A slip-link model with 3D network structure

Author(s)
Horio, Kazushi; Masubuchi, Yuichi; Schieber, Jay D.

Citation
物性研究 (2006), 87(1): 193-194

Issue Date
2006-10-20

URL
http://hdl.handle.net/2433/110580

Type
Departmental Bulletin Paper

Kyoto University
A slip-link model with 3D network structure

Dept. Applied Chem., Tokyo Univ. of Agri. & Tech. Kazushi Horio ¹
Dept. Applied Chem., Tokyo Univ. of Agri. & Tech., and JST Yuichi Masubuchi

In this study, a multi-body slip-link model in 3D space described by total free energy of system is proposed. Though a 3D slip-link simulation based on Brownian dynamics [1] has presented good agreements with rheological properties of various systems, thermodynamical expression has been incomplete. As a promising approach, Schiebers' description [2, 3] based on chain energy is modified for multi-body motion in 3D space.

A chain is composed of Z strands and each strand has N_i Kuhn steps with length of b. End-to-end vector of the strand is Q_i which connects consecutive slip-links as $Q_i \equiv R_i - R_{i-1}$. The free energy of a chain is expressed as

$$F = \sum_{i=2}^{Z-1} F_S (Q_i, N_i) + F_E (N_1) + F_E (N_Z),$$

(1)

where F_S and F_E are free energies of an entangled strand [2]. Kuhn steps transfer through the slip-link by chemical potential differences and Brownian force obeying

$$N_i(t + \Delta t) \cong N_i(t) + \frac{\Delta t}{k_B T \tau_K} \{ \mu_{i-1}(t) - 2\mu_i(t) + \mu_{i+1}(t) \} + \sqrt{\frac{2}{\tau_K} (\Delta W_i - \Delta W_{i-1})}.$$

(2)

where τ_K is relaxation time of a Kuhn step, $\mu_i \equiv (\partial F/\partial N_i)$ is chemical potential of strand i and ΔW_i is Wiener increment with zero mean and variance Δt. Entanglements are created or destructed only chain end by reptation. In monitoring N_i at end strand, when N_i becomes less than given minimum, an entanglement is destructed. On the contrary, N_i becomes more than

¹E-mail:kazu@rheo.chem.tuat.ac.jp
given maximum, an entanglement with any surrounding strand within $a_0 = N_e b^2$ is created. N_e is the average number of N_i. The number window of N_i is given by

$$0.5N_e < N_i < 1.5N_e.$$ \hskip 1em (3)

Dynamical equation of R_i is written as

$$R_i(t + \Delta t) \equiv R_i(t) + \kappa R_i(t) \Delta t - \frac{N_e b^2}{12k_B T \xi \tau_e} \left[\left(\frac{\partial F^\alpha}{\partial R_i} \right) + \left(\frac{\partial F^\beta}{\partial R_i} \right) \right] \Delta t + \sqrt{\frac{N_e b^2}{6 \xi \tau_e}} \Delta W_i,$$ \hskip 1em (4)

where $\tau_e = N_e^2 \tau_K$, ξ is time ratio of τ_e and constraint release time and α and β indicate test chain and another chain sharing the entanglement locating at R_i.

It has been confirmed that distribution of N (Fig. 1) is consistent with the theoretical prediction [4]. Tests for other quantities and chain dynamics shall be discussed elsewhere.

![Figure 1: The simulated distribution (open triangle: ensemble average, closed square: time average) of number of Kuhn steps in a strand compared with the theoretical prediction (line) [4]](image)

References

