Primary localized amyloidosis of the renal pelvis coexisting with transitional cell carcinoma: a case report

Shiramizu, Miki; Nakamura, Kaoru; Baba, Shiro; Katsuoka, Yoji; Kinoshita, Hidechika

ISSUE DATE:
1992-06

URL:
http://hdl.handle.net/2433/117573

RIGHT:
PRIMARY LOCALIZED AMYLOIDOSIS OF THE
RENAL PELVIS COEXISTING WITH TRANSITIONAL
CELL CARCINOMA: A CASE REPORT

Miki Shiramizu¹, Kaoru Nakamura¹, Shiro Baba²,
Yoji Katsuoka³ and Hidechika Kinoshita³

From the Department of Urology, Ishara Kyodo Hospital¹, Keio University², Tokai University³

Primary localized amyloidosis of renal pelvis is very rare, and only 12 cases have been reported. More than half of the reported cases were treated by nephrectomy, and the preoperative diagnosis could not be made correctly because of its resemblance to renal pelvic tumor. The ureteroscopy is a useful diagnostic means in such a condition. This case is unusual in that a papillary transitional cell carcinoma was present coincidentally.

Key words: Amyloidosis, Renal pelvis, Transitional cell carcinoma

INTRODUCTION

Primary localized amyloidosis is a relatively rare disease of obscure etiology characterized by extracellular deposition of amorphous eosinophilic fibrillar protein in various organs. This primary pathological change is uncommon and formed only 9% of 236 cases of amyloidosis¹. The most common sites involved were bladder, lung, skin and larynx. Among the genitourinary tract, the bladder is the most frequently affected, and involvement of the upper urinary tract is less common. Herein, we report the 13th case of primary renal pelvic amyloidosis along with a review of the relevant literature.

CASE REPORT

A 63-year-old woman visited our outpatient clinic on October, 1986, complaining of left flank pain and gross hematuria. Her previous medical history was uneventful, and physical examination revealed no significant abnormalities. On cystoscopic examination, there were no abnormal findings in the bladder. Urine cytology was negative. The renal ultrasonogram was grossly normal. An excretory urogram (IVP) demonstrated the irregular margin of left renal pelvis and calyces (Fig. 1A).

In July, 1987, left nephroureterectomy was performed. There was conspicuous

No stone shadow was recognized. The flank pain improved without treatment and gross hematuria discontinued. During eight months of follow up painless gross hematuria recurred intermittently in spite of negative urine cytology, so that she was admitted for further evaluation in June, 1987.

Laboratory data showed no abnormal findings, except for microscopic hematuria, counting 40 to 50 red blood cells per high power field. A retrograde pyelogram (RP) revealed left hydronephrosis and obstruction at the outlet of renal pelvis and the upper ureter (Fig. 1B). There was no tumor in the bladder, and ureteral brushing cytology was not significant. Ureteroscopic examination was carried out to confirm the presence of a tumor. A 12.5 F ureteroscope was inserted into the left ureter with ease. There was no abnormal finding in the lower or middle ureter. A small papillary tumor was seen at the outlet of the renal pelvis and was biopsied with a cold punch. The specimen showed papillary proliferation of well differentiated transitional cells with mild nuclear atypia, which was diagnosed as transitional cell carcinoma grade 1 (Fig. 2).
inflammatory adhesion around the renal pelvis and the upper ureter. No lymph-node swelling was recognized.

On gross examination of resected specimen, marked hemorrhage was present in the renal pelvis. Its surface was covered with dark brown "jelly" like material continuing to the pyeloureteric junction (Fig. 3). On microscopic examination, massive amyloid deposition in the submucosa of the renal pelvis was observed. Atypical hyperplasia of transitional epithelium was noted (Fig. 4). The amyloid was positive for Congo-red staining and immunohisto-

Fig. 1 A: IVP showed left hydronephrosis and obstruction at the outlet of renal pelvis. B: Left retrograde pyelogram demonstrated the stricture between the outlet of renal pelvis and the upper ureter.

Fig. 2. Histological section of biopsy specimen showed papillary proliferation of well differentiated transitional cells with mild nuclear atypia. HE stain.

chemically positive for lambda chain, but negative for kappa chain and AA protein (biochemically related to and acute phase alpha-l globulin and associated with chronic inflammatory condition). No deposit of amyloid was noted in the artery or glomeruli in the renal parenchyma.

Postoperative course was uneventful. Subsequent rectal biopsy was negative for amyloid. Postoperatively she has continued to do well.

DISCUSSION

Amyloidosis represents the clinical expression of extracellular deposits of the eosinophilic and amorphous proteinaceous material, which may be systemic or localized in distribution. The etiology and pathogenesis of primary localized amyloidosis remains obscure. A recent study using
Table 1. Analysis of 12 reported cases of primary localized amyloidosis of renal pelvis

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Age, Sex</th>
<th>Symptom</th>
<th>Preoperative diagnosis</th>
<th>Operative procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akimoto</td>
<td>1927</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Gilbert et al</td>
<td>1952</td>
<td>52, F</td>
<td>flank pain</td>
<td>upper ureteral lesion intracolic calculi</td>
<td>nephrectomy</td>
</tr>
<tr>
<td>Sato</td>
<td>1957</td>
<td>37, M</td>
<td>hematuria</td>
<td>renal pelvic tumor</td>
<td>nephrectomy</td>
</tr>
<tr>
<td>Chisholm et al</td>
<td>1967</td>
<td>66, M</td>
<td>hematuria</td>
<td>none</td>
<td>exploration</td>
</tr>
<tr>
<td>Gardner et al</td>
<td>1971</td>
<td>39, F</td>
<td>hematuria</td>
<td>staghorn calculus</td>
<td>nephrectomy</td>
</tr>
<tr>
<td>Ullman</td>
<td>1973</td>
<td>58, F</td>
<td>hematuria</td>
<td>UPJ obstruction</td>
<td>exploration</td>
</tr>
<tr>
<td>Dias et al</td>
<td>1979</td>
<td>67, F</td>
<td>hematuria</td>
<td>N.A.</td>
<td>nephrectomy</td>
</tr>
<tr>
<td>Gelbard et al</td>
<td>1980</td>
<td>67, M</td>
<td>hematuria</td>
<td>UPJ extravasation</td>
<td>nephrectomy</td>
</tr>
<tr>
<td>Fujihara et al</td>
<td>1981</td>
<td>66, M</td>
<td>hematuria</td>
<td>renal pelvic tumor</td>
<td>nephrectomy</td>
</tr>
<tr>
<td>Fox et al</td>
<td>1984</td>
<td>81, M</td>
<td>hematuria</td>
<td>renal pelvic tumor</td>
<td>nephrectomy</td>
</tr>
<tr>
<td>Murphy et al</td>
<td>1986</td>
<td>76, F</td>
<td>hematuria</td>
<td>renal pelvic tumor</td>
<td>nephrectomy</td>
</tr>
</tbody>
</table>

N.A. : not available
UPJ : ureteropelvic junction

the unlabelled immunoperoxidase method in combination with specific antisera against different chemical types of amyloid fibril proteins (AA, A lambda and A kappa), has shown the presence of A lambda antigenic fibril determinants in localized genitourinary amyloidosis and suggested that the fibrils are of immunocytic origin. Similarly, in our case, the amyloid deposit showed positive staining with an immunoglobulin light chain (lambda type) in immunohistochemistry.

Primary localized amyloidosis of the genitourinary tract has been reported in less than 100 cases, in which the bladder is the most frequently affected site. Localized amyloidosis of the renal pelvis is extremely rare, and only 12 cases were reported (Table 1). The most common symptoms were gross hematuria and flank pain. Gross hematuria was seen in almost all cases, and half the cases complained of flank pain on the affected side. Every case showed hydronephrosis and irregular defect of renal pelvis on IVP. These clinical features resemble the malignant tumor of the upper urinary tract. The final diagnosis has been made by following histopathologic assessment, such as exploratory surgery or nephrectomy. Because an amyloid lesion of the genitourinary tract is rare, a correct diagnosis is difficult to make preoperatively and may be confused with a neoplasm. These reported cases reaffirm the importance of considering this condition in the differential diagnosis of pelvic disorders.

There have been no reports about ureteroscopy to confirm the diagnosis of renal pelvic amyloidosis as we did preoperatively. In our case, if a deeper layer specimen had been taken by ureteroscopic biopsy, the preoperative diagnosis of amyloidosis could have been established. Ureteroscopy and biopsy should be extremely helpful procedures in establishing the accurate diagnosis of benign ureteral lesions such as amyloidosis.

Another interest which deserves special mention in this case is the coexistence of a papillary tumor and amyloidosis in one renoureteral unit. The papillary tumor
was very small. The ureteral mucosa covering the main lesion of amyloid deposit was apparently benign. Though the causal relationship between amyloid deposition and papillary tumor is not clearly understood, some inflammatory process may have occurred in the renal pelvis, and may have induced antigenic stimuli that produced amyloid deposition and reactive atypical hyperplasia of the urothelium which accelerated to cell dysplasia. In our case the amyloidosis was considered to be a primary, rather than secondary reaction to transitional cell carcinoma because the malignant lesion was small and was localized in a portion different from the amyloid deposit.

REFERENCES

2) Fujihara S and Glenner GG: Primary localized amyloidosis of the genitourinary tract: immunohistochemical study on eleven cases. Lab Invest 44: 55-60, 1981

(Received on August 30, 1991
Accepted on November 1, 1991)