<table>
<thead>
<tr>
<th>Title</th>
<th>Demulsification of O/W Emulsion by Weak Electrostatic Field (Poster session 1, New Frontiers in Colloidal Physics: A Bridge between Micro- and Macroscopic Concepts in Soft Matter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ichikawa, Tsuneki</td>
</tr>
<tr>
<td>Citation</td>
<td>物性研究 (2007), 89(1): 43-44</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-10-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/110956</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Demulsification of O/W Emulsion by Weak Electrostatic Field

Graduate School of Engineering, Hokkaido Univ., Tsuneki Ichikawa

1 Introduction

Although emulsion systems have been widely used in many industrial fields, the formation of emulsion is not always desirable in chemical industries. Formation of emulsions in solvent extraction processes is especially undesirable, since the processes are stopped until the emulsions are separated into oil and water. Electrical demulsification is one of the most convenient ways of separating emulsions into oil and water. However, this has been believed to be operative to only water-in-oil (W/O) emulsions under very high electrostatic fields.

We have recently found that oil-in-water (O/W) emulsions stabilized with ionic surfactants are demulsified by low electrostatic fields of less than 10 V/cm [1-5]. We will show here the experimental and theoretical evidences of proving the demulsification of O/W emulsions by a weak electrostatic field.

2 Experimental evidences

Acceleration of the demulsification of O/W emulsion can be observed on any emulsion systems unless emulsions are stabilized with nonionic surfactants. Figure 1 shows the effect of external DC electric fields on the stability of O/W emulsion that is prepared by shaking the 3 : 2 mixture of oil (1 : 1 mixture of benzyl alcohol and tetrahydropyran) and water (containing 2×10^4 mol/dm^3 of sodium 2-naphthyl sulfonate as an ionic surfactant) in a separatory funnel more than 100 times. The radii and the zeta potential (ζ) of the oil droplets are 25–30 μm and 60 mV, respectively. The emulsion layer thus prepared has a lifetime of more than 1 h. The application of a DC electric field of E_0 > 4 V/cm shorten the life time to less than 20 s. The acceleration of demulsification is induced neither by electrophoresis nor by electrolysis, since the fusion of the droplets takes place not only near the electrodes but everywhere in the emulsion layer. High frequency pulsed square wave fields also accelerate the demulsification, though it does not for high frequency AC fields. These evidences suggest that the demulsification is induced by the migration of surface charges on the oil droplets.

Fig. 1. Effect of external DC electric field on the life time of O/W emulsion.

1 E-mail: ichikawa@eng.hokudai.ac.jp
3 Theoretical evidence

Fundamental equations for describing the steady-state behavior of ions in O/W emulsions are

\[
\nabla \left(\frac{z e c_z}{kT} \nabla \phi + c_z \right) = \frac{\partial c_z}{\partial t} = 0
\]

Smoluchowski diffusion equation for ions in water under electrostatic field \(\phi\), \(c_z\) and \(z\) are the number densities and the valence of the ions, respectively.

\[
\nabla^2 \phi = -\frac{\rho}{\varepsilon_i} = -\frac{e(z_+ - c_\text{e})}{\varepsilon_i}
\]

Poisson's equation in water with the dielectric constant \(\varepsilon_i\)

\[
\sigma = \left[z_{+}\varepsilon_+ \exp \left(\frac{-ze\phi}{kT} \right) - z_{-}\varepsilon_- \exp \left(\frac{ze\phi}{kT} \right) \right]_{\text{surface}}
\]

Surface charge density \(\sigma\) given by the Boltzmann distribution of surface ions with the valences \(z_{+,-}\).

\[
\sigma = e(z_{+}\varepsilon_+ - z_{-}\varepsilon_-) = \left[\varepsilon_i \frac{\partial \phi_i}{\partial n} - \varepsilon_i \frac{\partial \phi_i}{\partial n} \right]_{\text{surface}}
\]

Boundary condition on the surface. \(z_+, \varepsilon_+\) and \(\phi_i\) are the surface ion densities, the dielectric constant and the electrostatic potential for oil, respectively.

According to the DLVO theory, the electrostatic force acting between the surfaces of approaching oil droplets (the electrical diffuse double layer force) separated by \(x\) is given as a sum of the Maxwell's electric field stress and the osmotic pressure as

\[
P = -\frac{\varepsilon_i}{2} \left(\frac{d\phi}{dx} \right)^2 + kTc_0 \left[\exp \left(\frac{-ze\phi}{kT} \right) + \exp \left(\frac{-ze\phi}{kT} \right) - 2 \right]
\]

Using several plausible approximations, the potential energy for the approach of two oil droplets is given by

\[
U = \frac{\varepsilon_i \kappa_x e^{-\varepsilon_i} \varepsilon_i}{8(h+1)} \left[\frac{4(h+1) + 3h(a_1 - a_2)E_\text{e} \cos \eta / c_i}{h+1} \right] - \frac{A_{H}}{12\pi w^2}
\]

where \(h = ze\zeta(s_{+o} + s_{-o}) / [kT(s_{+o} - s_{-o})]\); \(\kappa\), the Debye reciprocal length; \(w\), the separation distance between the front surfaces of approaching two droplets with radii \(a_1\) and \(a_2\); \(E_\text{e}\), the intensity of the external electric field; \(\eta\), the angle between the axis of approach and the external field; and \(A_{H}\), the Hamaker constant of the droplets, respectively. The above equation indicates that the repulsive double layer force, the origin of stabilizing charged emulsion particles, changes to be attractive by applying the external electric field of

\[
|E_\text{e}| \geq \frac{2(z_{+}\varepsilon_+ s_{+o} + s_{-o}) + kT(s_{+o} - s_{-o})}{3z_{+}\varepsilon(s_{+o} + s_{-o})a}
\]

where \(a\) is the radius of the larger droplet. A weak external electric field thus demulsifies charged O/W emulsions.

References