<table>
<thead>
<tr>
<th>Title</th>
<th>The prognostic value of the HNK-1 (Leu-7) antigen in prostatic cancer— an immunohistochemical study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Liu, Xiu-heng; Yoshiki, Tatsuhiro; Kokuho, Masanori; Okada, Yusaku; Tomoyoshi, Tadao; Higuchi, Kayoko</td>
</tr>
<tr>
<td>Citation</td>
<td>泌尿器科紀要 (1993), 39(5): 439-444</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/117845</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
THE PROGNOSTIC VALUE OF THE HNK-1 (Leu-7)
ANTIGEN IN PROSTATIC CANCER
—AN IMMUNOHISTOCHEMICAL STUDY—

Xiu-heng Liu, Tatsuhiro Yoshiki, Masanori Kokuho,
Yusaku Okada and Tadao Tomoyoshi
From the Department of Urology, Shiga University of Medical Science
Kayoko Higuchi
From the Department of Surgical Pathology, Kyoto National Hospital

The anti-HNK-1 (Leu-7) monoclonal antibody (MAb) was revealed to be reactive with non-
cancerous and cancerous prostatic epithelial cells, although this antibody was originally found to
be reactive against natural killer cells. However, the prognostic significance of HNK-1 antigen in
prostatic cancer patients remains unknown. The expression of HNK-1 antigen on prostatic cancer
was investigated immunohistochemically using the avidin-biotin-peroxidase complex (ABC) method
with the anti-HNK-1 monoclonal antibody. Of the 52 patients with prostatic cancer, 49 patients
(94%) showed reactivity to anti-HNK-1 MAb and the immunoreaction was associated with the
histological differentiation of prostatic cancer. Well differentiated cancer showed the highest per­
centage of positively stained cancer cells and poorly differentiated cancer showed the lowest
percentage. No statistically significant differences existed between groups classified by stage,
although the more advanced cancers tended to have weaker reactions. The five-year survival rate
and interval free of progression were then studied using the Kaplan-Meier method on 33 patients
with stage D2 disease who had received endocrine therapy. The findings indicated that a high
survival rate and a longer interval free of progression were associated with a higher fraction of
positively stained cancer cells. In conclusion, the expression of HNK-1 antigen on prostatic
cancer may be a useful prognostic factor in patients with prostatic cancer.

Key words: HNK-1, Prostatic cancer, Immunohistochemistry, Prognostic factor

INTRODUCTION

HNK-1 (Leu-7) antigen was initially
found to be expressed on natural killer
(NK) cells. Subsequent studies have
shown that anti-HNK-1 monoclonal anti­
body (MAb) was also reactive with myeli­
nated nerves, pancreatic islet cells, chief
cells of the stomach, adrenal medullary
cells and other normal tissues and tumors
derived from the neuroectoderm and the
amine precursor uptake and decarboxyla­
tion systems. In 1985, anti-HNK-1 was
first reported to detect an antigen on normal,
benign and malignant prostatic tissues.
However, to date, no reports have assessed
the relationship between the anti-HNK-1
immunohistochemical reactivity and the
biological behavior of prostatic cancer.
In this report, we investigated the extent
of immunostaining in 52 cases of prostatic
adenocarcinoma using the avidin-biotin-
peroxidase complex (ABC) method and
appeal to reveal the relationships between
anti-HNK-1 MAb reactivity and histologi­
cal differentiation, survival rate and the
interval free of progression.

MATERIALS AND METHODS

Fifty-two patients with prostatic cancer
were diagnosed at the Department of Urol­
ogy, Shiga University of Medical Science,
from June 1982 to September 1991. Their
average age at diagnosis was 70.3 years
(from 53 to 87 years). Three patients were
in stage A, 2 in stage B, 14 in stage C and
33 in stage D. The average follow-up
period was 39.4 months (from 2 to 118
months).
Immunohistochemical staining of tissues was performed according to the procedure described by Hsu et al.5. Briefly, tissue sections were deparaffinized and rehydrated through a xylene and graded alcohol series. Endogenous peroxidase activity was blocked by immersion for 30 minutes in 0.1\% hydrogen peroxide (H_2O_2) and non-specific binding of antibodies was blocked by incubation for 30 minutes with Block Ace solution (Dainippon Pharmaceutical Co., Ltd., Osaka, Japan). The tissue sections were then incubated overnight with anti-HNK-1 MAb (Becton Dickinson Immunocytometry System, CA, U.S.A.) at a dilution of 1: 100 and subsequently incubated with biotinylated antimouse IgM (Vector Laboratories, Inc., CA, U.S.A.) at a dilution of 1: 200 for 60 minutes. Subsequently the sections were incubated with ABC complex at a dilution of 1: 200 for 60 minutes and then immersed in the diaminobenzidine substrate.

The extent of staining was classified into four groups, according to the fraction of positively stained cancer cells: “-” denoting that no positive cells were present; “+” denoting that the number of positively stained cancer cells was less than one-third of the number of total cancer cells; “++” denoting that between one-third and two-thirds of the cancer cells were stained positively and “+++” denoting that more than two-thirds of the cancer cells were positively stained.

Consecutive sections which were not incubated with anti-HNK-1 MAb were used as negative controls and BPH sections were used as positive controls. Sections stained with hematoxylin and eosine were reviewed to judge the histological grade of the prostatic cancer according to the grading system of the Japanese Urological Association6. All survival curves were estimated according to the Kaplan-Meier method. Non-progression was defined as complete or partial remission or no change following treatment according to the criteria described by Schmidt et al.7. The correlation between the reactivity of anti-HNK-1 MAb and the histological grade or clinical stage was evaluated by the Chi-square test.

RESULTS

Forty-nine of 52 cases (94\%) of prostatic cancer and all BPH specimens were posi-

Fig. 1. The tissue sections were stained with anti-HNK-1 antibody using ABC Method.

A: Section of BPH tissue. Heterogeneity was obvious in the glands. The fibromuscular stroma was not stained. ×200

B: Section of well differentiated prostatic cancer. More than two-thirds of the cancer cells were stained positively. ×100

C: Section of poorly differentiated prostatic cancer. Less than one-third of the cancer cells were stained positively. ×100
Liu, et al.: Prostatic cancer - HNK-I

respectively stained. Positive staining was localized in the cytoplasm of epithelial cells of benign or malignant prostatic tissue. The fibromuscular stroma was not stained. Heterogeneity was observed in BPH tissues, as well as in the nests of the cancer cells (Fig. 1).

The extent of staining was correlated with the histological grade (p<0.05, Table 1). Well differentiated cancers had the highest percentage of positively stained cells and poorly differentiated cancers had the lowest percentage.

Prostatic cancers in early stages (stages A and B) showed higher percentages of positively stained cancer cells; more advanced cancers tended to have lower fractions of positively stained cancer cells, although no statistically significant difference existed (Table 2).

The relationship between the five-year survival rate and the probability of a progression-free course was studied in 33 patients with stage D2 cancer who had received endocrine therapy. During the follow-up period, 17 died of prostatic cancer, and 4 died of cardiovascular diseases or other

Table 1. Relationship between the extent of immunostaining and grade

<table>
<thead>
<tr>
<th>Grade</th>
<th>Extent</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wel</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Mod</td>
<td>+</td>
<td>25</td>
</tr>
<tr>
<td>Por</td>
<td>*</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2. Relationship between the extent of immunostaining and stage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Extent</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>#</td>
<td>14</td>
</tr>
<tr>
<td>D</td>
<td>#</td>
<td>33</td>
</tr>
</tbody>
</table>

*NS: Not significant

Fig. 2. Survival curves of cases in stage D2 according to extent of immunostaining.

Fig. 3. Probability of non-progression of patients in stage D2 according to extent of immunostaining.
diseases. Fig. 2 shows the cancer-specific survival rates, according to the extent of staining. The group with more than two-thirds of their cancer cells positively stained showed a higher survival rate than the group with less than two-thirds of their cancer cells positively stained (p<0.05, at 25 months). As shown in Fig. 3, a longer interval without progression was observed in the cases with more than two-thirds of their cancer cells stained positively, compared to the cases with less than two-thirds of their cells stained positively (p<0.05, at 60 months).

DISCUSSION

In general, tumor markers may aid in diagnosis, detection of metastases, staging, prediction of therapeutic response and prognosis of cancers. Of the tumor markers for prostatic cancer, prostate-specific acid phosphatase (PAP) and prostate-specific antigen (PSA) have been widely studied and clinically accepted. Determinations of serum PAP and PSA were reported to be useful in predicting endocrine treatment response, lymph node involvement and progression of prostatic carcinoma. However, immunohistochemical studies on formalin-fixed sections stained for PAP have yielded conflicting results concerning the correlation between the immunoreaction and tumor differentiation or progression of the disease. Immunoperoxidase studies with PSA have indicated that PSA is more sensitive than PAP and that PSA staining is related to the histological differentiation of the tumor. Nevertheless, only about 76~81% of all patients with prostatic cancer showed elevated serum PSA levels. The sensitivity of PSA is still insufficient in detecting prostatic cancer. It is necessary to discover new markers that are more sensitive.

The HNK-1 antigen seems promising as a tumor marker since it is expressed strongly by prostatic cancer, as well as by normal and benign prostate. In this study on formalin-fixed, paraffin-embedded sections stained using the ABC method, all BPH cases and 49 of 52 (94%) patients with prostatic cancer showed anti-HNK-1 MAb reactivity and the immunoreaction was correlated with the histological differentiation of the cancer. Well differentiated cancers showed the highest percentage of positively stained cancer cells and the more poorly differentiate cancers showed the lowest percentage. Wahab and Wright reported that HNK-1 was more sensitive than PAP and PSA in identifying prostatic cancer. In a recent study which compared anti-HNK-1 MAb with anti-PAP MAb and anti-PSA MAb which were produced in our laboratory, we obtained similar results (data not shown).

At present, it is unclear whether HNK-1 can function as a parameter for predicting the prognosis of prostatic cancer. It is widely accepted that the prognosis of prostatic cancer depends on the histological grade and clinical stage. In an effort to exclude the influence of stage on survival, we analyzed 33 patients with stage D2 cancer who had received similar anti-androgen treatments. The fraction of positively stained cancer cells significantly correlated with the survival rate and interval free of progression. Longer survival times and intervals free of progression were observed in patients showing higher HNK-1 expression; patients showing decreased HNK-1 expression had a less favorable outcome.

We also observed that more advanced prostatic cancer tended to show weaker anti-HNK-1-MAb reactions. Further study is needed to determine if the HNK-1 antigen is useful in the staging of prostatic cancer.

Although the number of patients in this study was small, the results indicate that the percentage of cancer cells stained positively with anti-HNK-1 may be useful in predicting the survival rate and interval free of progression of patients with prostatic cancer.

Further investigation will be required to determine whether the HNK-1 antigen is released into the blood in sufficient amounts to be clinically useful.
REFERENCES

(Received on October 22, 1992) (Accepted on January 19, 1993)
前立腺癌における HNK-1 (Leu-7) 抗原の予後因子としての検討
—免疫組織化学的検討—

著者：ABC 法により, HNK-1 (Leu-7) 抗体が前立腺の良性腺上皮や高分化癌で染色性が高く, 低分化・末分化になるほど薄れること, また染色性と無再燃期間・予後とに有意の相関があることを明らかにした。前立腺癌について検討した最初の論文であると思う。

HNK-1 は, はじめ NK specific な表面マーカーとされていたが, 免疫組織化学的検討で, 多くの T 細胞ならびに B 細胞も陽性であることが明らかにされている。免疫組織学的検討では, 前立腺癌の予後因子としての HNK-1 の役割が示唆されている。

前立腺癌の予後因子として, 予後を影響する因子が存在する。予後因子として, HNK-1 がどのような価値を持つか, 現在臨床的に最も重要とされる Gleason ランクにおける組織学的分化度をどのように理解するか, その重要性を理解することにより, 即時的な治療戦略を考慮する必要がある。

Editorial comment

著者は ABC 法により, HNK-1 (Leu-7) 抗体が前立腺の良性腺上皮や高分化癌で染色性が高く, 低分化・末分化になるほど薄れること, また染色性と無再燃期間・予後とに有意の相関があることを明らかにした。前立腺癌について検討した最初の論文であると思う。

HNK-1 は, はじめ NK specific な表面マーカーとされていたが, 免疫組織化学的検討で, 多くの T 細胞ならびに B 細胞も陽性であることが明らかにされている。免疫組織学的検討では, 前立腺癌の予後因子としての HNK-1 の役割が示唆されている。

前立腺癌の予後因子として, 予後を影響する因子が存在する。予後因子として, HNK-1 がどのような価値を持つか, 現在臨床的に最も重要とされる Gleason ランクにおける組織学的分化度をどのように理解するか, その重要性を理解することにより, 即時的な治療戦略を考慮する必要がある。

文 献

1) 内田温士, 杉江勝治: CD56 と CD57. Medical Immunol 24: 491–495, 1992
2) Markey AC: HNK-1 antigen is not specific for natural killer cells. Invest Dermatol 92: 774–775, 1989