Title

Memory of flow in paste and its visualization as crack pattern

Author(s)

Nakahara, A.; Shinohara, Y.; Inagaki, S.; Katsuki, A.; Matsuo, Y.

Citation

物性研究 (2007), 89(1): 28-29

Issue Date

2007-10-20

URL

http://hdl.handle.net/2433/110966

Type

Departmental Bulletin Paper

Publisher

Kyoto University
Memory of flow in paste and its visualization as crack pattern

Lab. of Physics, Coll. of Science and Technology, Nihon Univ.
A. Nakahara, Y. Shinohara, S. Inagaki, A. Katsuki and Y. Matsuo

1. Crack formation in drying process

We prepare densely packed colloidal suspension, i.e., paste, by mixing powder such as calcium carbonate with water. When the paste is dried, water evaporates, paste shrinks, and if the paste sticks to the bottom of the container, paste divides itself into smaller fragments to release the stress induced by the shrinkage. Usually, crack pattern becomes isotropic and cellular, as shown in Fig. 1, with sizes of these fragments almost same as the thickness of the paste.

2. Memory of paste: Type I - Memory of vibration

When we vibrate a paste horizontally for a short time before drying and the strength of the vibration is just above the value of the yield stress of the paste, we find that paste remembers the direction of the initial vibration. Due to the plasticity, paste maintains the longitudinal density fluctuation of densely packed colloidal particles induced by initial vibration even after the vibration is removed. The memory in paste is visualized as anisotropic crack patterns, such as lamellar, with directions of these cracks all perpendicular to the direction of the initial vibration [1, 2].

3. Memory of paste: Type II - Memory of flow

On the other hand, when we use some powders, such as magnesium carbonate hydroxide or carbon, to make paste, we find that these pastes have two kinds of memories, one is a memory of vibration (Type I) and the other is a memory of flow (Type II). The transition from Type I to Type II memory is obtained by decreasing the solid volume fraction in paste ρ or by increasing the strength of the vibration, as shown in Fig. 2. Note that in Fig. 2(b) which shows the memory of flow, directions of lamellar cracks are no longer perpendicular to the direction of the vibration. They are parallel to the directions of flows induced by the initial vibration [3].

E-mail: nakahara@phys.ge.cst.nihon-u.ac.jp
4. Morphological phase diagram of crack patterns

To investigate the mechanism of the transition of memory, we perform experiments changing the value of the solid volume fraction in paste ρ at the initial vibration and also the strength of the initial vibration. Results are summarized as Fig. 3. The solid guide curve represents the yield stress of paste. The vertical dotted and dash-and-dotted guide lines represent liquid-limit at $\rho=4\%$ and plastic-limit $\rho=18\%$, respectively. In region A below the yield stress curve, since paste did not move at all, it has no memory of vibration, so we have cellular crack pattern. In region B just above the solid yield stress curve, paste is vibrated by the initial vibration so it has a memory of vibration. On the other hand, in region C where flow appeared at the initial vibration, paste has a memory of flow. In region D turbulent flow blows up memory from paste and we again have cellular crack pattern.

References