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§1. Introduction 

It has been identified that there is a rich variety of interactions among spatially localized 
patterns such as pulses and spots in a reaction-diffusion medium. I) In addition, interactions 
among patterns in different reaction-diffusion media2) should be also of interests from practical 
viewpoints. In fact, in several nerve systems, it is observed that huge nerve axons are arranged 
in a densely packed bundle so that pulses traveling in adjacent axons electronically communicate 
each other. 3) In this paper, we investigate what kinds of pulse dynamics can be emerged when 
two excitable reaction-diffusion media are coupled with each other, especially focusing on a 
situation in which parameters of two excitable fibers are not equal.4) Such a situation is not 
uncommon because the diameters of fibers are not equivalent in the real nerve systems in general, 
leading to a difference of diffusion coefficients in mathematical models. 

§2. Model 

As an illustrative example of coupled excitable fibers, we consider the following mutually 
coupled one-dimensional FitzHugh-Nagumo (FHN) equations: 

{ 
itl = UI(UI - a)(l - UI) - VI + 1'1:1 V' 2

Ul + f(U2 - uJ) 
VI = T(UI - 'YVI), 

{ 
U2 = U2(U2 - a)(l - U2) - v2 + 1'I:2V2U2 + f(UI - U2) 

V2 = T(U2 - 'YV2)' 

(2·1) 

Subscripts "I" and "2" denote the first and the second fibers. The state variables Ul,2 = Ul,2(X, t) 
and Vl,2 = VI,2(X, t), where x E [0, L] and t E [0,00) are space and time coordinates, are the 
activator and the inhibitor, respectively. The parameters 1'1:1 and 1'1:2 are diffusion coefficients. 
The value of 1'1:1 is fixed as 0.25 throughout this paper. The mutual interaction between two 
excitable fibers is also introduced as the linear coupling terms (UI,2(X, t) - U2,1(X, t)) with the 
strength f for activators. We take f and 1'1:2 as the control parameters. The periodic boundary 
condition is employed. 

§3. Simulation Results 

3.1. A Variety of Patterns 

We investigate pulse dynamics when a right-moving pulse is initiated in fiber 1 and fiber 2 
is set to the global resting state, as initial conditions. The parameters of the reaction kinetics 
is fixed as a = 10-1, 'Y = 2.5, and T = 2 X 10-3 so that local dynamics exhibits an excitable 
property. 

Soliton-like Pulse Collision 

Focus on the case in which diffusion coefficients are different: 1'1:1 = 0.25 and 1'1:2 = 0.09. 
When the inter-fiber coupling strength f crosses over a threshold value, a propagating pulse in 
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fiber 1 can induce an excitation in fiber 2. A pulse in fiber 2, however, cannot induce an excitation 
in fiber 1. This "one-way" excitation is understood as follows. In general, the existence of the 
diffusion term \]2u in the equation of the activator suppresses the excitation by an external 
stimulus. Because we consider the case /'\:1 > /'\:2 in Eqs. (2·1) now, a more intensive stimulus 
from fiber 2 is required for inducing an excitation in fiber 1. A typical pattern for E = 8 X 10-3 

caused by this one-way excitation is shown in Fig. 1: 
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Fig. 1. (a-d) A series of snapshots for the soliton-like pulse collision. (e) A spatia-temporal plot. 

(a) Head-on collisions occur in both fibers. 
(b) Supra-threshold pulses annihilate each other in fiber 2 through the collision, whereas the 

sub-threshold pulse in fiber 1 does not significantly affect the propagation of supra-threshold 
pulse in fiber 1. 

(c) A new supra-threshold excitation is induced in fiber 2 by the pulse in fiber 1, and it splits 
into two pulses propagating in opposite directions. 

( d) All profiles are recovered after head-on collisions like solitons. 

Recombination of Synchronized Pulses 

In Fig. 1 (a), two pulses are facing with each other in fiber 2. By changing initial conditions, 
we can prepare two pulses propagating in the same direction in the fiber 2 as shown in Fig. 2 
(a). We find the following dynamical behavior associated with the destruction of synchronized 
pulses as shown in Fig. 2: 
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Fig. 2. (a-d) A series of snapshots for the recombination process. (e) A spatio-temporal plot. 

(a) A pair of synchronized pulses PI and P2A becomes close to P2B. 
(b) Synchronization is broken by the highly concentrated region of the inihibitor behind P2B. 
(c) A new pair of synchronized pulses composed of PI and P2B forms. 
(d) The new synchronized pulses move away from P2A. 

We call dynamical processes recombination of synchronized pulses. 
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3.2. Spatio-temporal Chaos 

The following parameters a = 5 x 10-3 , 'Y = 0.5, and 7 = 5 X 10-3 admit the "oscillating 
wake" of propagating pulse, since the eigenvalues of the Jacobi matrix at the resting point 
(u,v) = (0,0) has an imaginary part. For such parameter values of the reaction kinetics, 
interesting dynamical behaviors are observed. 
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Fig. 3. Spatio-temporal plots at initial stage in (a--b), and after transient in (c-d). L = 103
• 

Figures 3 (a) and (b) show spatio-temporal patterns at initial stage of the system ofEqs (2·1) 
for Lll>: = 0.218 and t: = 5 X 10-3 . If Lll>: = 0, a stable reentrant wave is observed for t: = 5 X 10-3 . 

In Fig. 3 (a), the "V"-shaped structure corresponds to the event of a supra-threshold excitation 
splitting into two propagating pulses and the "A" -shaped structun~ corresponds to the event of 
an annihilation between two pulses. It is seen from Fig. 3 (a) that two sources of splitting pulses 
are generated at initial stage. After transient, however, only one of the two remains as shown 
in Figs. 3 (c) and (d). 

In Fig. 3 (d), some disordered defects are observed near the annihilation locations even 
after a transient died out. In order to understand the origin of such disordered structures, we 
investigate the dependence of the return map 1J(t) versus 1](t + ts) on Lll>: after a transient, where 

Tl(t) is a spatially coarse-grained variable: 17(t) = J (1/ L) JoLlul (x, t) - U2(X, t)1 2dx. Results are 
shown in Figs. 4 (a-c), and corresponding power spectra are also plotted in their insets. Here, 
we take ts = 30. When Lll>: is small, the return map shows a closed curve, which indicates that 
the dynamics of 1](t) is a periodic motion. For larger Lll>:, the dynamics of 1](t) becomes more 
complicated, and the change of results from Fig. 4 (a) to Fig. 4 (c) suggests that the system 
shows a quasiperiodicity route to chaos. 
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Fig. 4. (a-c) The graphs of 7](t) vs. 7](t + t s ) after a transient for three different values of .11£. Corresponding 
power spectra are also shown in insets. 
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