Title
Stable Disk-fused Vesicle in DMPC/DHPC Lipid Mixture

Author(s)
Yamada, N. L.; Torikai, N.

Citation
物性研究 (2007), 89(1): 52-53

Issue Date
2007-10-20

URL
http://hdl.handle.net/2433/110951

Right

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Stable Disk-fused Vesicle in DMPC/DHPC Lipid Mixture System

High Energy Accelerator Research Organization N. L. Yamada¹, N. Torikai

For phospholipid mixture system consisting of long- and short-chain lipids, it was reported that small uni-lamellar vesicles (ULVs) were spontaneously formed [1]. Recently, Nieh et al. have carried out small-angle neutron scattering (SANS) experiments on aqueous solutions of dimyristoyl-phosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC) mixture [2]. The experimental results showed that disk micelles at low temperature fuse into ULVs above the chain melting temperature, T_c, of DMPC molecules (about 24°C) in an adequate condition. Although disk-fused ULVs usually fissure into small disk micelles below T_c, it was shown that the ULVs were stable even below T_c at very low lipid concentration [3]. However, the mechanism of the stable ULV formation has not been clarified yet.

In this study, we investigated the structural change on a disk-fusion and vesicle-fission by SANS to understand the mechanism of the stable vesicle formation at low lipid concentration. The SANS experiment was performed with changing lipid concentration, c_L, the molar ratio of DMPC to DHPC, q', and temperature. The sample temperature was increased from 20°C to 50°C on a disk-fusion process, and decreased to 20°C again on a vesicle-fission process. Figure 1 shows the c_L-dependence of SANS profiles with changing temperature in case of $q' = 3.2$. From the SANS profiles, it was shown that the disk size increased with decreasing c_L at 20°C before heating, and the vesicle size increased with increasing c_L at 50°C. On the other hand, the SANS profiles at 20°C after heating were irreversible in case of low c_L, and large disk micelles were observed. Moreover, stable ULV were observed in case of $q' = 4.6$ as shown by Nieh et al.

For the quantitative discussion, the relation between the disk radius at 20°C and the vesicle radius at 50°C for were shown in Fig. 2. In the disk-fusion process, the relation between the

¹E-mail: yamadan@post.kek.jp
Figure 1: Dependence of SANS profiles on lipid concentration, c_L, with changing temperature, when the ratio of DMPC to DHPC, q', is 3.2.

Figure 2: (a) The relation between the disk radius at 20°C and the vesicle radius at 50°C. (b) Schematic illustration of disk-fusion and vesicle-fission process suggested by the experimental results.

disk- and vesicle-size is roughly on a master curve for all c_L and q'. Whereas, the relation in the disk-fission process was different from that in the heating process: small disks and large disks were observed with decreasing c_L. Remarkably, the relation between large disk- and vesicle-size was on another master curve, and the stable ULVs were observed in the crossover region of the two master curves at low c_L. From these results, it can be said that the relation between disk- and vesicle-size is essential to understand the stability of disk-fused ULVs. The detailed discussion will be shown in the conference.

References