Micellar/Lamellar Phase Separation Processes in a Nonionic Surfactant/Water System

Dept. of Chemistry, Tokyo Metropolitan Univ.
Minori Kakizawa, Yusaku Ueda, Rie Shinohara, Youhei Kawabata, and Tadashi Kato

1 Introduction

It is well known that surfactant-water systems form various kinds of mesophases. However, the kinetic pathway of the phase transition has not been much studied [1,2]. Particularly interesting is the micellar/lamellar transition because the building blocks of these two phases are very different. In the present study, we investigate the micellar (L₁)/lamellar (L₆) phase separation processes with the expectation that some sort of intermediate structures between L₁ and L₆ structures may be found. To analyze the change in structures in nm and μm scale, time-resolved small-angle X-ray scattering (SAXS), small angle light scattering (SALS), and optical microscopy are used. A nonionic surfactant (C₁₆H₃₃(OC₂H₄)₇0H; C₁₆E₇)-water system was chosen because L₁/ L₆ phase separation occurs simply by increasing temperature and because the equilibrium structures in both phases have been studied extensively by us [3,4]

2 Experimental

SAXS measurements were performed by using the synchrotron radiation SAXS spectrometer installed at the BL.15A instruments at the photon factory (PF) of the High Energy Accelerator Research Organization (KEK), Tsukuba. SALS were measured by using a home-made apparatus. Optical microscope images were obtained on Olympus BHSP with a Mettler FP82HT hot stage.

3 Results and Discussion

1 E-mail: kato-tadashi@tmu.ac.jp
Figure 1 shows time evolution of optical microscope image after the temperature jump from 64°C (L₁) to 66°C (a) and 67°C (b) in the L₁/L₁α coexistence region at 38.5 wt% of C₁₆E₇. In the case (a), the system approaches macroscopic phase separation as expected although the rate of domain growth is slow. In the case (b), on the other hand, the domain first grows rapidly and then, the interface of the domain gradually disappears.

Figure 2 shows circular averaged SAXS intensities as a function of $q (= 4\pi \sin \theta / \lambda)$ under the same condition as for Fig. 1. Figure 2(a) indicates coexistence of the L₁ (broad peak) and L₁α (sharp peak) domains. In the case of the jump to 67°C (b), on the other hand, the SAXS pattern becomes similar to that of the L₁α phase. However, the lamellar spacing is larger than that at the lower boundary of the L₁α phase at 67°C. Moreover, the microscope observation under the cross Nichol suggest the system is optically isotropic.

Similar results have been obtained for other initial concentrations. These results suggest metastable structures exist in a narrow temperature range in the L₁/L₁α coexistence region.

References