<table>
<thead>
<tr>
<th>Title</th>
<th>Domain induced budding in buckling membranes (Poster session 1, New Frontiers in Colloidal Physics: A Bridge between Micro- and Macroscopic Concepts in Soft Matter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Minami, Akihiko; Yamada, Kohtaro</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (2007), 89(1): 93-94</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-10-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/110928</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Domain induced budding in buckling membranes

Dept. of Physics, Kyoto Univ. Akihiko Minami ¹
Dept. of Chemistry, Tokyo Metropolitan Univ. Kohtaro Yamada ²

1 Introduction

In this study, we consider fluid-like membranes and focus on the phase separation on the buckling membranes to understand the budding and the coarsening on membranes.

2 Model equation

We assume that the membrane is initially not deformed, and set this as a reference state and set the z-axis of the Cartesian coordinate (x, y, z) perpendicular to the membrane. A displacement vector \((u, h) = (u_x, u_y, h)\) is also introduced to describe elastic deformation of the membrane (see Fig. 1).

![Deformed membrane](image)

Figure 1: Reference coordinate \((x, y, 0)\) and deviation vector \((u_x, u_y, h)\).

In this situation, the elastic energy \(\mathcal{F}_{\text{el}}\) and the free energy of the phase separation \(\mathcal{F}_0\) are given by

\[
\mathcal{F}_{\text{el}} \approx \int dr \left[\frac{\lambda}{2} \left(\tilde{e} + \frac{1}{2} \langle (\nabla h)^2 \rangle \right)^2 + \frac{\kappa}{2} (\nabla^2 h)^2 \right]. \tag{1}
\]

\[
\mathcal{F}_0 \approx \int dr \left[\frac{r}{2} \phi^2 + \frac{u}{4} \phi^4 + \frac{C}{2} (\nabla \phi)^2 \right]. \tag{2}
\]

¹E-mail: minami.a@scphys.kyoto-u.ac.jp
²E-mail: kohtaro@tmu.ac.jp
where \(\phi \) is the order parameter and \(r \) and \(u \) are constant parameters. \(\lambda \) and \(\kappa \) mean the surface tension and the bending coefficient. \(\bar{e} \) is an applied extension or compression of the membrane. If \(\bar{e} < 0 \), the membrane is buckled. The third term of eq (2) is the gradient energy evaluated on the deformed surface.

The total free energy is written as

\[
\mathcal{F} = \mathcal{F}_\phi + \mathcal{F}_0.
\]

The dynamic equation of \(h \) and \(\phi \) are written by

\[
\tau_h \frac{\partial h}{\partial t} = -\frac{\delta \mathcal{F}}{\delta h},
\]
\[
\tau_\phi \frac{\partial \phi}{\partial t} = \nabla^2 \frac{\delta \mathcal{F}}{\delta \phi}.
\]

3 Results

We show the results of numerical simulation for \(\bar{e} = -0.001 \) and \(\langle \phi \rangle = -0.3 \) in figure 2. In this case, the membrane is compressed because \(\bar{e} \) is negative. Therefore, the domain budding can be observed at \(t = 9400 \). The membrane is deformed at the domain boundary. The minority domains form caps and the majority domains become flat (see figure 2 (C)).

References