<table>
<thead>
<tr>
<th>Title</th>
<th>Impact of sodium-potassium citrate therapy on the circadian rhythm of urinary uric acid and urate saturation in normal individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ogawa, Yoshihide</td>
</tr>
<tr>
<td>Citation</td>
<td>泌尿器科紀要 (1993), 39(10): 883-890</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1993-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/117961</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
IMPACT OF SODIUM-POTASSIUM CITRATE THERAPY ON THE CIRCADIAN RHYTHM OF URINARY URIC ACID AND URATE SATURATION IN NORMAL INDIVIDUALS

Yoshihide Ogawa

From the Department of Urology, School of Medicine, Juntendo University

The circadian rhythm of the urinary saturation of uric acid, sodium acid urate, and ammonium acid urate was studied in 5 normal healthy male volunteers before and during 5 days of treatment with sodium-potassium citrate (1 g t.i.d., 1 g q.i.d., or 3 g t.i.d.). Urinary saturation was estimated on the relative supersaturation scale of Marshall and Robertson. Uric acid relative supersaturation varied during the day (mean±SD: -1.297±1.763) and peaked above the formation product between 5:30 and 8:00 am. The peak level was reduced (but not significantly) by each treatment regimen in comparison with the control day. Overall, critical supersaturation with uric acid was noted in 46 (13%) out of 345 urine specimens, occurring mostly (83%) between 5:30 and 8:00 am. The sodium acid urate relative supersaturation also varied during the day (mean±SD: 0.329±0.305) and peaked below the formation product between 8:00 and 10:30 am. It was increased by each regimen (significantly by the 3 g t.i.d. regimen), but mostly remained in or below the metastable zone. The ammonium acid urate relative supersaturation also varied (mean±SD: 0.087±0.301) and peaked below the formation product between 5:30 and 8:00 am. The level was decreased by each regimen and remained in or below the metastable zone throughout the day.

In conclusion, the early morning period was the time with the highest risk of urinary uric acid supersaturation, but this supersaturation could be reduced (although not significantly) by treatment with alkali citrate. By contrast, the mean sodium acid urate and ammonium acid urate saturation levels were higher than the mean uric acid saturation, but remained mostly in or below the metastable zone with or without alkali-citrate therapy.

Key words: Circadian rhythm, Uric acid, Sodium acid urate, Ammonium acid urate, Citrate therapy

INTRODUCTION

Uric acid and urate stones constitute only a small proportion (about 5%) of all urinary calculi. Uric acid has been reported to be the chief constituent of "urate" stones, which contain uric acid (2.3% of all clinical urinary stones), uric acid dihydrate (1.3%), ammonium acid urate (2.6%), and sodium acid urate (0.4%) 5. Hyperuricosuria and increased urinary acidity are implicated in the genesis of uric acid and urate stones 6. The highest urinary uric acid concentration has been reported to occur between 5:00 and 8:00 am in healthy individuals 7, while the urinary pH remains low throughout the night and early morning and usually shows twin peaks in the morning and evening 8. To interpret the various critical factors when predicting the risk of urinary crystallization, Marshall and Robertson developed nomograms for estimation of the uric acid, ammonium urate, and sodium urate saturation levels (relative supersaturation and ion-activity products) to provide a more accurate assessment of the crystallization risk 9.

The aim of this study was to investigate the effects of 3 different regimens of sodium-potassium citrate in normal individuals by using fractional urine collection, and to attempt to determine the appropriate regimen for achieving acceptable diurnal variation of the urinary saturation of uric acid, ammonium urate, and sodium urate.
SUBJECTS AND METHODS

Five healthy male volunteers between 21 and 27 years old and weighing 60.8±4.6 kg (mean±SD) participated in the study. All subjects were found to be normal on the basis of physical examination and routine laboratory tests. None of them had any bowel or renal disease, and none of them were taking any medications around the time of the study. Informed consent was obtained from all subjects.

The study had 3 treatment phases, consisting of administration of sodium-potassium citrate at 1 g t.i.d., 1 g q.i.d., and 3 g t.i.d. Each phase included one control day without citrate and 5 test days with citrate. Four glasses (approximately 300 ml) of water were taken on the control day (Day 0) without citrate, while on the test days (Days 1–5) the same volume of water was taken with a dose of sodium-potassium citrate (each 1-g dose contained 448 mg (1.5 mEq) of potassium citrate, 406 mg (1.5 mEq) of sodium citrate, and 145 mg (0.75 mEq) of citric acid). Doses were taken at 8:00 am, 1:00 pm, and 6:00 pm. An additional glass of water was taken without citrate at 8:30 pm in the t.i.d. study, while water with citrate was taken at 8:30 pm in the q.i.d. study. There was a washout period of at least 2 weeks between each phase of the study. The subjects ate ordinary meals at 7:00 am, noon, and 5:00 pm and a snack at 9:30 pm. Urine was collected every 2.5 hours from 5:30 am (when the subjects awoke) to 11:00 pm (when they went to sleep). The first morning urine obtained at 5:30 am was not included in the evaluation because of difficulty in determining pH during the sleeping period. The pH was measured with a glass electrode, and urine volume was also measured immediately after voiding. The urinary concentrations of uric acid (UA) (mmol/l) and sodium (Na) (mmol/l) were analyzed using a Hitachi 705 autoanalyzer, while the urinary ammonium concentration (NH₃) (mmol/l) was measured using the Indophenol reaction method.

The urinary saturation values were calculated using nomograms for estimating the urinary relative supersaturation (RS) of uric acid, sodium acid urate, and ammonium acid urate according to the method of Marshall and Robertson as follows.

Uric acid relative supersaturation (UA RS):

\[
UA\ RS = 1.0999 \times \ln(UA) - 12.7025 \times \ln(pH) + 21.1057
\]

Sodium acid urate relative supersaturation (Na Acid Urate RS)

\[
Na\ Acid\ Urate\ RS = 0.211 \pm 0.324
\]

Ammonium acid urate relative supersaturation (NH₃ Acid Urate RS)

\[
NH₃\ Acid\ Urate\ RS = 0.385 \pm 0.259
\]

Table 1. The means of urinary pH, urinary uric acid relative supersaturation (UA RS), sodium acid urate relative supersaturation (Na Acid Urate RS) and ammonium acid urate relative supersaturation (NH₃ Acid Urate RS) for each day on each regimen

<table>
<thead>
<tr>
<th>Urinary pH</th>
<th>UA RS</th>
<th>Na Acid Urate RS</th>
<th>NH₃ Acid Urate RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cit 1g t.i.d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 0</td>
<td>6.097±0.666</td>
<td>-1.229±1.743</td>
<td>0.211±0.324</td>
</tr>
<tr>
<td>Day 1</td>
<td>6.010±0.700</td>
<td>-0.770±1.859</td>
<td>0.284±0.282</td>
</tr>
<tr>
<td>Day 5</td>
<td>6.353±0.752</td>
<td>-1.534±1.895</td>
<td>0.365±0.259</td>
</tr>
<tr>
<td>Cit 1g q.i.d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 0</td>
<td>5.988±0.592</td>
<td>-0.834±1.650</td>
<td>0.227±0.339</td>
</tr>
<tr>
<td>Day 1</td>
<td>6.242±0.596</td>
<td>-1.345±1.648</td>
<td>0.362±0.279</td>
</tr>
<tr>
<td>Day 5</td>
<td>6.215±0.624</td>
<td>-1.225±1.564</td>
<td>0.358±0.288</td>
</tr>
<tr>
<td>Cit 3g t.i.d.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 0</td>
<td>6.009±0.456</td>
<td>-1.096±1.422</td>
<td>0.181±0.304</td>
</tr>
<tr>
<td>Day 1</td>
<td>6.509±0.770</td>
<td>-1.771±1.928</td>
<td>0.471±0.307</td>
</tr>
<tr>
<td>Day 5</td>
<td>6.444±0.701</td>
<td>-1.778±1.911</td>
<td>0.433±0.258</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 0</td>
<td>6.032±0.574</td>
<td>-1.053±1.604</td>
<td>0.206±0.320</td>
</tr>
<tr>
<td>Day 1</td>
<td>6.253±0.717</td>
<td>-1.295±1.847</td>
<td>0.373±0.297</td>
</tr>
<tr>
<td>Day 5</td>
<td>6.337±0.695</td>
<td>-1.512±1.796</td>
<td>0.392±0.288</td>
</tr>
<tr>
<td>Total</td>
<td>6.215±0.679</td>
<td>-1.297±1.763</td>
<td>0.329±0.305</td>
</tr>
</tbody>
</table>

*p<0.5, **p<0.01
Fig. 1. Diurnal variation of the urinary uric acid saturation (mean±SE) in normal individuals on three sodium-potassium citrate regimens. The values "0" and "1" indicate the solubility and formation products, respectively. The right column (5:30~8:00) represents the following day shown for reference.
tion (NaHU RS):

$$\text{NaHU RS} = 0.3005 \times \ln([\text{Na}] \times [\text{UA}]) + 1.8852 \times \ln(pH) - 4.7201$$

Ammonium acid urate relative supersaturation (NH₄U RS):

$$\text{NH₄U RS} = 0.2408 \times \ln([\text{NH}_3] \times [\text{UA}]) + 0.7754 \times \ln(pH) - 2.1751$$

These values were presented on a relative scale in which zero indicated the solubility product and a value of 1 represented the formation product.

The Bonferroni method was used for statistical comparisons between the control day (Day 0) and the test days (Days 1–5)⁶.

RESULTS

The urinary pH was 6.215±0.679 (mean ± SD) (Table 1), ranging from 4.62 to 7.56, with peaks at 8:00–10:30 am and 1:00–3:30 pm. In particular, it was 5.355±0.316 between 5:30 and 8:00 am.

The urinary uric acid concentration was 2.284±1.275 mmol/l, the urinary sodium concentration was 122.049±49.836 mmol/l, and the urinary ammonium concentration was 27.965±32.353 mmol/l⁶.

The uric acid relative supersaturation (RS) was -1.297±1.763 (Table I), ranging from -4.3364 to 3.1145, and the uric acid saturation (as estimated by the relative supersaturation) exceeded the solubility product in 97.5% (73/75) of the urine samples obtained between 5:30 and 8:00 am and in 8.9% (24/270) of urine obtained at other times. The mean saturation peaked between 5:30 and 8:00 am and exceeded the formation product on Days 0–1, but it decreased following the administration of citrate. Citrate therapy reduced the supersaturation significantly a few times varying within undersaturation but not significantly in the early morning (Fig. 1). In addition, the uric acid relative supersaturation exceeded the formation product in 46 out of 345 (13.3%) urine specimens. Critical supersaturation (UA RS>1) occurred between 5:30 and 8:00 am in 17 of the 22 (77.3%) critically supersaturated urine specimens from the group given citrate at 1 g t.i.d., as well as in 11 of 14 (78.6%) critically supersaturated urine specimens from the group given citrate at 1 g q.i.d., and in all 10 (100%) critically supersaturated urine specimens from the group given 3 g t.i.d. No critically supersaturated urine specimens were obtained between 3:30 pm and 11:00 pm. However, none of the citrate regimens tested was effective in significantly reducing the supersaturation of uric acid.

The sodium acid urate relative supersaturation (Table 2).

Table 2. Diurnal variation of urinary sodium acid urate saturation (mean±SE) in response to the three citrate regimens

<table>
<thead>
<tr>
<th></th>
<th>5:30–8:00</th>
<th>8:00–10:30</th>
<th>10:00–12:00</th>
<th>12:00–14:00</th>
<th>14:00–16:00</th>
<th>16:00–18:00</th>
<th>18:00–20:00</th>
<th>20:00–23:00</th>
<th>23:00–5:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrone 1 gm t.i.d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 0</td>
<td>0.38±0.07</td>
<td>0.50±0.06</td>
<td>0.31±0.12</td>
<td>0.29±0.13</td>
<td>0.15±0.12</td>
<td>-0.07±0.06</td>
<td>-0.18±0.08</td>
<td>-0.14±0.06</td>
<td></td>
</tr>
<tr>
<td>Day 1</td>
<td>0.14±0.06</td>
<td>0.56±0.13</td>
<td>0.44±0.11</td>
<td>0.23±0.12</td>
<td>0.26±0.14</td>
<td>0.32±0.15</td>
<td>0.13±0.15</td>
<td>0.19±0.07</td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>0.40±0.03</td>
<td>0.81±0.08</td>
<td>0.39±0.08</td>
<td>0.42±0.15</td>
<td>0.25±0.09</td>
<td>0.41±0.06</td>
<td>0.08±0.07</td>
<td>0.32±0.05</td>
<td></td>
</tr>
<tr>
<td>Citrone 1 gm q.i.d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 0</td>
<td>0.36±0.06</td>
<td>0.58±0.11</td>
<td>0.27±0.13</td>
<td>0.39±0.11</td>
<td>0.23±0.13</td>
<td>-0.12±0.10</td>
<td>-0.12±0.14</td>
<td>-0.02±0.08</td>
<td>0.31±0.05</td>
</tr>
<tr>
<td>Day 1</td>
<td>0.31±0.05</td>
<td>0.74±0.08</td>
<td>0.46±0.11</td>
<td>0.11±0.14</td>
<td>0.46±0.09</td>
<td>0.37±0.14</td>
<td>0.16±0.10</td>
<td>0.39±0.07</td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>0.38±0.05</td>
<td>0.82±0.07</td>
<td>0.46±0.06</td>
<td>0.54±0.05</td>
<td>0.22±0.09</td>
<td>0.14±0.10</td>
<td>0.02±0.10</td>
<td>0.32±0.04</td>
<td></td>
</tr>
<tr>
<td>Citrone 3 gm t.i.d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 0</td>
<td>0.42±0.05</td>
<td>0.65±0.16</td>
<td>0.13±0.12</td>
<td>0.14±0.13</td>
<td>0.35±0.08</td>
<td>-0.03±0.06</td>
<td>-0.18±0.02</td>
<td>0.25±0.08</td>
<td></td>
</tr>
<tr>
<td>Day 1</td>
<td>0.25±0.08</td>
<td>0.76±0.09</td>
<td>0.62±0.08</td>
<td>0.65±0.11</td>
<td>0.61±0.14</td>
<td>0.59±0.03</td>
<td>0.04±0.13</td>
<td>0.25±0.02</td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>0.32±0.07</td>
<td>0.70±0.09</td>
<td>0.54±0.04</td>
<td>0.68±0.07</td>
<td>0.32±0.04</td>
<td>0.56±0.10</td>
<td>0.13±0.09</td>
<td>0.24±0.12</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Diurnal variation of urinary ammonium acid urate saturation (mean±SE) in response to the three citrate regimens

<table>
<thead>
<tr>
<th>Citrate 1 g q.i.d.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0</td>
<td>0.45±0.06</td>
<td>0.29±0.05</td>
<td>0.05±0.07</td>
<td>0.02±0.11</td>
<td>0.01±0.05</td>
<td>0.14±0.04</td>
<td>0.20±0.06</td>
<td>0.42±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 1</td>
<td>0.42±0.07</td>
<td>0.29±0.07</td>
<td>0.25±0.06</td>
<td>0.05±0.09</td>
<td>0.05±0.09</td>
<td>0.03±10</td>
<td>0.07±0.09</td>
<td>0.35±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>0.27±0.05</td>
<td>0.14±0.06</td>
<td>0.07±0.06</td>
<td>0.03±0.08</td>
<td>0.10±0.06</td>
<td>0.04±0.08</td>
<td>0.21±0.07</td>
<td>0.33±0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Citrate 1 g t.i.d.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0</td>
<td>0.50±0.10</td>
<td>0.24±0.08</td>
<td>0.01±0.06</td>
<td>0.12±14</td>
<td>0.18±0.9</td>
<td>0.27±10</td>
<td>0.33±0.09</td>
<td>0.41±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 1</td>
<td>0.41±0.07</td>
<td>0.22±0.11</td>
<td>0.11±0.07</td>
<td>0.16±0.9</td>
<td>0.09±0.08</td>
<td>0.02±10</td>
<td>0.12±0.06</td>
<td>0.36±0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>0.42±0.06</td>
<td>0.13±0.09</td>
<td>0.03±0.03</td>
<td>0.01±12</td>
<td>0.05±10</td>
<td>0.14±10</td>
<td>0.24±0.04</td>
<td>0.45±0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Citrate 3 g t.i.d.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0</td>
<td>0.67±0.11</td>
<td>0.32±0.10</td>
<td>0.04±0.10</td>
<td>0.01±12</td>
<td>0.11±0.7</td>
<td>0.17±0.7</td>
<td>0.17±0.04</td>
<td>0.64±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 1</td>
<td>0.64±0.07</td>
<td>0.48±0.05</td>
<td>0.29±0.04</td>
<td>0.23±0.09</td>
<td>0.11±12</td>
<td>0.08±0.06</td>
<td>0.27±0.09</td>
<td>0.52±0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 5</td>
<td>0.36±0.06</td>
<td>0.02±0.12</td>
<td>0.00±0.11</td>
<td>0.17±0.09</td>
<td>0.31±0.06</td>
<td>0.09±12</td>
<td>0.45±0.11</td>
<td>0.42±0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A significant correlation between the pH and the uric acid relative supersaturation was shown by regression analysis (UA RS = -2.429 x (pH) + 13.798, r = -0.9348, p < 0.01, N = 345). The relationship between pH and the sodium acid urate relative supersaturation was also significant (NaHU RS = 0.195 x (pH) - 0.886, r = 0.4346, p < 0.01, N = 345). Furthermore, the relationship between pH and the ammonium acid urate relative supersaturation was significant (NH₄U RS = -0.160 x (pH) + 1.079, r = -0.3605, p < 0.01, N = 345).

DISCUSSION

A protein-rich diet increases the serum and urinary concentrations of uric acid; approximately 650 mg of uric acid is excreted in the urine following a protein intake of 100 g, and 200 mg more uric acid will be excreted for each additional 30 g of protein¹. The serum uric acid level peaks at noon and reaches a minimum early in the morning (8:00 am)¹⁰. Excretion of uric acid peaks after meals and is also at its minimum very early in the morning (midnight to 6:00 am)¹⁰. However, the urinary uric acid concentration reaches its highest level at this time because of the relatively low urine volume¹¹. The urine pH is low (5.0~5.5) in the early morning, but this is followed by
the morning alkaline tide and two other
postprandial tides\(^{10}\). Thus, early morning
urine is often (97.5% in this study) supere
saturated with uric acid because the urinary
uric acid concentration is maximal and
the urinary pH is at its lowest. Tiselius
et al. have confirmed these facts and also
reported that the urinary saturation with
sodium urate remains low throughout the
day\(^{12}\).

The diurnal variation of urinary uric
acid saturation has been found to be unex
pectedly large in normal individuals,
while the sodium urate and ammonium
urate saturation levels varied in a narrow
range but were higher on the average than
the uric acid saturation level. Therefore,
prevention and treatment for uric acid
stones should be directed towards elimina
tion of the urinary uric acid saturation
peaks with a minimal increase in the
sodium urate and ammonium urate levels.
The present study demonstrated that an
additional evening dose of citrate on top
of the conventional t.i.d. regimen does not
sufficiently reduce the early morning uric
acid saturation.

Recently, Rodman challenged clinically
the conventional t.i.d. regimen of alkali
zing salts because of poor drug compliance;
instead, he proposed that alternate-day
doses of alkaline potassium salts could be
given every other day for the prophylaxis
of the uric acid stones which produce the
recurrent gravel/colic syndrome; this
would enhance the postprandial alkaline
tide which provides the normal defense
against such calculi\(^{13}\). The postprandial
alkaline tide is absent in patients with such
calculi, so an intermittent increase in
urinary pH (simulating the normal postpran
dial alkaline tide) is suggested to
protect against uric acid stone formation.
Rodman’s regimen is based on pH moni
toring and aims to maintain the urinary
pH close to 7.0 for as much of the day as
possible. For this purpose, however, doses
of alkaline salts between meals and before
sleeping appear to be more effective and
rational.

Sodium-potassium citrate or slightly acidic
complex salts \(1 \text{g} = 3.75 \text{mEq}\) t.i.d.
also increase the 24-hour urinary Na excre
tion by approximately 170 mg\(^{10}\). However,
the risk of forming sodium urate crystals
seems to be rather low and is certainly
less than the risk of forming uric acid
crystals\(^{12}\). In this study, however, the
sodium urate saturation was mostly (86.4
\%) in the metastable zone suggesting the
potential risk of heterogenous nucleation
and increased by citrate therapy. Although
the increase was not significantly different
from the control level, the maximum satu
ration reached 1.035 in an individual urine,
exceeding the formation product. This
occurs not so often but may be clinically
significant, because a large dose of sodium-
potassium citrate may result in urinary
supersaturation with monosodium urate.
A phase transformation from uric acid to
monosodium urate has also been implica
ted in urinary monosodium urate crystal
formation\(^{12,14}\). Pak et al.\(^{15}\) reported that
the urine was supersaturated with mono
sodium urate and monoammonium urate in
16 randomly selected patients with hyperu
ricosuric calcium oxalate nephrolithiasis.

There seems to be an etiological link
between the urinary uric acid level and a
propensity to develop calcium oxalate
stones, although this is largely based on
empirical observations. Heterogenous
nucleation of calcium oxalate on sodium
urate crystals and inhibition of the growth
and aggregation of calcium oxalate
crystals by the binding of colloidal urate
to urinary glycosaminoglycans have been
implicated in the link between uric acid
levels and calcium oxalate stones\(^{16}\).
However, it has also been suggested that
this link occurs because the peak of urinary
uric acid supersaturation coincides with
the peak of calcium oxalate supersatura
tion\(^{12}\).

In conclusion, the conventional alkali
citrate regimens do not appear very
promising for reducing the risk of uric acid
crystallization. However, this study
conducted in normal individuals suggests
that the early morning is the critical period
for uric acid crystallization and should be
targeted in any attempt to reduce the
urinary uric acid saturation with a special
consideration paid to the sodium urate saturation. Further clinical trials are necessary to answer the question of whether or not larger doses of citrate after dinner and before sleep can safely reduce the risk of early morning uric acid crystallization in patients with urate stones.

REFERENCES

7) Okuda H and Fuji S: Direct colorimetric determination of the blood ammonium level. Saishin-Igaku 21: 622-629, 1966

(Received on April 14, 1993) (Accepted on July 14, 1993)
和文抄録

尿酸と尿酸塩の尿中飽和度の日内変動におけるクエン酸塩の影響

順天堂大学医学部泌尿器科学教室（主任：藤目真教授）

小川由英

健康男性5名を対象に、クエン酸塩（3 g 分 3, 4 g 分 4, あるいは 9 g 分 3）を投与し、尿酸と尿酸塩の尿中飽和度の日内変動を検討した。Marshall and Robertson の相対飽和度により測定した。尿酸の相対飽和度は日内で変動し（平均±SD: -1.297±1.763）、5 時30分〜8時で最高値となり、結晶生成度を越えた。対照日に比較して、それぞれのクエン酸投与により最高値は有意ではなかったが低下傾向を示した。全体として、尿 345サンプルの分析結果で、尿酸の不安定飽和状態は13%（46サンプル）に見られ、その83％は午前5時30分〜8時に見られた。酸性尿酸ナトリウムの相対飽和度は日内で変動し（平均±SD: 0.329±0.305）、午前8時〜10時30分で最高値となり、クエン酸投与により、その飽和度は上昇したが、準安定飽和状態以下であった。酸性尿酸アンモニウムの相対飽和度も日内で変動し（平均±SD: 0.087±0.301）、午前5時30分〜8時に最高値となり、クエン酸投与により飽和度は低下し、一日中準安定飽和状態以下であった。

以上より、尿酸が尿酸に関しては、結晶化の危険性が明らかに高いが、クエン酸投与により有意ではないが低下させることができた。酸性尿酸ナトリウムと酸性尿酸アンモニウムの飽和度は平均では尿酸の飽和度より高かったが、一日中ほとんど準安定飽和度以下での変動であった。

（泌尿紀要 39: 883-890, 1993）