Fig.9(b), and this CT exciton is 

the same one as already shown in Fig.2(b). This is the lowest Franck-Condon type excited state, calculated 

by the theory based on the unrestricted Hartree-Fock approximation, reinforced by including the 

electron-hole attraction at the final state of the optical transition[ 11]. 
Using this reinforced theory, Huai et al have calculated the spectral shape of the CT excitation 

including classical lattice fluctuations[ll]. The resultant spectral shape has two peaks at 0.6eV and at 1.0eV 

in the case of the I-phase, while, in the case of N-phase, it has only a single peak at 0.6eV. This result is 

consistent with the experimentally observed spectral shape of the light absorption in the energy region from 

0.6e V to 1.3e V[ 19]. The theoretical origin of this change from the two peaked structure to the single peaked 

one was firstly demonstrated by Sakano-Toyozawa[ 14], and the present theoretical result is identical to it, if 

the thermal lattice fluctuations are completely frozen. Thus, the present theory can successfully reproduce 

various well-known experimental and theoretical results. 

5.4 Relaxation path 

Let us now proceed to the lattice relaxation path of optical excitations. The visible photon has a long 

wavelength of about 1000 times of the lattice constant, and each photon can make a single CT exciton per 

this length. Among many excitons thus created in the whole ionic crystal, we will focus only on a single CT 

exciton and will clarify its lattice relaxation path. This path starts from the Franck-Condon state, and 

terminates up to the macroscopic N-domain formation. In order to describe this path theoretically, we 

introduce the following domain type lattice distortion pattern qe, 

(11) 

Here (-1) e q 0 denotes the uniform dimeric distortion of the ionic ground state, from which we start. The 

second term in the curly brackets { ... } denotes a local lattice displacement induced by a new excited 

domain. ~q is its amplitude, e corresponds to the width of the domain boundary, and lois the domain 

size. Typical domain structures given by these parameters are demonstrated in Fig. to. When ~q < 0.5, the 

lattice site f inside of the domain ( -f 0 / 2 ~ (f - 50) ~ f 0 /2 ) has a reduced dimerization, but is still in 

the same phase as the original lattice outside of the domain, and hence it corresponds to a new I-domain. In 

the case of second situation ~q = 0.5, it is obvious that the inside lattice sites have no dimerization at all. 

Therefore, it corresponds to aN-domain. 

Let us return to the problem of Hinter' The distance between the TTF and the.CA molecules within 
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a chain is about 3 A , while the inter-chain distance is about lOA, and hence, as mentioned before, we have 

neglected this interaction, assuming that it will give no serious effect. Even for the excited domain, this 

situation will be same, if the new displacement (q ( - (-1) ( q 0) associated with this new domain is small 

as compared with the original displacement in the ground state, I q( - (-1)( qo I :::; qo. On the other 

hand, when the new displacement becomes very large, I q( - (-1)( qo I » qo, various inter-molecular 

repulsions will also act, and will give a nonlinear increase of the lattice potential, just as shown in eq.(5) and 

Fig. 7. Moreover, this effect will become appreciable only when the new domain expands to a macroscopic 

size in a single chain. To take this nonlinear inter-chain interaction into account effectively, Huai et al used 

the following form, 

where q( denotes the lattice distortion of a central chain on which we focus, while (-1)£ qo is the 

representative of the displacements of environmental chains, and K j (i= 1,2,3) denotes the 2i th expanding 

coefficient with respect to the new distortion. These environmental chains are assumed to be frozen in the 

ionic ground state, being never excited whatever occurs in the central chain. For practical calculations, the 

following values are used, K t =O.694geV, K 2 = -1.415xl03 eV and K 3 =9.699xl05 eV. These values 

£ are so chosen that the interchain interaction becomes appreciable only when I q £ - (-1) q 0 I ~ 2 q 0 and 

2 
fo~10 . 

Fig. I I demonstrates the adiabatic energy surface of the ground state E g and that of the first excited 

state (== E xl ), thus obtained, as a function of dq and f 0 . While e is determined to minimize 

Ex I, since we are going to clarify the relaxation path of the excited state. All the energies are referenced 

from the energy of the ionic true ground states (~q =O,f 0=0) shown in Fig.7. In Fig.ll(a), the region with 

~q < 0.5 is still the I-phase, which has the SOW type order already shown in Fig.8(a). 

Nevertheless, if we go up from this ionic true ground state (dq =0, f 0 =0) to the plateau region 

(~q == 0.5 and f 0 ~ 40 ) of Fig. 11 (a), the N-domain appears. In Fig.12, we have shown charge- and 

spin-density distributions of this N-domain by solid lines, taking the case ~q = 0.5 and f. 0 = 50 as a 

typical example. From Fig.12, we can see that the original SDW type order inside of the domain have now 

disappeared, and a CDW type order newly appears instead, although the outside of the domain still remains 

unchanged. According to this calculation[11], this domain boundary between the I-phase and N-one has both 
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a charge and a spin. 

In this plateau region of Fig. 11 (a), there are various shallow local minima, one of which is shown in 

an enlarged inset of the right-hand side. The presence of these local minima is mainly due to the discreteness 

of the lattice, and makes the N-domain stable and long-lived. As .1q and f 0 increase further (.1q ~ 0.5, 

f 0 ~ 50 ) from this plateau region, E g also increases further. This increase is mainly due to H inter given 

by eq.(12), and partly due to the intrinsic energy difference between the I-phase and the N-one shown in 
Fig.7. 

Fig.11 (b) and (c) show front and back views of the adiabatic energy surface of the lowest excited 

state Ex 1. At around the origin (.1q =0, f 0 =0), or at the Franck-Condon state, a local minimum appears, 

and it is due to the CT exciton. We will see this Franck-Condon region later in detail. There is another local 

minimum at around .1q =0.5 and f 0= 45, and it corresponds to the excited state of the N-domain. In Fig.12, 

we have also shown its charge- and spin-density distributions by dashed lines. We can see the same CDW 

and SDW type orders as that of the ground state, except the domain boundary. As .1q and f 0 increase 

further (~q ~ 0.5, R 0 ~ 50), Ex I also increases further. This increase is again mainly due to Hinter' and 

partly due to the intrinsic energy difference between the I-phase and the N-one. Thus, Hinter is essential to 

make the N-domain locally stable. 

In Fig.l3, we have shown both E g and Ex I as a function of f 0, along the steepest ascending 

line from the true ionic ground state to the N-domain. This line, denoted by red in Fig.II(a), is determined to 

be always orthogonal to the equi-potentialline. In the adiabatic energy curve of ExI, we can see two local 

minima mentioned before. The first one at around f 0 = 0 corresponds to the CT exciton as mentioned 

before. While the second one at f 0 = 45 corresponds to the N-domain, which is a little above the CT 

exciton. Moreover, these two minima are clearly separated by a high adiabatic potential barrier with each 

other. As shown in Fig.2(c) and Fig.l2, we have two boundaries between the I-phase and N-one. The energy 

increase to create these two boundaries makes a small size N-domain ( f 0 < 40) too unstable in the excited 

state. It can be stable only when its size exceeds a critical value (f 0 ~ 40), just like the formation of a 

gaseous bubble in an overheated liquid. We should also note that it is the characteristic only of the excited 

state Exl' While, in the ground state energy curve Eg shown in Fig.13, we have not such a high barrier, 

but only low barriers as shown in the enlarged inset. 
Thus, we can conclude that the single CT exciton alone can never result in the macroscopic 

N-domain formation straightly. Only when our system is excited by a large excess electronic or vibrational 
(phonon) energies than the single exciton state, it can overcome this high barrier and results in the 

macroscopic N-domain formation, as shown in Fig.l3. In other words, only when we have such a large 

excess energy at the very beginning of the relaxation, this excess energy can be converted into the exciton 
proliferation, and can induce other various nonlinear processes during the relaxation. 

In this connection, let us focus our attention only on the adiabatic potential energy surface of 
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Franck-Condon region of Fig. 13 . It is shown in Fig.14 in detail. We can see that the exact local energy 

minimum associated with the CT exciton is, not just at the origin (e 0 = 0), but at around the point with 

e 0 ~ 7 and ~q;f:. o. This is nothing else but the ordinary self-localization of the CT exciton[ 1]. Since our 

system has a high intrinsic nonlinearity, however, even this single CT exciton can somewhat proliferate 

during this self-localization process, and grow up to be a small cluster composed of few CT excitons. 
Nevertheless, because of the high energy barrier mentioned before, this growth is limited only within the 

microscopic scale. After this limited lattice relaxation within the Franck-Condon region, the resultant cluster 
will disappear nonradiatively as schematically shown in Fig. 14. This theoretical result is consistent with the 

recent experiments[9,20]. This small scale proliferation accompanied by the self-localization is already 

well-known in various other quasi one-dimensional insulators[2]. 
Finally, it should be noted that the process described above is only the early stage or the nucleation 

process of the macroscopic photoinduced phase transition. The neutral domain thus created will stay at the 

aforementioned shallow local energy minimum of Eg for a long time than the one oscillation period of 

phonon. Hence, during this stay, it can move diffusively within a chain, and can merge with other N-domains 

created by other photons, and results in a global phase transition. 

5.5 High energy optical excited states in SDW state 

As mentioned above, the high energy optically excited states are responsible for the photoinduced phase 

transition, rather than the single CT exciton. Hence, we have to clarify the nature of these highly excited 

states of the SDW state. In the Franck-Condon state, as mentioned before, quantum and dynamical natures of 
the electron-phonon interaction does not work, since the lattice is fixed at the ground state configuration. As 

is well known, this electron-phonon interaction is a retarded one, which can start working 

quantum-mechanically about 10-12 second after the optical excitation. While, the inter-electron Coulomb 

interaction, being the instantaneous force, will dominate the nature of highly excited states, since the starting 
ground state is the SDW state. In order to clarify this effect, however, the unrestricted Hartree-Fock 

approximation is too crude, and we have to take into account effects of quantum fluctuations of itinerant 

electrons due to the Coulomb interaction. For this reason, we clarify higher optical excited states of the 

half-filled SDW state, using a more simple one-dimensional extended Hubbard Hamiltonian(;; Hex). It is 

given as 

When U > 2 V 0 ' this Hamiltonian gives the SDW state with the antiferromagnetic order, just like Fig.6(b), 

although we have neither !i nor the dimeric electron-phonon interaction. While, when U < 2Vo, we 

have the CDW state just like Fig.6(a). Moreover, when U exceeds 2Vo only a little, we get such a situation 

similar to Fig.7 that this SDW state is just below the CDW one. Thus, as far as the Franck-Condon states are 
concerned, we can well reproduce the situation realized in the TTF-CA crystal, using this simple model. 
While the benefit of this simple model is that we can calculate higher excited states, using the 

non-Grassmann path-integral theory [2 I ], which takes the coulombic inter-electron quantum correlations 
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straightforwardly. By this theory, various optical spectra have been calculated under the bistable 
condition[22,23], 

(U-2VO)«U. (14) 

From these results, we can conclude that high energy optical excited states with energies a few times greater 

than the CT exciton are the random excitations of several CT excitons coupled with many magnons or 

spin-excitations. As is well known, in the SDW state, we have the Goldstone mode called magnon, whose 
energy is gapless and has a linear dispersion. When the SOW state has a small dimerization, a small energy 

gap opens in this dispersion. However, the above characteristic of high-energy excited states is not affected. 

One can think of such a possibility that, a macroscopic COW domain (N-domain) can be directly 
excited at once, just after the Franck-Condon transition from the SOW ground state by using only a few 

photons. However, it is impossible since these two states are "macroscopically orthogonal" with each other. 
It is theoretically obvious that a dipole operator of a photon can change the state of only one electron, before 

and after the transition. An electron and a hole thus created by this dipole transition can also change the 

states of many other surrounding electrons through the Coulomb interaction. However, this is nothing else 
but random scattering, being far from making a well-defined macroscopic spatial order at once. The 

macroscopic spatial order can be established only after this highly excited state is cooled down to some local 
minimum, by dissipating its excess energy one by one into the phonon system, which acts as an heart 

reservoir, just as shown in Fig.I3. This step-wise nature, being not at once, is the essence of the macroscopic 
order formation, resulting in the PSPT. 

5.6 Simulation by classical time-dependent theory 

Thus we have seen the path of the photoinduced I-N transition in detail, making use of the calculated 
adiabatic potential surface. As for the real time dynamics of this transition, however, we still have various 

problems left unclear. In this connection, very recently, Yonemitsu[24] has undertaken a simulation study for 
the real time dynamics of this transition, using a classical and time-dependent theory. In this simulation, 

Yonemitsu has newly introduced the following two points. 1) In eq.(2), Tj is assumed to depend on real 

time (== t ), so that it can describe, not only the original transfer energy, but also the charge transfer type 

electron excitation, coming from the vector potential( == A(t» of an externally applied classical photon field. 

This A(t) is assumed to be a sinusoidal function oft with an energy (==ooext), which is almost same as that 

of the CT exciton. 2) In eq.( 5), the kinetic energy term (a qe / a t) 2 /2 is also added to describe the 

classical motion ofthe lattice. 
At t=O, the whole system is assumed to be in the electronic ground state of the I-phase, with a small but 

finite velocity aqe / at and lattice distortion (qe -(-I)lqO), coming from the thermal fluctuation. From 

this initial condition, the time evolution of the whole system is calculated iteratively within the classical, 

adiabatic and Hartree-Fock approximations. As one of its results, the total induced charge PI at the CA site 

is shown in Fig.I5 as function of t, wherein N ext specifies the exciting time period, 0 < t < Next 2n / OOext , 

during which the external photon filed is switched on and turned off afterwards. We can see that only when 
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N ext exceeds its threshold value N ext ~ 4, PI can decrease down from 1 to about 0.35. That is, the 

photoinduced I-N transition can be attained only under this threshold condition. 

6. Quantum nonlinear nonequilibrium dynamics and initial condition sensitivity 

In the previous sections, we have been concerned with the classical and adiabatic natures of the TTF-CA, 

and so, let us now proceed to the early time quantum nonlinear nonequilibrium dynamics of the PSPT. To 

theoretically describe this quantum dynamics, however, the practical situation realized by eq. (1) is too much 

complicated. Hence, we have to simplify our problem, extracting only its essences from the view point of the 

PSPT. These essential points are summarized into the following five ones. 

1. When the exciting photon is resonated to the CT exciton (- 0.6eV), these excitons are created 

homogeneously in the I-d crystal, and hence, the mean inter-exciton distance becomes rather long as 

compared with the lattice constant. While, just after the intra-molecular excitation (- 2.2e V), an 

electron-hole pair is created in a same molecule, with the energy few times greater than the CT 

exciton. This high-energy pair is electronically unstable even at the Franck-Condon state, and will 

immediately decompose into several CT excitons, through the inter-molecular Auger decays or other 

coulombic many-body scatterings. These several CT excitons are expected to be very close to each 

other around the original molecule. Therefore, the difference in the initial condition between the CT 

excitation and the intra-molecular one is reduced only to the difference of the initial distance between 

the adjacent photogenerated CT excitons. We also have many other excitations in between( 0.6eV-

2eV), and corresponding spatial arrangements of the CT excitons will be different each other, even 

if the total absorbed photonic energies are same. To describe this difference, we have schematically 

shown in Fig.I6, typical three cases of such spatial arrangements, that is, sparse (Fig.16(a)), close 

(Fig. 1 6(b)) and moderately distant (Fig.16( c)) excitations. Using these three typical arrangements of 

excitons, we will clarify the initial condition sensitivity. 

2. There must be a hidden but intrinsic multi-stability. A false ground state has to be just above the true 

one, and the energy difference between them per unit volume should be larger than the thermal 

energy, but should be much smaller than the visible photon energy as schematically shown in Fig. 1 , 

Fig.7, Fig. 13, and Fig.I7. 

3. There must be a nonlinear mechanism, through which the excitons can proliferate. This mechanism 

should be efficient enough to overcome various radiative and nonradiative decay channels of the CT 

excitons. These decay channels will act in every intermediate stages of the relaxation, to hinder the 

proliferation as schematically shown in Fig.I7. 

4. At the final state of the Franck-Condon transition, a large excess energy should be given to the 

excitons, as schematically shown in Fig.I3 and Fig.I7. By using these excess energies, the initially 

created excitons can proliferate, under the energy conservation law. 

5. The resultant domain should be a local minimum in the adiabatic potential surface of the ground state, 

so that this domain can have a sufficiently long lifetime and is worth to be called the PSPT. Thus, the 

initially created excitons have to go through various intersections of the potential surfaces 

diabatically, so that it can finally reach to the local energy minimum, not in the excited state potential 

surface, but in the ground state one, as shown schematically in Fig.I3 and Fig.I7. In this sense, the 

adiabatic approximation is not enough to describe the real time dynamics of the PSPT. 
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6.1 Model Hamiltonian for quantum dynamics 

In order to describe the above points from a unified theoretical point of view, Mizouchi et al have used a 

more simplified model than eq. (1), and have clarified the early time quantum dynamics of the PSPT. They 

have studied the following many-exciton system coupling strongly with Einstein phonons in a quasi one-

dimensional crystal[2S,26]. Its Hamiltonian (== H me) is given as, 

Hme=EeLBiBe -Te L[BiBe + (h.c.)]+roLbibe-roS1!2LBiBe(bi +be) 
e (e, nee 

- I Ve(le-e'I)B~BeB~,Be'+ I G(le-e'I)B~Be(B~,+Be') +H ic ' (15) 
f,e'(,:e) l,l'(,:e) 

where B t is a creation operator of an exciton ( a quasi boson) at a site .e with an energy E e' and Ie 

is the transfer energy between .e to its neighboring site e', and the bracket (f.,/!') denotes this 

neighboring relation. b t is the creation operator of the Einstein phonon at site P with a frequency (0, 

and S is the exciton-phonon coupling constant. Ve (.e - t) denotes a phenomenological attraction (or 

interaction ) between two excitons at sites, .e and f!'. In the present theory, we will not specify its 
microscopic origin in detail. It can be an effective attraction due to the van der Waals force, other coulombic 

interactions, or some inter-site exciton-phonon couplings. The occupancy of a single site by more than one 

exciton is excluded from the beginning. G (f - f') in the sixth term represents the third-order anharmonic 

inter-exciton coupling. Through this anharmonicity, an exciton at site f' is created or annihilated by 

another exciton at site .e. Such a nonlinearity results from the long range Coulomb interaction between 
electrons and holes constituting excitons. The Coulomb interaction itself is originally quartic with respect to 

these Fermion operators, being quite nonlinear from the beginning. Hence, to take into account this 

nonlinearity or anharmonicity is quite natural. However, through this nonlinearity the excitons can 

proliferate, as shown later in detail. Furthermore, since this coulombic nonlinearity is an instantaneous force 

with no retardation effect, it can cause the proliferation readily. 

The last term Hic of eq.(lS) denotes the interchain interaction. 

Hic = Lh(N)LI N,i ><N,il, (16) 
N 

where N denotes the total number of excitons, and i specifies each quantum state (= IN, i » within the N 

exciton states. Thus, Li l N,i >< N,i I is a projection operator into the N exciton state. While heN) denotes 

an effective potential given from the other chains to this N-exciton system, when it is created in the central 

chain on which we focus. This potential h(N) is assumed to depend only on the total number N, irrespective 

of various spatial arrangements of N excitons. This functional form is also assumed to be quite nonlinear in 

the sense that it is almost zero when N is smaller than its critical value Nc('"'-'IO), while it becomes 

nonlinearly appreciable when N exceeds Nc. For such heN), we have taken the following form as 
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4 

h(N) = (0 ~::> j Nj, a4 = 3.27 x 10-4, a3 = -7.08 x 10-3, a2 = 4.98 x 10-2
, 

j=O 

al = 2.03 x 10-2
, ao = -6.33 x 10-2

. (17) 

The role of this interaction is almost same as that of eq.(12), and it makes the domain with Nc excitons 

locally stable, as schematically shown in Fig.17. 

It should be noted that the present exciton-phonon system is our relevant system, and is also assumed 

to couple linearly with the photon field and acoustic phonon modes, which act as a heat reservoir during the 

relaxation, although they are not written here explicitly. 

6.2 Relaxation and occurrence or nonoccurrence of the PSPT 

Using Fig.l7, let us now schematically explain the characteristics of the relaxation processes, which lead to 

the occurrence or nonoccurrence of the PSPT. The solid curve and thin dotted curves denote adiabatic 

potential surfaces of the ground and excited states. The global minimum of the lowest curve denotes the 

ground state. The other local minima 1, 2, ... of this curve denote the lowest energy states with 1, 2, 

... excitons, respectively. The local minimum N c has the lowest energy among these local minima I, 2, 

. . . . The upward solid arrows denote the initial photoexcitations. The dashed-and-dotted arrows denote the 

main relaxation paths. The downward dotted arrow denotes radiative decay of excitons. These nonradiative 

and radiative decays are brought about through the interaction between our relevant system and the acoustic 

phonon and photon fields mentioned before. We also have assumed a multi-stable situation where the lowest 

energy of (N+ I )-exciton states is energetically close to that of N-exciton state. This condition is realized 

when(Ee -8) and Ve (1) are well balanced in eq.(IS) as, (Ee -8)~ Ve(1). 

In Fig.I7, the excitons are created from the ground state by photoabsorption (the leftmost upward 

solid arrows ). In the next, the exciton relaxes along the following two paths. One path is the vibrational (or 

lattice) relaxation, where the system changes along an adiabatic potential curve of the excited state (the 

dashed-and-dotted curves in Fig.I7). The photoexcited state along this path has a large excess electronic and 

vibronic (phonon) energies. The other path is the direct radiative decay (the downward thick dotted arrow in 

Fig.I7). Here, the former path is main one because vibrational relaxation is faster than radiative decay. As 

seen from this figure, many adiabatic potential surfaces come close to each other at many points. Around 

such points, the diabatic transition occurs. If the relaxation proceeds toward the right through such processes, 

the proliferation becomes successful. 

As mentioned in section 4, various relaxations can start from almost the same Franck-Condon states, 

as far as the initially absorbed total photonic energies are same. However, these starts are a little different 

with each other, according to the way or type of the photoexcitation, because their electronic structures are 

mutually different. Then, during the relaxation, the difference between these adjacent starts diverges. Some 

of them quickly return to the ground state nonradiatively, while others proceed toward the right in Fig.I7 and 

stays in multi-exciton states for a long time. Furthermore, among the latter cases, some of them can reach 

quickly to the destined lowest energy state with Nc excitons. While others, because of the tunneling, reach 

rather slowly the destined Nc -exciton state, although they relax down quickly only as far as to the lowest 

potential curve. This is nothing else but the initial condition sensitivity[IO]. 
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6.3 Lifetime prolongation 

Here we should note about the prolongation of the life time of these various transient states, which appear 

during the relaxation. As mentioned above, the PSPT is a transient phenomenon, and the system surely goes 

back to the ground state finally. However, the state generated by the PSPT can become sufficiently stable, 

and it takes quite a long time to go back to the ground state. This is because the overlap integral between the 

multi-exciton state and the ground state with no exciton, become smaller and smaller, as the proliferation 

proceeds from left to right in Fig.I7. Hence the transition between them becomes very difficult, even if the 

photon and the acoustic phonon spontaneously try to induce it through their quantum fluctuations. Thus, the 

more the decay time elongates, the more the resultant domain becomes large and stable, just as the 

hen-and-egg relation. 

6.4 Iterative method for exciton proliferation 

In order to investigate the time evolution of the aforementioned exciton-phonon system, we are now in the 

stage to derive the master equation under the Markov approximation for the photon field and the reservoir. 

However, there is a serious numerical difficulty in the direct calculation of this time evolution in the large 

size systems, because the quantum mechanical treatment of Einstain phonons leads to too large dimensional 

calculations. Therefore, in order to overcome this numerical difficulty, we derive an iterative equation for the 

exciton proliferation. The basic idea is schematically shown in Fig.IS. 

We focus only on the most front of the expanding photoinduced domain, and the contributions from 

the other excitons, not in this front, are approximated by a mean field. As proliferation proceeds, the position 

of this front also moves. At the step I in Fig.I8, the front of the domain is assumed to be in the inside of the 

box. This box is our relevant system, within which we calculate excitons, Einstain phonons and their 

interactions, full-Quantum-mechanically. We take the size of the box as 4 lattice sites around the front. Inside 

of this box, we prepare an exciton with an excess energy, and it is represented by a double circle. In the 

following, we call it "mother exciton". We also prepare several excitons outside of our relevant system (the 

box), and they are represented by black circles. They are localized at each lattice site, and their energies are 

fixed to the lowest vibronic ones. We call them "frozen excitons". 

Under the existence of these frozen excitons, the Hamiltonian Hme of our exciton-phonon system is 

approximated by H~e' which is defined only within the Hilbert space ofthe front region as, 

H~e == EeLBtBe - Te L[BtBe + (h.c. )]+00 Lbtbe -ooS
I12

L Bt Be(bt + be) 
e (e,e') e e 

- Ye (1) L B~Bl B~,Bl' + L GO e-e'I)B~Bl(B~, +B(,) + L N(f[Ee -ooS]- Ye(l) L NlfN('f 
U,e') e,e'(#) If (ef,e'f) 

- Ve (I) L N i, B;B i + L G( Ie f - el)N i, (B ; + B i) + L h(N + N f) LIN, i» « N, ii, (18) 
(l, ,0 i, ,i N i 

N == LBtBe, N f == LNlf • (19) 
l If 

Here, f and f' now denote the sites only within the front(box). Ner denotes the average density of the 
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frozen exciton at a site f f outside of the front, and hence, this N e f is a c-number. N now denotes the total 

number of excitons only within the front, and I N,i» denotes i th eigenstate with N excitons in this front. 

The first six terms of eq.(l8) denote the Hamiltonian within the front. While, the seventh and eighth terms 
denote the energy of frozen excitons outside of the front. The ninth and tenth terms denote the interactions 

between the front and its outside. The last term is the interchain interaction, in which the presence of the 

frozen exciton is already taken into account. 
Using this eq.(lS) and the master equation method, we can now describe the dynamics of the exciton 

proliferation in this front. As seen in the sixth term of eq.(IS), the mother exciton can proliferate through the 

original G (f - f') by using her excess energy, and can make her "daughter exciton"(step 2 in Fig.IS). 

However, we can see that even the frozen excitons can also help this proliferation as an external mean field, 
through the tenth term of eq.( IS). 

Thus, as time goes by, the daughter exciton grows up, and the total number of excitons increases 

(step 3 in Fig.IS). When the total number of excitons in the front increases by 1 from the initial one, we 
regard the daughter has grown up to be an adult, and approximate that the following generation crossover 

occurs (step 4 in Fig.IS). The mother exciton is replaced by a frozen one, and the daughter exciton is taken 
as a new mother. Here, as seen from eq.(lS), it should be noted that excitons except frozen ones can move 

between lattice sites in the box. Thus, the exciton density has a non-integer value at each lattice site. 

Therefore, in the aforementioned crossover, we regard the excitons whose densities are the largest and the 

second largest in the box, as the mother exciton and the daughter one, respectively. 
Furthermore, we assume the new mother inherits the excess energy, after this generation crossover. 

We determine this excess energy of the new mother so that the total energy in the system is conserved before 
and after this generation crossover. However, this excess energy becomes smaller and smaller than the 

starting one, because of the dissipation or relaxation. 

By this crossover, the front moves, and accordingly the box moves. In fact, in the case of Fig. IS, the 
front moves one lattice site towards the right. Then, we focus again only on this new front, and iterate the 

aforementioned procedure, until the excess energy is exhausted through the interaction between our relevant 
system and the aforementioned heat reservoir. During this iteration, the size of the box around the front is 
kept unchanged as shown Fig.IS. Therefore, without enlarging our computer memory, we can numerically 

calculate the time evolution dynamics of a large number of excitons in the large system. 
Hereafter, we call one iteration (from the step I to the step 3 in Fig.I8 ) "one generation". We should 

also note that this iterative procedure is justified, when Te is small as compared with S ill in eq.(I5). 

6.5 Numerical results 

Let us now specify the values ofthe parameters in eq. (15). Our purpose here is not a comprehensive study 
for eq.(I5), but to study one of typical situations realized by a set of parameters values, which is in 
compliance with the aforementioned five points, and makes the PSPT quite successful. As one of such 

examples, the following values are taken; m== O.leV(h = I), Ee /m=9.5, Te/m== 1.0, S=S, Ve(l)/m== 

1.7, G(1)/m==O.2, G(2)/m=0.I, G(3)/m=O.067, G(4)/m=O.05, G(5)/m=0.04 and zero for other G's. Nc is 

taken to be 10. The radiative damping rate of the exciton is assumed to be 10-9 second at the 

Franck-Condon state, and afterward decreases in proportion to the third power of the transition energy, while 

the damping of the Einstein phonon due to its coupling with the acoustic phonon reservoir is assumed to be 
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20% of the phonon energyffi. The large S corresponds to the large excess energy at the Franck-Condon state, 

while finite 0) / Te makes aforementioned diabatic transitions possible. 

Here, we start from the initial condition that there are two localized excitons, just as shown in Fig.I6. 

One of them is an exciton created by the Franck-Condon excitation from the ground state. This is a mother 

exciton. While, the other exciton is taken as a frozen one, for the reason mentioned before. In the following, 

the distance between these two excitons at the initial state is represented by dO' Results are shown in 

Fig. 19, and the time evolution dynamics become different according to this dO' The net exciton 

proliferation occurs only when dO =2, 3 and 4. When dO =1 and 00, the number of excitons increases a 

little from 2 only at early time, however, the net proliferation does not occur finally. Therefore, the initial 

distance between excitons should be moderate in order to get net proliferation. In the too far distant case 

( dO = 00 ), the nonlinearity among excitons does not work, and it leads to no net proliferation. On the other 

hand, in the too close excitation case (dO =1 ), too strong nonlinearity works, and it leads to the exciton 

annihilation rather than its proliferation. Therefore, the critical nonlinearity is necessary to realize net 

proliferation. Here, the case with dO = 00 corresponds to the CT excitation below the threshold mentioned 

in section 4. In the intra-molecular excitation case, dO takes various values within the force range of the 

aforementioned intermolecular Auger decay. Among them, only the successful cases can finally survive 

(dO =2,3 and 4). Furthermore, even when the net proliferation occurs, the time evolution behavior of each 

proliferation is not same but chaotic, according to the value of dO' For example, when dO =4, the 

proliferation occurs more slowly than the other proliferating cases (do =2 and 3). These results show the 

initial condition sensitivity still exists even when the proliferation is successful. 

In Fig.20, we show a spatial arrangement of excitons at the beginning of each generation (the step 1 in 

Fig.18), taking the case with dO = 3. Here, G e denotes the generation, and the time (== t) is measured 

from the beginning of the first generation. The black circle and the double one denote a frozen exciton and a 

mother one, respectively. Especially, the white circle with a black one denotes the mother exciton created by 

the Franck-Condon excitation from the ground state. The values under each arrangement denote the exciton 

densities in the front, just before the generation crossover (the step 3 in Fig.I8). The values of frozen exciton 

densities are almost equal to 1, and hence they are not written explicitly. 

From Fig.20, we can see that the two mutually unconnected clusters of excitons are formed during 

the first four generations (G e =1 to 4). At Ge =5, however, these two clusters have merged with each other, 

and this merged one grows longer and longer, until the total number of excitons reaches N c . Thus, we can 

see the dynamics of the exciton proliferation is not monotonic but fluctuating, since our system is 

quantum-mechanical. 

6.6 Pattern formation dynamics in two-dimensional cases 
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Let us now proceed from the I-d case to two-dimensional ones. In this case, we face to a new problem 

absent in the I-d systems, that is, the pattern formation dynamics of the exciton domain. Very recently, 

Yabuki[27] has undertaken a theoretical study that extends the previous theory of Mizouchi [26] for 2-d 

cases, so that, it can describe this pattern formation dynamics, keeping other aspects of this theory except the 

dimensionality almost same. He has concluded that occurrence or nonoccurrence of the PSPT is closely 

related to spatial anisotropy or isotropy of the interexciton interaction VeO f -f' I) in eq.(l5). 

According to the standard theory of exciton by Knox[28], Ve (I R - R' I) can be estimated by the 

Wannier functions of the electron and the hole constituting the exciton. If these functions are well localized 

around their central lattice site, we get a well isotropic Ve (I e -f' I) ,just like the van der Waals force. This 

situation is realized in the rare gas solids. While, in the cases of itinerant electron systems, the Wannier 

functions of electron and hole are usually extended from its central lattice (or atomic) site to its several 

neighboring ones, widely and oscillatory. Moreover, the symmetries of these Wannier functions can often be 

anisotropic, like p- and d-orbitals. Thus, in some case, Ve (I R - f' D can become repulsive between the 

second nearest neighboring sites, although it is mostly attractive between the first neighboring ones. This 

anisotropic situation, 

is schematically shown in Fig.21, wherein, a 2-d square lattice is used. Such an anisotropy is shown to make 

the resultant exciton domain pattern "fractal", just like the fjord of Norway coast[27], and it finally leads to a 

quite successful PSPT. 

One of results of this theoretical calculation is shown in Fig.22 and Fig.23, wherein a typical 

inisotropic parameters are used, ve (1) I ill = 1.152, Ve ( .J2)/ ill = - 0.528. As seen in these figures( Fig.22, 

23), at the beginning, successive 8 light pulses with an equal time interval (1000 x (21tco -1) ) are shone on to 

a 12 x 12 square lattice. The excited lattice sites by these 8 light pulses are quite random within this 2-d 

lattice. During this pulse excitation, the total energy ( == E ten ) and the total exciton number (== N exc ), of 

course, rapidly increase. After this excitation, E ten decreases but N exc increases rather slowly, because of 

the dissipation and tunneling effects mentioned before in detail in connection with Fig.17 and Fig.19. In 

order to see the transient time evolution of the domain pattern, typical four time points (a), (b), (c) and (d) 

are chosen from Fig.22, and corresponding patterns are shown in Fig.23. 

The time point (a) is just after the pulse excitation is turned off, while (d) is long after this 

excitation, and (b) and (c) are in between. In Fig.23, the gray circle denotes the newly generated exciton, 

while the black circle denotes the frozen exciton, which is already generated until the previous time point. In 

Fig.23 (a), we can see many peninsula structures stretched outside of the domain with bays and gulfs 

between them. This fractal or fjord structure, which appears just after the pulse excitation, is due to the 

aforementioned anisotropy. These bays and gulfs, thus generated, are afterwards filled up one by one very 

slowly through the quantum tunneling, as seen in Fig.23(b) and (c), and finally, we get a large size domain 

with a simple structure, as shown in Fig.23( d). This filling-up effect mainly comes from the tenth term of 

eq.(l8), that is, the frozen excitons in the coast line of these bays and gulfs, make the proliferation quite 

probable. This filling-up effect is also highly nonlinear and cooperative as seen from the time dependencies 
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of ET and N exc shown in Fig.22. 

Various isotropic cases are also studied in the same way, and compared with the anisotropic 

cases[27]. However, in these isotropic cases, we can have only small size domains with simple structures. 

Thus, the anisotropy is shown to playa very important role in the transient pattern formation and the final 

PSPT. 

7. Difference between photoinduced nonequilibrium phase and high temperature equilibrium phase 

According to these progresses of experimental and theoretical studies on photoinduced phase transitions, a 

new but quite basic question has now emerged. That is, how the photoinduced phase is practically different 

from the high temperature equilibrium one. As mentioned occasionally, the photoinduced phase is a 

nonequilibriun phase, brought about through the multi-stability, or the pseudo-degeneracy of the ground 

state. However, when this multi-stable situation is realized in our system, a state, similar to the false ground 

state, is also inferred to appear as an equilibrium phase at high temperatures, that is, through the ordinary 

thermal phase transition. 

In fact, both this photoinduced phase at low temperature and the equilibrium one at high temperature 

are observed as shown in sections 3 and 5, and these two phases are quite similar with each other. Thus the 

aforementioned issue becomes quite serious and significant. 

7.1 Photoinduced phase transition in organo-metallic complex crystal 

However, recent experiments on the photoinduced phenomenon in the organo-metallic complex crystal 

[Fe (2 - pic) 3] C1 2 . Et OR (, 2-pic = 2-amino-methyl-pyridine, ), have opened a new prospect in the 

study for the aforementioned difference. In this crystal, as shown in Fig.24, an Fe2+ ion and its neighboring 

six nitrogen atoms of three 2-pic molecules, are making a complex, which approximately has an 0h 

symmetry. As schematically shown by dashed lines of this figure, this metal complex is bonded with other 

three neighboring ones through the hydrogens, and these hydrogen bonds result in inter-complex interactions. 

An Fe2
+ ion has six electrons in its 3d orbitals (t 2g ,eg ), and these electrons are in a crystal field, whose 

symmetry is almost 0h as mentioned before. At absolute zero temperature, these 6 electrons, being in the 

three t 2g orbitals, become diamagnetic (S=O) as shown in Fig.24. This diamagnetic phase has a strong light 

absorption band at around 2eV, and the color of this crystal is deep red. While, at about 120K, a first order 

phase transition occurs from this diamagnetic phase to a paramagnetic one (S=2), as shown in Fig.20, and 

the color of the crystal changes from deep red to yellow. 

On the other hand, Ogawa et al[30] have recently discovered the photoinduced phase transition in this 

crystal. Shining I.Se V light on to the low temperature diamagnetic phase of this crystal, they have succeeded 

to generate a macroscopic paramagnetic domain. By this photoinduced phase transition, as shown in Fig.25, 

the color of the crystal changes from deep red to yellow, which is quite similar to the yellow of the high 

temperature paramagnetic phase. They also have found the bi-directional nature of this photoinduced 

diamagnetic ~ paramagnetic transition, and the threshold type behavior just like the case of TTF-CA 

mentioned in section 4. 

In connection with this discovery, very recently, Tayagaki el al[31] have also succeeded in observing 

Raman scattering spectra of these three phases, the low temperature diamagnetic phase, the high temperature 
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paramagnetic phase, and the photoinduced paramagnetic phase at low temperature. The resultant three 

Raman spectra are shown in Fig.26. We can clearly see that the photoinduced phase is different from the 

other two phases, especially in the shaded region, although other spectral regions are similar to that of the 

high temperature paramagnetic phase. It should be noted that this difference between the three phases is a 

macroscopic difference, being not an ordinary photoinduced structural change which, very often occurs only 

in a microscopic region of optically excited crystals. Tayagaki el al have assigned this difference in the 

shaded region to come from a new parity violation of the aforementioned 0h symmetry around the 3d 

orbital[31 ]. 

According to the present status of our experimental study on this organo-metallic complex crystal, 

however, a new interaction which originates this new parity violation can not be clarified sufficiently, 

because this crystal is really complex, as we can easily infer from Fig.24. 

7.2 Broken symmetry only in photoinduced non equilibrium phase 

It is quite clear that this new broken symmetry (or new parity violation) does not occur in both two 

equilibrium phases (the low temperature diamagnetic phase and the high temperature paramagnetic one ), but 

occurs only in the photoinduced nonequilibrium phase at low temperature. This difference between the 

eqUilibrium phase and the nonequilibrium one, if once well-established conceptionally, will greatly affect on 

our studies for photoinduced phase transitions in various other materials. Because, it means that, we can 

discover a new interaction and its resultant broken symmetry through the photoinduced nonequilibrium 

phase at low temperatures, even if this new interaction is not clearly observed in any equilibrium phases, 

such as the true ground state or high temperature eqUilibrium phases. 

Here, we should note our conventional way to recognize a new interaction to exist and operating in a 

material. According to our ordinary way of recognition, such an interaction (,or its resultant broken 

symmetry, ) is often neglected or regarded not to exist at all from the beginning, if it is not clearly observed 

in any equilibrium phases. Aforementioned experimental result[31], however, clearly tells us that it is a 

prejudice, which we have to overcome. 

7.3 Two-dimensional extended Peierls-Hubbard model 

In order to make this point clear, Haui et al[3,32] theoretically studied a model system which is more simple 

and standard than the organo-metallic case. Its purpose is to theoretically describe the situation that a new 

interaction ( == Hn ) appears explicitly only in the low temperature nonequilibrium phase as a broken 

symmetry, under the condition that it is almost completely hidden in any other equilibrium phases at low and 

high temperatures. To address such an issue theoretically, they introduced a square lattice composed of Nt 

sites and Nt electrons, which are strongly coupling with site-localized phonons. Then this two- dimensional 

(2-D) many-electron system has the following Hamiltonian (== H ps) , which we often call Peierls-Hubbard 

model, 

1 iP 
Hps =-TD :LC;uC£,u -SD:LQt(ne- 1)+ :L Vah(Qe)--:L-2 +Hn ' 

<e,£'>,u" e e 2M e OQe 
(20) 

Hn = UDLne,ane,p , (21) 
e 
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where To denotes the transfer energy of an electron between two neighboring lattice sites, and f is a 2-0 

vector with the Cartesian components e x and f y. So denotes the coupling constant between electrons 

and the site-localized phonon mode whose dimensionless coordinate is Q l. Vah (Q l) denotes a potential 

energy of this site-localized phonon mode, while M is the effective mass of this mode, and its dimension is 

(energy) -1. This potential Yah (Ql) is assumed to be highly anharmomic as 

(22) 

where a, b, c are 2i-th ( i = 1 ,2,3 ) expanding coefficients of Yah (Q l) with respect to Q l. Such an 

anhamonicity is necessary to make various thermally induced and photoinduced phases stable, and also to 

make phase transitions first order ones. The last term Hn is the aforementioned new interaction on which we 

focus. In the present case, for simplicity, we assume that this Hn is a weak on-site Coulomb interaction as 

shown eq.(21). It is expected to bring an SDW type broken symmetry, and competes with a COW type order 

which surely comes from the strong electron-phonon coupling So in this 2-0 half-filled many-electron 

system. 

7.4 Mean field theory and phase diagram 

Within the mean-field theory and the adiabatic approximation ( M ~ 00 ), Hps is approximated by a 

Hartree-Fock Hamiltonian(= HHF) which is given as 

HHF = -To L CtTCl',u - So L Ql(nl -1) + L Vah(Ql) + U o L (nl,-a)nl,a - (nl,-a)(nl,a)/2) , 
<l,l'>,u l l l,u 

(23) 

wherein (ne,a) denotes the thermal average of nl,a' and it should be determined self-consistently. As for 

Qe, we assume that the lattice distortion has a staggered order in both two directions of the square lattice as, 

(24) 

Here Qo is the amplitude of the COW or the Peierls type distortion. Correspondingly, (nl,a) is also 

assumed as 

_1 (l)lx+ly s: < nl,a > - 2" + - una , (25) 

- 788-



where Bna again denotes the amplitude of the density wave of electrons withcr(=a, p)spin, and this wave 

also has the double period for both two directions of the square lattice. When the strong coupling and the 

weak correlation condition (SD > T D ~ U D) is satisfied, the ground state of this system is expected to be a 

CDW type insulator, in which two electrons with up and down spins make a strongly bound singlet pair, and 

this pair occupies a single site every two sites, along both the x and y axes of this 2-D lattice. While, its high 

temperature phase will be the ordinary paramagnetic metallic state, although it has a very weak COW type 

order, since this model has the complete nesting. 

As one of the typical examples to describe this situation, we take the following parameter values, 

TD =0.3eV, SD =l.OeV, UD =0.3eV, a=4.445eV, b=2.642xI03eV, c=5.487xl03eV. In the 

present study, periodic boundary condition is imposed on a 160 16 square lattice whose total number of sites 

is Nt = 256 . Figure 27 shows the phase diagram obtained by this mean field theory, and Qo is plotted as 

a function of temperature. The abrupt change of Qo at a critical temperature 305K (DT c) indicates that 

below Tc the whole system is in the CDW type insulating state in which up- and down-spin electrons make a 

strongly bound singlet pair (ona = on~ > 0, Qo:;CO). While, above Tc this system changes into a 

paramagnetic metallic state ( Bnu = Bnp = 0 ,Qo =0). This phase transition is the first order, and it just comes 

from the anharmonicity of Vah , in contrast the case of harmonic phonons, which result in the ordinary 

second order CDW-metal transition. Thus, the anharmonicity is necessary to separate various equilibrium 

and nonequilibrium phases by high adiabatic energy barriers, and to make them locally stable. 

Figure 28(a) shows us the free energy (per site) at zero temperature in the two-dimensional space 

spanned by the lattice distortion amplitude Qo and the SDW type order parameter ( Bnu - Bnp). There are 

two types of minima: the global one at finite lattice distortion Qo = 0.154 and a shallow one without lattice 

distortion. They are both locally stable and separated by a barrier ofO.Ole¥. 

As already mentioned in the last section, the electron-phonon coupling results in the Peierls 

distortion Qo:;c 0 and the CDW type electr~nic order (Bnu = Bnp > 0), while the on-site Coulomb 

interaction yields the SDW type electronic order (Bna = - Bnp > 0). Based on the present set of parameters, 

the CDW order apparently overwhelms the SDW one in the ground state, due to the very strong 

electron-phonon coupling(SD > UD). However, this SDW order will also be able to appear as a locally 

stable false ground state or a nonequilibrium phase, as far as Un is finite. From Fig.28(a), we can see that, 

the global minimum, being the true ground state, has a finite lattice distortion with no SOW order. However, 

we can also see that there is another local minimum, being a false ground state, which has a finite SDW 

order without lattice distortion. Therefore it is quite clear that the SDW order appears in the false ground 

state, although it is hidden in the true ground state. 

Let us now tum to the cases of finite temperatures. Figures 28(b), (c) and (d) show us the free energy 

(per site) at a sequence of temperatures 170K, 200K and 400K, respectively. The SDW order remains as a 

locally stable nonequilibrium state at T=170K, as shown in Fig.28(b), although this order has significantly 
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decreased from that of the zero temperature. While, at much higher temperature T=200K shown in Fig.28( c), 

we can see the two free energy minima corresponding to the metallic state (Qo = 0) and the COW one 

(Qo ~ 0.15 ), and both of them have no SOW order. It also should be noted that the difference of the free 

energy between these two states is decreasing due to the increase of temperature. Then, as shown in 

Fig.24(d), the free energy minimum at Qo = 0 becomes lower than that of Qo = 0.154, so that the global 

free energy minimum now locates at Qo = 0 . That is, the first order thermal phase transition occurs from 

the COW state to the metallic one just as shown in Fig.27. 

Thus, we have seen that the SOW order is always hidden, although our original Hamiltonian shown 

in eq.(21) surely has a finite U 0 . At zero temperature, the SDW order is completely killed in the true CDW 

ground state, because, in this state, the electron-phonon coupling makes up- and down-spin electrons to form 

a strongly bound singlet pair within a single lattice site. While, the high temperature phase is a paramagnetic 

metallic one, but this high temperature itself also destroys the SDW order. Therefore the Coulomb 

interaction and its resultant SDW order are almost completely hidden in all the thermal equilibrium phases. 

In the present study, the lattice is always assumed to have a staggered order in all possible CDW type 

phases, and lattice fluctuations are excluded from the beginning. Hence, we may expect that thermal 

fluctuations below T c will bring some sign of the SDW order. In this connection, Huai et al also have 

calculated the SDW order (8na - 8n~) of the false ground state at each temperature, and found that this 

order decreases rapidly when temperature is above lOOK, and goes to zero at about 183K, which is well 

blow T c. Thus even if the thermal lattice fluctuations are taken into account, we will get only a blurred sign 

ofthe SDW order. 

7.5 Photoinduced phase 

Since this SDW order exists only in the false ground state at very low temperature, it may be detected by 

using photo-excitation. If this system is shone by a strong laser light at low enough temperature, a CT 

excitation occurs. This excitation is such one that, the up- and down-spin electrons, making a singlet pair in a 

lattice site, will be separated into neighboring two lattice sites as an anti ferromagnetic pair. This 

antiferromagnetic pair, once generated by the light, will proliferate and will grow up to be a nonequilibrium 

SDWdomain. 
To study such a lattice relaxation of CT excitation, we can introduce the following disk type lattice 

distortion pattern Qf 

(26) 

Here (-1) f x +f Y Q 0 denotes the aforementioned Peierls distortion in the true ground state. The second term 

in the square brackets [ ... ] denotes a local lattice displacement induced by a new excited domain. !1Q is its 

amplitude, e again corresponds to the width of the domain boundary, and .eo is the diameter of the domain, 

which, in the present case, is assumed to be a disk type in the square lattice. When !1Q =0.5, it is obvious 

that lattice inside domain has no distortion at all, while we have already seen in Fig. 28(a) that the SDW 

false ground state has also no lattice distortion. Hence, the SDW order is expected to appear in this domain 
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too, if we choose f 0 and e properly. 

In the present study, we will not investigate the lattice relaxation process in very detail, but just want 

to demonstrate a possible relaxation path from the true ground state to the expected SOW domain. Hence, we 

fix the domain diameter eo at eo=10, and describe the adiabatic energy of the ground state Eg only as 

a function of ~Q, while e is determined to minimize the domain energy at T=O. Figure 29 shows the 

adiabatic energy curve of Eg , which is referenced from the true ground state. If we start from the origin 

~Q = 0, Eg rapidly increases up to 0.9 eV, and after that it turns to go down to another minimum near 

~Q = 0.5 . Thus, this minimum is locally stable, and has the SOW order. To elucidate the nature of this 

domain, we present its lattice distortion pattern Qe and spin density pattern in Fig. 30. The diameter of 

each dot in Fig. 30(a) is proportional to IQelQol, while the diameter of each dot in Fig. 30(b) is 

proportional to 1< ne,(l > - < ne,p >1, at each lattice site. The value of 1< ne,(l > - < ne,p >1 at the center of 

the domain is almost equal to that of Fig.28(a). It is now clear that this local domain exhibits the SOW order 

just as we have expected, and it can be generated by the photoexcitation at low enough temperature. By the 

dotted and dashed lines in Fig 29, we have schematically shown a possible relaxation path of the CT 

excitation from the CDW ground state to this SOW domain. Although this photoinduced phase may not have 

a long lifetime, there is no fundamental difficulty to detect it by using modem spectroscopy techniques. 

Thus, through the photoinduced nonequilibrium phase, we can recognize the presence of an 

interaction Hn and its resultant broken symmetry, even if it is almost completely hidden in any equilibrium 

phases from absolute zero temperature to high ones. 

Let us now consider this conclusion from a more general point of view. Real solids are so complex 

that, although they are made of only a few kinds of atoms and molecules, their structures show great number 

of variations under different chemical and physical environments, and are stabilized by delicately balanced 

interactions. It is far from rare that an interaction, being only a little weaker than its counterparts, can really 

appear under very limited conditions. In many cases, it just disappears from our scope of study, simply 

because its strength is subsidiary than other more dominant counterparts. Therefore it is vitally important to 

elucidate such a new interaction and its resultant broken symmetry by a photoinduced nonequilibrium phase. 

7.6 Hysteresis and nonadiabatic effect 

Let us qualitatively discuss the effect of hysteresis in connection with nonadibabatic effects coming from the 
fourth term of eq.(20). The COW-metal transition shown in Fig.27 is the first order phase transition, and 

hence we have to expect the following hysteresis effects around T c . Slowly warming the whole system 

from low temperature to high one across Tc ' we can make the CDW state remain even above Tc as a 

locally stable nonequilibrium state, whose free energy is higher than the globally stable (equilibrium) 

metallic state. This situation is also same for the cooling process from above T c ' and the difference between 

the warming process and the cooling one is usually called hysteresis loop. The region of temperature in 

which this hysteresis phenomena occur is mainly determined by the nonadiabatic effects coming from the 

fourth term of eq.(20). When the energy difference between the nonequilibrium state and the globally stable 
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equilibrium one becomes large, a nonadiabatic (or diabatic ) transition will surely occur from this 

nonequilibrium state to this equilibrium one, provided that M is large but finite. 

In this context, the aforementioned hysteresis phenomena can be understood as the following 

situation, that these two states are almost degenerated with each other, and hence, the life time of the 

aforementioned decay transition becomes quite long as compared with the time scale of our daily life. Thus 

the nonequilibrium state due to the hysteresis effect can appear only in the vicinity of Tc. 

While, the photoinduced nonequilibrium state mentioned before can appear even outside of this 

hysteresis loop, although its life time is often shorter than the time scale of our daily life. As mentioned 

before, according to the recent progress of our laser spectroscopy techniques, an infinite life time is not 

necessary for each state to be recognized as a well-defined state, provided that can last long enough to be 

clearly observed by other photons to detect it. 

8. Photoinduced macroscopic parity violation and ferroelectricity 

In previous sections, we have been concerned with various photoinduced structural phase transitions, which, 

after the complicated nonlinear lattice relaxation, finally result in false ground states. These states are, of 

course, no more luminescent, as schematically shown in Fig.I. However, by recently experimental studies on 

SrTiO 3 , we have discovered a new type photoinduced structural phase transition, which occurs only within 

the optical excited state, keeping this state still luminescent. In these materials, a photogenerated conduction 

electron results in a ferro-( or super-para-) electric domain with a macroscopic parity violation. 

8.1 Large polaron, self-trapped polaron, linear and quadratic couplings 

An electron, excited from a valence band to a conduction one by a photon in an insulating solid, often forms 

a quasi-particle called polaron, being composed of the original electron and the phonon cloud around itself. 

This polaron effect, coming from the interaction of the electron with phonons or lattice vibrations, has been a 

matter of considerable interests for these 40 years, and many experimental and theoretical studies have 

already been devoted. It is one of most basic themata related with various fields of the solid state physics, 

such as optics and electronic conductivities in many kinds of semiconductors and insulators[33,34,35]. 

At present, it is well-known, that this polaron can be clearly classified into two types, the large 

polaron and the self-trapped one, provide that the electron-phonon (e-p) interaction is short ranged in 

ordinary three dimensional crystals.[34] These two different types are brought about through the competition 

between the quantum itineracy of electron and the strength of e-p coupling. 

When the e-p coupling is weak as compared with the itineracy, or the energy-band width of this 

conducting electron, we can get the large ( or free) polaron, extending over a wide region of the crystal. In 

this case, the phonon cloud or the lattice distortion cloud around the electron, has a large radius as compared 

with the lattice constant of this crystal. While, the thickness of this cloud is rather thin, because of the 

weakness of this e-p coupling. These large polarons, once formed in a crystal by photoexcitations, can 

greatly contribute to increase the photoconductivity or the electronic conductivity. On the other hand, when 

the e-p coupling is strong as compare with the energy-band width, the electron, self-induces a potential well 

of local lattice distortion only around a single lattice site of the crystal, and is trapped in it. This is the 

self-trapped ( or small) polaron, which never contributes to the ordinary electronic conductivity. 

It is also well-established, that these two states, the large and self-trapped polaron states, are clearly 

separated by an energy barrier in the adiabatic potential surface, just like the first order phase transitions. 
Hence, the large polaron state can remain as a locally stable state in the adiabatic potential surface, even 

when the e-p coupling is strong enough to make the self-trapped state globally stable.[34] However, in this 

competition between the large polaron and self-trapped one, the original e-p coupling is tacitly assumed to be 
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linear and short ranged. That is, a local electron density at a certain position only linearly couples with a 

phonon field of the same position through a contact interaction. Consequently, if the original crystal lattice 

has a space inversion symmetry, only the phonon mode with even parity can contribute to this coupling, and 

possible contributions coming from odd phonon modes are excluded. 

For this reason, in this section, we will see possible contributions coming from odd phonon modes 
under the condition that our starting crystal lattice has a space inversion symmetry[36]. In this case, the 

conduction-band electron couples, not linearly, but quadratically with odd mode phonons. The effects of this 

quadratic coupling have not been seriously taken into account, or often been neglected, because, this 

quadratic coupling can be easily merged into the original restoring force of this mode, if this force is very 

strong or hard. However, if this odd mode is quite soft and anharmonic, the quadratic e-p coupling, switched 

on by the photogeneration of an electron, will result in parity violating instabilities and ferroelectric phase 
transitions, which are absent in the cases of even modes. 

8.2 Photoinduced phenomena in SrTiO 3 

This problem is closely related with recent optical experiments on the perovskite type SrTi03 [37,38,39,40]. 

As shown in Fig.31, the structural unit of this material is an 0 2- octahedron with a Ti 4+ ion in its 

center.[41] The six apices of this octahedron are connected with each other, three dimensionally. The top of 

the valence band of this material is mainly composed of the 2p orbital of 0, and the bottom of the 

conduction band is mainly composed of the 3d orbital of Ti.[ 42] In between, there is a wide indirect energy 
gap of about 3.2ey'[40,42] 

Irradiating this wide gap material by ultraviolet light, Yasunaga[37],Takesada et al[38], and 

Hasegawa et al[39], have very recently found that the electronic conductivity and the quasi-static electric 

susceptibility are macroscopically enhanced. From the hole coefficient measurements by Yasunaga[37], this 

increase of the conductivity has been already known to come, not from the holes, but from the electrons. 

Hence, a pair of the 3d electron and the 2p hole generated by the light, is shown to separate into a mutually 

independent electron and hole, with no exciton effect in between. After this separation, only the electron 

remains as a mobile carrier, while the hole is assumed to be trapped and localized by some reason, which is 

unknown. On the other hand, the quasi-static electric susceptibility, or the real part of the quasi-static 

dielectric constant (= EI)' is shown to increases about 103, between before and after this irradiation.[38,39] 

An extraordinarily long lived luminescence, arising from this irradiation, is also found by Hasegawa 

et al[40] at 2.4 eV, and the electron and hole are, thus, shown to recombine and disappear. While, this 

luminescence has a large Stokes shift of about 0.8 eY. It tells us that the electron and hole strongly couples 

with the phonon mode, which mainly corresponds to the breathing (AIg) type motion of 02-s around 

Ti 4
+, and has an energy of about 20 meV.[40] What is very interesting is that, the aforementioned 

enhancement of El disappears as this luminescence terminates. It clearly means that this enhancement is 

directly related to the presence of electron or (and) hole. 

8.3 Quantum dielectric, soft-anharmonic TI u mode and quadratic coupling 
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The perovskite type compound SrTi03 is well-known as the quantum dielectric, and long before the 

aforementioned optical studies. many elaborate works have already been systematically devoted to the 

ground state properties of this material with no photogene rated electron (hole)[43-48]. They are mainly 

concerned with low temperature properties of El. in relation to soft and anharmonic natures of Tl u (TO) 

mode, which mainly corresponds to an off-center type displacement motion of a Ti4+ ion, from the central 

position of the 0 2- octahedron. In Fig.32, we have schematically shown the pattern of this T1u mode 

together with the aforementioned A 19 mode. Qualitatively speaking, the Ti 4+ ion is only loosely 

confined within this octahedron. and hence. it has a very large quantum fluctuation around the central 

position. Thus, we can expect to get various parity violating instabilities and ferroelectric phase transitions. 

However, this material SrTi03 remains only in the super-para-electric phase down to OK without global 

frozen parity violation, being called quantum dielectric with no ferroelectric phase transition. 

According to Muller et al[44]. this T1u mode has almost no, or even a negative restoring force, if 

it is described only in terms of this T1u mode coordinate. However, it has an effective positive frequency of 

about 1 meV, which comes from a quite specific anharmonicity, called "bi-quadratic mode-mode coupling" 

between this T1u mode and other acoustic phonon modes[44,4S]. In many cases of soft-anharmonic phonons, 

we are often tempted to simply imagine an ordinary single-mode double-well type anharmonicity, composed 

of a positive quartic potential and a negative quadratic one, only in terms of this site localized TI u phonon 

coordinate. However, by Muller et al[M] and also by Vogt{46], this type single-mode quartic anharmonicity 

is completely shown not to be realized in this material at low temperatures, while the single-mode sextic 

anharmoniocity model is shown to be rather appropriate [46]. 

By the Raman scattering measurements, this soft Tl u phonon is proved to couple not linearly 

but quadratically with electronic excitations [49], although its coupling strength seems to be one order 

smaller as compared with the linear coupling of the breathing (A 19) mode. Together with the 

aforementioned large quantum fluctuation, this quadratic coupling is expected to result in some macroscopic 

parity violation in the photoexcited states, although it is never realized in the ground state. 

8.4 Possible scenario 

Let us now proceed to a possible scenario that describes the aforementioned enhancement of the conductivity 

and E I in the photoexcited state. By a VUV photon irradiation, a conduction electron is generated in the 3d 

orbital of Ti, and this orbital is making an itinerant energy band with a width of about 2e V, through its 

hybridization to the 2p orbital of 0[42]. This electron linearly and strongly couples with the breathing (A 19) 

mode of 0 around the Ti, and hence, as explained before. we have both the metastable large polaron state 

and the globally stable self-trapped state. Since the large polaron state is energetically higher that the 

self-trapped one, the photogenerated electron reaches this state first[21]. As explained before, this state can 
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contribute to the electronic conductivity. 

On the other hand, this large polaron state quadratically couples with the T} u phonons, and the sign 

of this quadratic coupling constant is "negative" for the reason we see later in detail. Thus, the quadratic 

coupling makes this soft mode more "soft". This further softening due to the e-p coupling occurs at very 

large number of lattice sites, which are included in this large polaron radius. Since this mode is dipole active, 

this further softening consequently contributes to the enhancement of quasi-static EI. 

8.5 Model Hamiltonian 

Keeping this scenario in mind, let us start from the following model Hamiltonian ( == Hf) that describes the 

electrons in the 3d conduction band of SrTi03 , coupling linearly with the breathing mode, and 

quadratically with the Tlu mode, as, ( Ii = 1 ) 

Sdffid~ D2 ffi d ""'( 8
2 

Dti] - 2 ~ ne e,i + 2 L..J - 2 + -3-
D· o· m8D e,i 
<-,I <-,J 

(27) 

+ Here, C I! ,0" is the creation operator of an electron at a lattice site .e with spin cr ( = a, ~) in a simple 

cubic crystal, and T f is the transfer energy between neighboring two lattice sites .e and t. S b is the 

dimensionless constant of linear coupling between this electron and the site localized breathing (A Ig ) mode, 

whose energy is ill b and dimensionless coordinate is A e. On the other hand, S d (> 0) is the 

dimensionless constant of the quadratic coupling between the electron and the site localized TI u mode, 

whose energy is ill d and dimensionless coordinate in the direction i (= x, y, z) is D e,i. While U f 

denotes the intra-site (intra-orbital) Coulomb repulsion. The dispersions of phonons are neglected, and only 

the long wave characteristics of each mode are taken into account. 

The origin of a short range quadratic coupling between a site localized Tiu mode and an electron 

around it, is already well-known to be an off-center effect[50,51]. It comes from the local mixing between 

the occupied atomic orbital of the electron, and unoccupied ones which are energetically higher than this 

occupied one but have opposite parities. This mixing is brought about by a linear change of the crystal field 
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coming from the off-center type TI u displacement of a central atom. Within the second order perturbation 

theory, the resultant energy change (== ~E) of the occupied state is given as 

8E = - 0 2 L < 0 I V I j >< j I V I 0 > , (28) 
. E jo 
J 

where, I 0 > and I j > denote occupied and unoccupied atomic orbitals, whose parities are opposite each 

other, and E jo is the energy difference between them. V is an electronic operator with TI u symmetry, and 

denotes the linear change of the crystal field due to the Tlu type displacement D, whose site and direction 

indices .f and i are omitted. We can see that ~ is always negative as far as I 0 > is the highest 

occupied atomic orbital. Thus, we can get a negative quadratic interaction, and it is a driving force for the 

central atom to push off its original position[Sl]. We should note that this "off-center" effect is nothing but 

the local parity violation, resulting in a local and microscopic ferroelectricity. 

In the present case, the Wannier function of the conduction band electron is mainly composed of the 

3d orbital of Ti, hybridized with the 2p orbitals of O. This Wannier function mixes with the 4p orbital of Ti 

and the 3s orbital of 0 due to the T\ u type off-center displacement of the central Ti ion, In addition to these 

typical atomic orbitals, there are many other unoccupied higher electronic states, that ca.!. locally mix with 

the Wannier function. Thus, we can get a negative quadratic coupling as described by the fourth term of 

eq.(27), wherein Sd only phenomenologically represents the effects of all aforementioned local mixings. 

The typical energy difference Ejo is about 10 eV, and hence this off-center effect is usually neglected. As 

mentioned before, if the original restoring force of this mode is very strong or hard, this quadratic coupling 

can be easily merged into this original hard force. However, in the cases of soft-anharmonic modes, the 

quadratic coupling becomes very important in connection with parity violating instabilities, even though it is 

not strong. 

It should be noted that, our purpose in the present section, is not to estimate this coupling energy 

S d quantitatively. Our purpose is to clarify possible parity violations coming from this quadratic e-p 

coupling, under the condition that this effect is one order smaller, than both the itineracy of the electron and 

the linear e-p coupling. 

As for the anharmonicity of the fifth term of eq.(27), we have taken a sextic one, for the reason 

mentioned before in detail. While "m" in this fifth term, denotes the dimensionless effective mass of this site 

localized Tiu mode. This mass will be determined so that the lowest vibronic excitation energy of this 

soft-anharmonic Hamiltonian becomes equal to 0) d' which is obtained by the experiment[4S]. 

We now rewrite Hf into the following dimensionless form as 
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h==Hf/cob= -t L {cta Ct,a+ h .c.} +uLne,ane,~ 
e, t,cr e 

- Y sd L 2 + Y sd L 6 Y L ne de i de' - ----'--
2 '6 ,1 2 113 

e,i £,i ill sd e, i 

(29) 

where 

2 3n 
t == T f 1(0 b, U == U f 1(0 b, sb == (S b) , Y == (0 d 1(0 b, S d == (S d ) , 

-112 -116 
af.==sb Af., df.,i==sd Df.,i· (30) 

Assuming t, u, sb, sd are all greater than unity 

( t, u, S b, S d) » 1, (31) 

we can define an adiabatic Hamiltonian h ad as 

h~had==-t L{ct,a Ct,a+ h .c.} +uIne,ane,~-SbInfaf+S~Iaz 
f, t,a f f f 

YSdI 2 YSdI 6 --- nodo'+-- do·. 2 {. {.,l 6 {.,l 

f, ie, i 

(32) 

8.6 Variational method for polaron 

Let us now proceed to a variational calculation for a polaron. For this single polaron state 1 p > 

we use a trial function (== ({J ( f)) as, 

1 p > == L ({J ( f) c ;,a 1 0 », L 1 ({J (f) 12 = 1, (33) 

where I 0» is the true electron vacuum. After taking the expectation value of had with respect to this 
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I p>, we get 

< had >=< - t I { ... } > -Sb I < ne,a > ae + s; Ial - Y~d I < ne,a > d~,i 
e, £',0 e e e,i 

< ..... >-<pl .... · Ip>· (34) 

By the Hellman-Feynman theorem, we obtain as 

a < had> =0 114 d 
, -----t <fiea > = Ri' 

ade,i ' , 

(35) 

Substituting this eq.(35) into eq.(34), we finally get 

Sb 2 YSd 3/2 
<had>=<-t L:{ ... } >--L:<nea> --L:<nea> . (36) 

2 ' 3 ' e, e',o e e,i 

8.7 Continuum approximation and super-paraelectric large polaron 

Let us take the following Gaussian type trial function with a reciprocal localization length (== ~p) as 

L\~(e.e) 
qJ ( e) oc exp[ - 2 ] (37) 

where ex, e y and e z are the Cartesian components of £. Using the continuum approximation, we 

regard e i (i = x, y, z) as a continuous variable from - 00 to 00. In this case, the first term of eq.(36) is 

reduced as 

(38) 

wherein, all the one-body energies are referenced from the bottom of the conduction band. Other two terms 
in eq.(36) can be easily calculated within this continuum approximation, and we finally get as, 
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< had> 
2 2 512 1[ 312 

2 5/2 (y S d ) ~ ~/2 

3 312 1[ 3/4 (39) 

Before we go in detail about the numerical results calculated by using this eq.(39), let us 

qualitatively examine energetics of < had>. It is shown in Fig.33 as a function of ~p. When (y sd )= 0, 

the first term of < had>, being the kinetic energy, increases in proportion to ~~, while, the second term, 

being the energy gain due to the self-trapping by the breathing (A 19 ) mode, decreases in proportion to - ~~ , 

as shown in Fig.33(a). If these two competing quantities are of the same order, we get two minima of 

< had>. The minimum at ~=O in Fig.33(a), denotes the well-known large ( or free) polaron, while the 

other minimum at large ~P' being not written explicitly, is the self-trapped (small) polaron. It should be 

noted that all these states have even parities irrespective of ~p. As mentioned before, these two states are 

separated by an adiabatic energy barrier, and hence, the large polaron state can be locally stable, even when 

the self-trapped polaron state is globally stable[33,34]. 

When (y sd )* 0, however, the energy gain due to the Tiu type parity violation is proportional to 

- ~~/2 , being most dominant in the small limit of ~p as shown in Fig.33(b). Hence the previous minimum 

at !1 p =0 now moves to a small but finite ~p. Thus, we can get a very important conclusion within the 

adiabatic approximation. An infinitesimal (y sd ) is enough to change the even-parity large polaron into the 

parity violating one, although the energy gain due to this symmetry breaking is quite small. This parity 

violation occurs at a large number of lattice sites included in the large polaron radius, and hence it is a 

quasi-global parity violation, as schematically shown in Fig.34. While, the self-trapped state, being not 

written explicitly in Fig.33(b), also has, a parity violation, but it is quite local. Hence, we can call it the 

off-center type self-trapped state, wherein only the central atom will move off the original position, as shown 

in Fig.30. This off-center effect will be rather slight, since the lattice distortion of this state is mainly 
dominated by the strong coupling of the breathing mode. 

It should be also noted that this parity violation of the Tiu mode is tacitly accompanied by the 

parity violation of the Wannier function itself, as mentioned in eq.(28). Originally, this function has T 2g or 

Eg symmetry of the Oh point group, since it is the 3d orbital ofTi. However, as the Tiu type off-center 

displacement occurs, it mixes with unoccupied Tiu type atomic orbitals, resulting in a [mite dipole, and the 

parity violation in the electronic level too, although this change is hidden. 

It is also very essential, that the phase of this local parity violation is quite random, and has no 

inter-site coherence, since phonons are site-localized ones, and the quadratic coupling is also independent of 

this phase. However, a weak external electric field may be enough to make it spatially coherent, as 

schematically shown in Fig.34. In this sense, our new large polaron is super-pare-electric(SPE) one, which 
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has a quasi-global parity violation. It is essentially same as a charged and conductive ferroelectric domain. 

Let us now examine the nature of the anharmonicity used in this theory. For the reason mentioned 

above in detail, the sextic anharmonicity is used in eq.(27). In this sextic case, an infinitesimal 'Y sd is 

enough for the parity violation to occur. However, even if we change this sextic anharmonicity to other ones 

higher than quintic as, 

6 
rod L DC,i -- ---
2 3 

e,i 

2M 
-4 rod" IDe,i I 

2 ~ M ' 
C,i 

M> 2.5, (40) 

we can also easily prove the occurrence of the same adiabatic instability for an infinitesimal 'Y S d . While, in 

the case of the aforementioned single-mode quartic double-well, the instability already occurs in the ground 

state itself, and hence, the photogenerated electron may not induce further instabilities. 

8.8 Numerical results 

Keeping these general characteristics in mind, let us see results of further numerical calculations. According 

the quantum chemical theory by using a small cluster model for various perovskite type metal-oxides, the 

binding energy of the self-trapped poralon is shown to be few times of 0.1 e V[ 52], which is much smaller 

that the aforementioned conduction band width (2eV) or the energy gap (3.2eV). Hence, we can say that, in 

this type compound family, the self-trapping is marginal, in the sense that the itineracy and the e-p coupling 

are well balanced. We, hereafter, will be concerned only with this marginal case. 

In order to describe this marginal situation in the context of the present continuum approximation, we, 

at first, have to determine the meaningful maximum of L\p. For this maximum, we use L\p ~ 2. The 

present continuum model has no meaning for too large L\p s, and this limit L\p =2 is determined, since 

I <p(OI2 at f = (1,0,0) becomes almost zero for larger L\p s than 2. Using this maximum value L\p =2, 

and neglecting the effects of the Tlu mode in eq.( 39), we get the marginal condition for sb as, 

Since, 12 Tf = 2eV, t becomes t = 8.33. In this case, the marginal sb is given as sb ~ 200. Under this 

condition the self-trapped state becomes the globally stable one. While, from the following equation for 

L\p' 

3Q 3/2 
Sb~p 112 (2) (ysd) 
5/2 3/2 - t~p + - 3/4 = 0 , 

2 1t 3 1t 
(42) 

we can derived the condition to make the SPE large polaron locally stable. If this equation for L\p gives two 

roots in the region 0< L\p <2, the large polaron becomes locally stable in the adiabatic potential surface, 
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just as schematically shown in Fig.29(b). Regarding this eq.(42) as a cubic equation with respect to ~~2, 

we get this condition as, 

When t=8.33 and sb = 200, it becomes, 'YSd < 15.9. 

As mentioned before, our purpose in the present section is not to estimate this quadratic coupling 

constant y S d quantitatively. Our purpose is to clarify possible parity violating instabilities coming from 

this quadratic e-p coupling, under the condition that this coupling is one order smaller that both the itineracy 

and the linear e-p coupling. In Fig.35, we have shown one of such typical cases. It is obtained by the 

following set of parameters, (0 b =20meV, t=8.33, sb = 200, Y = 0.05, YSd = 15. The resultant SPE large 

polaron extends over about 1000 lattice sits, and its binding energy is far smaller than (Ob. While, the 

self-trapped state has a binding energy of about 20 (0 b , although it is not written explicitly in this Fig. 35. 

Throughout this review paper, we will not be concerned with quantitative calculations for the electronic 

conductivity. However, we can say, that this SPE large polaron ( or this charged ferroelectric domain) is far 

mobile than the self-trapped state, and can surely contribute to the increase of the conductivity. 

8.9 Singlet bipolaron 

Let us now proceed to the next problem whether phogenerated neighboring two electrons can make a stable 

singlet bipolaron, as compared with independent two polarons. For a singlet bipolaron state ( =1 bp > ), we 

use a trial function (= <Pb ( f)) as, 

I bp > - L rp b (l) rp b (l') a 1, a a;', p I 0 > > , 
l, f.' 

<P . b (l) ex: exp { - ~ 2b (l . l ) 12 } , (44) 

where, ~b is the reciprocal localization length of this bipolaron. By the same method used before, we 

can get the energy per electron as 

< bp I h ad I bp > 
2 

8 (ysd )~~2 
3 3/2n 3/4 

(45) 

Since this system is based on the 3d orbital of Ti, the inter-electron Coulomb repulsion is stronger than both 

the itineracy and the linear e-p coupling, and hence the self-trapped bipolaron seems to be unstable. However, 

- 801 -



the large bipolaron will be stable enough, since its mean inter-electron distance is very large. As one of 

typical examples for such cases, we take u / S b = 1.75, keeping other parameters same as before, and can 

get the result shown in Fig.35. 

We can see that the SPE large bipolaron is stable relative to the two separated SPE polarons, while 

the self trapped bipolaron is unstable. From Fig.35, we can also see that the SPE large bipolaron can fissure 

into isolated two self-trapped polarons, through a quantum tunneling process, as schematically shown by a 

dashed allow. This may be a rather slow process, since the localization radius of the polarons has to change 

largely and almost discontinuously between initial and final states of this tunneling[53]. 

8.10 Further softening and enhanced 1::1 

Let us now proceed to the aforementioned further softening of the Tlu mode and the enhancement of 1::1 . 

At first, we will reconfinn the original soft-anhannonic nature of the Tlu mode at the ground state. It is 

given only by the fifth tenn of eq.(27) without the electron. By using a variational method, we determine the 

lowest vibronic state (=1 + » and its energy ( = E+ ) at site land in the direction i, as well as those 

(= 1- >, = E_) of the second lowest state. Hence, we use the following trial functions 

1 + > oc exp {- ( K + D ) 2 / 2 }, 1 - > oc D exp {- ( K _ D ) 2 / 2 }, (46) 

where K± is the variational parameter of (=1 ± », and the indices R. and i of D are omitted. After the 

variational calculation, we get K+= 1.2253, E+ fOOd = 0.3693, K_= 1.3622, E_ fOOd = 1.3693 , 

and these energies are referenced from the minimum point of the sextic potential D = 0 . Since we have used 

m = 1.3351, the lowest excitation becomes (E_ - E+ )f OOd = 1 ,as shown in Fig.36(a). 

Let us roughly estimate the further softening due to the aforementioned negative quadratic e-p 

interaction. By this interaction, the effective potential at each lattice site will become a double well type one 

as schematically shown in Fig.36(b). Exactly speaking, the TI u type motions of Ti ions are now not 

mutually independent, but are correlated with each other, since they are coupling to the same electron which 

is not localized. In order to avoid this complexity, we focus only on a single mode at a typical lattice site, for 

example, the x direction of the central site of the bipolaron, and fix all the coordinates of other modes at the 

values detennined by the previous adiabatic and variational method, eq.s (44) and (45). Then, we can get an 

effective Hamiltonian (= Hef) only for this mode as, 

H ef (47) 
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It gives a new double well potential with two minima at D = ± Do 

D 0 - (2 S d I q> b (0) I 2 ) 114 . (48) 

The electronic state if'b(O) may depend also on 0 of this mode. However, this electron is extended over 

about 1000 lattice sites, and hence we can neglect it. Using this He' we can detennine the lowest vibronic 

excitation energy by using the following variational method. 

I±>' oc {exp[- K~t<D-DO)2 12 ]±exp[- K'±(D+DO)2 12]}, (49) 

where I ± >' denotes the lowest (second lowest) state with a variational parameter (== K~) and an 

energy (== E~). Using the result shown in Fig.35, we get K~= 1.760, E ~ /0) d = 0.977 , 

K~= 2.010, E~ /rod = 1.232 ,and these energies are referenced from the minimum point 0=00 in 

Fig.36(b). Thus, the lowest excitation energy (== ro') is given as ro' = (E~ - E~ ) = 0.255 rod' and we have 

finally gotten the further softening. We can say that, after the photoexcitation, the original vibronic wave 
function shown in Fig.36(a), bifurcates as shown in Fig.36 (b). The lowest excitation energy decreases into 

about 114 of the original, because of this bifurcation. 

From this further softening, we can roughly estimate the enhancement of ci' The matrix element of 

the dipole transition in this Tlu mode will not be changed so much in spite of this bifurcation. Under this 

condition the relative change of the quasi static dielectric constant is roughly estimated as 

( relative change of EI) 
------------~----~-= 

( polaron density) 

(polaron volume) 

«(O'd 1 (0 d ) 
(50) 

wherein the polaron density itself varies depending on the exciting light intensity of each experiment. While, 

the polaron volume can be roughly estimated from the values of L\p and L\b shown in Fig.35. Thus, by 

the present theory, we can conclude that the enhancement factor is just the right hand side of eq.(50). It is 

concluded to be of the order of 104 
. 

As mentioned before, this is also a kind of photoinduced structural phase transition, occurred in the 

optical excited state, and we can finally get a charged and conductive ferroelectric domain. 

9. Photoinduced structural phase transitions observed by x-ray measurements 

As mentioned occasionally in previous sections, the most simple and standard technique to observe the 
photoinduced phase transitions is the so-called modulation spectroscopy, in which another visible photon is 
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shone to detect spectroscopic changes between before and after the transition. Although this method was 

proved to be quite useful, it is rather indirect to observe structural changes of the crystal lattice. Very recently, 

however, we have succeeded to observe the PSPT's more directly, using the time resolved x-ray structure 

analysis. This direct measurement is fulfilled in TTF-CA by Siders et al[54], and also by Collet et al[55], 

independently. The aforementioned structural difference between the photoinduced phase and the thermally 

induced one in the organo-metallic complex crystal is also directly observed by Moritomo et ale 56], through 

the x-ray structure analysis. 

While, very recently, Nozawa et al[57] have succeeded to observe the photoinduced macroscopic parity 

violation in SrTi03 , using the x-ray inner core absorption spectroscopy. The Is-3d inner core transition of 

the Ti ion, having an energy of about 4968eV, is dipole forbidden, if this ion is exactly at the centre of the 

octahedron (Fig.3I). However, it becomes dipole allowed partially, if the aforementiond off-center type 

displacement occurs. In this connection, they observed a macroscopic increase of this transition intensity 

between before and after the VUV light irradiation. 

10. Other problems in photoinduced phase transitions 

The history of photoinduced phase transition research is quite young, and we have various other problems, 

which are very important but are not referred in preceding sections. 

As for the theoretical models for the photoinduced phase transitions, here, we have been concerned 

only with the so-called itinerant models, in which the electrons or the excitons are itinerant from site to site. 

In this connection, Koshino, Ogawa and Sakai[58,59] have developed quite unique theories based on a 

site-localized two level system ( ground and excited states ), interacting with other site ones through a 

classical spring constant. They call it "domino theory", since in this model, a site-localized electronic 

excitation can proliferate through the spring constant just like the domino game. This theory could 

successfully describe the photoinduced collective phenomena of the previous organo-metallic complex 

crystal. 

In the previous sections, we have been concerned only with the PSPT, which involves some change 

of the lattice structural. However, there are various other cases, such as photoinduced magnetic phase 

transitions[60] and the photoinduced superfluid transitions of high density excitons[61-63], in which, phase 

transitions or order formations occur only in the electronic degree offreedoms, without the structural change 

of the lattice. 

11. Epilogue, - Where our true ground state comes from -

Thus, we have reviewed the various photoinduced phase transitions. The starting assumption shown in Fig.l 
is that, we have our true ground state, which is absolutely stable, or its lifetime is infinitely long. Shining a 

few visible photons on to it, we can get a macroscopic photoinduced phase. This photoinduced phase can be 

an entirely new one different from any other existing eqUilibrium phases. In some case, this photoinduced 

phase may have a longer lifetime even as compared with the time scale of our daily life. In such a case, this 

false ground state becomes effectively same as our true ground state, or we cannot practically distinguish 

which is the true one. 

This situation leads us to a more basic question, that is, where our true ground state comes from. The 

standard text book[64] for the early universe tells us, even our true ground state is also brought about 

through a kind of phase transition from a photon-dominated universe to a material-dominated one, at the 

time of the "big barn". The present photoinduced phase transition study again opens the new conversion 

pathway between photons and materials, whose historical origin is same. 
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Fig.14 The adiabatic energies of the ground state Eg and the lowest excited state Exl around the 
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From ref.ll. 
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Fig.23 The spatial domain pattern. (a), (b ),( c) and (d) are the time points shown in Fig.22. 

The gray circle is newly generated exciton. The black circle is the frozen exciton 

already generated until the previous time point. From ref.27. 
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Fig.24 The structure and electronic states of [Fe (2 - pic) 3]Clz . Et OH_ 
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Fig.25 The photoinduced phase transition in [Fe (2 - pic) 3]C1 2 • Et OH . From ref.30. 
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Fig.26 The Raman spectra of [Fe(2- pic) 3]C1 2 - Et OH, 

in the paramagnetic phase (300K), the diamagnetic 

phase (70K) and the photo-induced phase (30K): 
The shaded area of the photoinduced phase denotes 

the eccentric difference from other two spectra. 

From ref.3l. 
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Fig.27 The phase diagram, and Qo as a 

function of temperature T. From ref.32. 
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Fig.28 The free energy (per site) in the two-dimensional space spanned by the lattice 

distortion amplitude 0 0 and the SDW type order parameter ( ona - on[3 ). 

(a)T=OK, (b)T=170K, (c)T=200K, (d)T=400K. Fromref.32. 
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Fig.29 The adiabatic energy of the ground state Eg as a function of ~Q. Energy is 

referenced from the true ground state. AD =10. From ref.32. 
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Fig.30 (a)The lattice distortion Of... of the domain. The diameter of dots are 

proportional to 10JOol. (b) The spin density of the domain<~ >-<~>. 

The diameter of dots are proportional 1 <J:?,n >-<r;,[3 >1 at each lattice site. 

The value of 1< n).,a > - < n).,[3 >1 at the center of the domain is almost equal to 

that of Fig.24(a). From ref.32. 



Fig.31 Schematic structure of SrTI03' 
Fig.32 Schematic nature of 1'1 and A modes. u 19 
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Fig.33 Schematic energetics of the self-trapping. (a) Without T1u mode. 

(b) With T1u mode. 
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Fig.34 Schematic natures of the ground state, the super-pare-electric large polaron, and 

the off-center type self-trapped polaron. 
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Fig.36 The lowest two vibronic states of the T1u mode. (a) At the electronic ground 

state. (b) At the central lattice site of the super-pare-electric large polaron. 
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