<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>腎実質内における酵素NAGおよびγ-GTPの局在からみたCDDP腎障害</td>
</tr>
<tr>
<td>著者</td>
<td>高橋 卓、吉田 謙一郎、中目 康彦、斉藤 博</td>
</tr>
<tr>
<td>引用文献</td>
<td>泌尿器科紀要 (1987), 33(10): 1569-1574</td>
</tr>
<tr>
<td>発行日</td>
<td>1987-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/119312</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>

提供元: Kyoto University
RELATION OF ENZYME DISTRIBUTION IN THE KIDNEY
AND INCREASE PATTERN OF URINARY N-ACETYLY-β-D-
GLUCOSAMINIDASE (NAG) AND γ-Glutamyl
TRANSPEPTIDASE (γ-GTP) ACTIVITIES FOLLOWING
CDDP ADMINISTRATION

Taku TAKAHASHI, Kenichiro YOSHIDA,
Yasuhiko NAKAME and Hiroshi SAITOH

From the Department of Urology, Saitama Medical Center of Saitama Medical School
(Director: Prof. H. Saitoh)

Nephrotoxicity is the major side effect of CDDP and it develops renal tubular damage. In the present paper, we have studied acute effects of cis-dichlorodiamine platinum (CDDP, 20 mg daily for 5 days) on the renal tubule using urinary NAG and γ-glutamyl transpeptidase (γ-GTP) activities as indicators of the toxicity. Altogether 25 courses of chemotherapy in 15 patients who had malignant tumors were studied. Urinary enzyme activities consisting of N-acetyl-β-D-glucosaminidase (NAG, lysosomal enzyme) and γ-GTP (brush border enzyme) were measured for 11 days from the day before CDDP administration.

In all cases, both urinary enzyme activities increased with CDDP administration. The increase of NAG activity was transient; the highest level was detected on the 5th day of chemotherapy and decreased after that. On the other hand, two peaks of γ-GTP activity were observed in many cases, the first peak during chemotherapy and the second peak soon after the completion of CDDP administration.

The differences in increase pattern of these two urinary enzyme activities, suggest that changes of brush border occur in an early stage and cellular tissue including lysosome of renal tubule is impaired afterwards.

Key words: CDDP, Nephrotoxicity, NAG, γ-GTP
いはと増加の程度は大きく、さらに二相性の活性上昇
パターンを示すこともすでに報告した3) と
今回、CDDP 投与患者について尿中のこれら2 種
類の酵素の、CDDP 投与前、投与中および投与後の
活性を測定し、同一患者におけるその急性変動様式の
相違から尿細管障害の発生機序について検討した。

対象と方法

対象症例は CDDP を含む化学療法を施行した悪
性腫瘍患者15症例で、このうち10症例では2 クール
施行した。したがって計25クールについて分析した。対
象症例を Table 1 に示す。性別は男10例、女5例、
年齢は33歳から86歳までで平均65.5歳であった。悪性
腫瘍の原発部位別では膀胱5例、前立腺4例、その他
腎盂・膀胱、尿管・膀胱、尿管、尿道および直腸が各
1 例ずつみられた。組織型は移行上皮癌9例、腺癌6
例であった。手術は全例に施行されている。15例中11
例は転移を有する進行例で、この治療として CDDP
を投与したが、他の4例は転移の認められない症例
で、術後の adjuvant therapy の一つとして CDDP
を用いた。

CDDP 投与法を Table 2 に示す。CDDP 20 mg/
dery を Tegafur (TF) 800 mg/day とともに5日間
連続投与した。これに Adiramycin (ADM) 40 mg
を化学療法第1日に併用した5)。CDDP 投与中は充分
な補液を行ない尿量を 2,000 ml/day 以上得るよう
にした。15症例中10症例において、第 1 クール終了後
2 ないし3週の休療期間をおいて、第 2 クールを同様
の方法で行なった。

薬尿は24時間で区切り、CDDP 投与前日より投与
中の5日間および投与終了後の5日間、計11日間、連
日行なった。1日薬尿をよく混和後、尿量を測定し、
その一部を NAG およびγ-GTP の酵素量として活
性を測定した。測定法はすでに報告したように1)、
NAG については NAG キットを使用し、γ-GTP は
L-glutamyl-p-nitroanilide 基質法で測定した。なお
活性の表出は、単位容積比で表わした活性値に薬尿量
を乗じ、1日あたりの総活性として表わした1)。なお
この測定法による尿中 NAG およびγ-GTP 活性の
正常値は先に報告したことく1)、それぞれ 2.6±1.8
(M±SD)U/day、22±9(M±SD)U/day である。

Table 1. Patients characteristics.

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex</th>
<th>Age</th>
<th>Disease</th>
<th>Operation done</th>
<th>Metastatic sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>52</td>
<td>PT, BT</td>
<td>L-nephroureterectomy</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>68</td>
<td>BT</td>
<td>Partial cystectomy</td>
<td>Lung</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>52</td>
<td>RC</td>
<td>L-ureterocutaneousomstomy</td>
<td>RPL</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>74</td>
<td>UT, BT</td>
<td>Tumor resection</td>
<td>RPL</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>33</td>
<td>BT</td>
<td>Ligation of L-ureter</td>
<td>RPL</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>77</td>
<td>BT</td>
<td>Total cystectomy</td>
<td>Ileal conduit</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>66</td>
<td>UT</td>
<td>L-nephroureterectomy</td>
<td>RPL</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>70</td>
<td>BT</td>
<td>Total cystectomy</td>
<td>Ileal conduit</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>64</td>
<td>PC</td>
<td>TUR</td>
<td>Bone</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>57</td>
<td>BT</td>
<td>Castration</td>
<td>Bone</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>86</td>
<td>Ur.T</td>
<td>Tumor resection</td>
<td>In.L</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>74</td>
<td>BT</td>
<td>TUR</td>
<td>Bone, SCL</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>75</td>
<td>PC</td>
<td>Castration</td>
<td>Bone, RPL</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>68</td>
<td>PC</td>
<td>Castration</td>
<td>Bone</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>66</td>
<td>PC</td>
<td>Castration</td>
<td>Bone</td>
</tr>
</tbody>
</table>

PT: renal pelvic tumor UT: ureteral tumor
BT: bladder tumor PC: prostatic carcinoma
Ur.T: urethral tumor RC: rectal cancer
RPL: retroperitoneal lymph node
In.L:inguinal lymph node
SCL: supraclavicular lymph node
Table 2. Treatment schedule of chemotherapy.

<table>
<thead>
<tr>
<th>Day</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDDP 20mg/day</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF 800mg/day</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADM 40mg/day</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Ccr</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Creatinine clearance and urinary NAG activity.

<table>
<thead>
<tr>
<th>Case</th>
<th>Ccr</th>
<th>Day0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>2.2</td>
<td>7.8</td>
<td>8.8</td>
<td>9.8</td>
<td>15.0</td>
<td>15.0</td>
<td>14.2</td>
<td>13.3</td>
<td>14.1</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>1°</td>
<td>90</td>
<td>3.0</td>
<td>10.0</td>
<td>10.2</td>
<td>14.6</td>
<td>12.5</td>
<td>7.7</td>
<td>8.2</td>
<td>4.9</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>1.5</td>
<td>3.9</td>
<td>5.1</td>
<td>8.0</td>
<td>10.2</td>
<td>15.3</td>
<td>7.8</td>
<td>3.9</td>
<td>2.5</td>
<td>2.0</td>
<td>1.4</td>
</tr>
<tr>
<td>2°</td>
<td>82</td>
<td>5.9</td>
<td>3.3</td>
<td>3.1</td>
<td>4.0</td>
<td>10.2</td>
<td>6.1</td>
<td>4.6</td>
<td>1.0</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>2.1</td>
<td>6.3</td>
<td>6.1</td>
<td>9.4</td>
<td>9.5</td>
<td>13.4</td>
<td>15.0</td>
<td>11.6</td>
<td>7.6</td>
<td>2.5</td>
<td>6.6</td>
</tr>
<tr>
<td>3°</td>
<td>25</td>
<td>7.2</td>
<td>12.5</td>
<td>11.2</td>
<td>18.1</td>
<td>27.3</td>
<td>14.5</td>
<td>37.0</td>
<td>36.3</td>
<td>24.0</td>
<td>5.0</td>
<td>1.4</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>6.8</td>
<td>7.7</td>
<td>10.6</td>
<td>8.7</td>
<td>12.6</td>
<td>10.4</td>
<td>14.9</td>
<td>20.0</td>
<td>13.2</td>
<td>13.1</td>
<td>9.4</td>
</tr>
<tr>
<td>4°</td>
<td>60</td>
<td>7.4</td>
<td>9.2</td>
<td>8.9</td>
<td>12.3</td>
<td>16.8</td>
<td>14.3</td>
<td>14.2</td>
<td>13.2</td>
<td>7.9</td>
<td>2.7</td>
<td>7.9</td>
</tr>
<tr>
<td>5</td>
<td>108</td>
<td>6.4</td>
<td>10.3</td>
<td>8.9</td>
<td>9.2</td>
<td>10.5</td>
<td>19.6</td>
<td>11.8</td>
<td>10.8</td>
<td>6.5</td>
<td>6.0</td>
<td>6.5</td>
</tr>
<tr>
<td>5°</td>
<td>105</td>
<td>8.8</td>
<td>9.0</td>
<td>8.0</td>
<td>10.4</td>
<td>12.6</td>
<td>14.1</td>
<td>9.6</td>
<td>11.0</td>
<td>7.4</td>
<td>8.1</td>
<td>5.8</td>
</tr>
<tr>
<td>6</td>
<td>37</td>
<td>6.0</td>
<td>12.6</td>
<td>15.5</td>
<td>16.0</td>
<td>26.2</td>
<td>26.2</td>
<td>20.1</td>
<td>8.8</td>
<td>8.7</td>
<td>5.6</td>
<td>4.2</td>
</tr>
<tr>
<td>6°</td>
<td>227</td>
<td>2.2</td>
<td>7.5</td>
<td>9.5</td>
<td>9.9</td>
<td>19.7</td>
<td>23.5</td>
<td>19.0</td>
<td>6.7</td>
<td>3.3</td>
<td>6.5</td>
<td>2.5</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>7.0</td>
<td>8.9</td>
<td>14.9</td>
<td>15.5</td>
<td>15.6</td>
<td>15.0</td>
<td>15.1</td>
<td>15.2</td>
<td>13.9</td>
<td>9.6</td>
<td>10.0</td>
</tr>
<tr>
<td>7°</td>
<td>123</td>
<td>3.1</td>
<td>3.3</td>
<td>2.5</td>
<td>3.3</td>
<td>10.6</td>
<td>12.0</td>
<td>15.0</td>
<td>2.1</td>
<td>4.8</td>
<td>6.1</td>
<td>4.1</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>1.7</td>
<td>6.2</td>
<td>6.5</td>
<td>10.4</td>
<td>14.3</td>
<td>19.2</td>
<td>7.0</td>
<td>4.0</td>
<td>3.2</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>8°</td>
<td>30</td>
<td>3.4</td>
<td>4.2</td>
<td>3.9</td>
<td>8.4</td>
<td>8.4</td>
<td>8.4</td>
<td>7.7</td>
<td>3.6</td>
<td>3.1</td>
<td>2.9</td>
<td>4.0</td>
</tr>
<tr>
<td>9</td>
<td>112</td>
<td>0.9</td>
<td>6.7</td>
<td>4.8</td>
<td>9.1</td>
<td>10.1</td>
<td>9.2</td>
<td>6.1</td>
<td>14.3</td>
<td>2.9</td>
<td>0.7</td>
<td>1.8</td>
</tr>
<tr>
<td>9°</td>
<td>60</td>
<td>0.4</td>
<td>1.6</td>
<td>1.5</td>
<td>3.3</td>
<td>1.7</td>
<td>0.6</td>
<td>1.3</td>
<td>4.0</td>
<td>2.6</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>10</td>
<td>97</td>
<td>4.0</td>
<td>5.1</td>
<td>8.7</td>
<td>12.7</td>
<td>23.9</td>
<td>20.9</td>
<td>9.7</td>
<td>2.1</td>
<td>4.0</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td>10°</td>
<td>101</td>
<td>7.2</td>
<td>13.5</td>
<td>21.0</td>
<td>27.9</td>
<td>20.4</td>
<td>31.7</td>
<td>35.6</td>
<td>23.0</td>
<td>15.1</td>
<td>12.5</td>
<td>8.0</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>2.9</td>
<td>7.2</td>
<td>7.8</td>
<td>9.1</td>
<td>7.1</td>
<td>13.6</td>
<td>17.0</td>
<td>11.2</td>
<td>5.4</td>
<td>6.2</td>
<td>6.9</td>
</tr>
<tr>
<td>12</td>
<td>42</td>
<td>5.3</td>
<td>4.7</td>
<td>6.8</td>
<td>8.9</td>
<td>13.8</td>
<td>22.1</td>
<td>17.5</td>
<td>12.2</td>
<td>6.8</td>
<td>7.6</td>
<td>8.3</td>
</tr>
<tr>
<td>13</td>
<td>36</td>
<td>1.7</td>
<td>5.0</td>
<td>7.9</td>
<td>4.6</td>
<td>18.8</td>
<td>12.0</td>
<td>25.7</td>
<td>14.0</td>
<td>4.0</td>
<td>0.7</td>
<td>1.8</td>
</tr>
<tr>
<td>14</td>
<td>109</td>
<td>5.5</td>
<td>10.4</td>
<td>11.2</td>
<td>20.2</td>
<td>16.9</td>
<td>20.6</td>
<td>12.1</td>
<td>12.1</td>
<td>8.4</td>
<td>6.6</td>
<td>7.0</td>
</tr>
<tr>
<td>15</td>
<td>141</td>
<td>8.7</td>
<td>6.6</td>
<td>12.9</td>
<td>11.2</td>
<td>6.5</td>
<td>13.5</td>
<td>12.7</td>
<td>12.6</td>
<td>11.3</td>
<td>9.5</td>
<td>2.7</td>
</tr>
</tbody>
</table>

* Ccr(creatinine clearance) is expressed as ml/min.

結 果

全25クールのCDDP 投与前のクレアチニン・クリアランス（Ccr）と尿中NAGおよびγ-GTP活性の11日間の変動をTable 3, 4 に示す。表中および以下の文において、'°'を付した症例 No はその症例の第2クールである。

治療開始前のCcr は15症例中7症例に60 ml/min以下の低下がみられた。2クール施行した10症例のうち、第2クール開始前のCcr が第1クール前に比べ著しく低下したのは2症例（No3, 9）のみで、他の症例では特に大きな変化はみられず、治療開始前のCcr が37 ml/min であったNo 7 では、逆に第2クール開始前では123 ml/min となっている。

尿中NAG は多くのクールではCDDP 投与にともなって増加し、投与終了後減少していくが、No4,
Table 4. Creatinine clearance and urinary γ-GTP activity.

<table>
<thead>
<tr>
<th>Case</th>
<th>Ccr (creatinine clearance)</th>
<th>Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71</td>
<td>20</td>
<td>46</td>
<td>62</td>
<td>77</td>
<td>53</td>
<td>62</td>
<td>51</td>
<td>39</td>
<td>38</td>
<td>37</td>
<td>30</td>
</tr>
<tr>
<td>1'</td>
<td>90</td>
<td>31</td>
<td>90</td>
<td>54</td>
<td>52</td>
<td>63</td>
<td>33</td>
<td>33</td>
<td>30</td>
<td>32</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>7</td>
<td>30</td>
<td>52</td>
<td>52</td>
<td>39</td>
<td>50</td>
<td>51</td>
<td>19</td>
<td>20</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>2'</td>
<td>82</td>
<td>15</td>
<td>23</td>
<td>30</td>
<td>71</td>
<td>42</td>
<td>28</td>
<td>34</td>
<td>18</td>
<td>33</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>11</td>
<td>20</td>
<td>49</td>
<td>30</td>
<td>29</td>
<td>23</td>
<td>36</td>
<td>21</td>
<td>17</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>3'</td>
<td>25</td>
<td>25</td>
<td>38</td>
<td>52</td>
<td>53</td>
<td>40</td>
<td>32</td>
<td>70</td>
<td>48</td>
<td>12</td>
<td>35</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>17</td>
<td>15</td>
<td>34</td>
<td>31</td>
<td>32</td>
<td>30</td>
<td>16</td>
<td>56</td>
<td>21</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>4'</td>
<td>60</td>
<td>22</td>
<td>26</td>
<td>29</td>
<td>22</td>
<td>44</td>
<td>27</td>
<td>28</td>
<td>34</td>
<td>21</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>108</td>
<td>44</td>
<td>42</td>
<td>39</td>
<td>52</td>
<td>49</td>
<td>83</td>
<td>81</td>
<td>51</td>
<td>46</td>
<td>43</td>
<td>38</td>
</tr>
<tr>
<td>5'</td>
<td>105</td>
<td>39</td>
<td>58</td>
<td>51</td>
<td>50</td>
<td>64</td>
<td>49</td>
<td>62</td>
<td>36</td>
<td>44</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>37</td>
<td>18</td>
<td>33</td>
<td>78</td>
<td>98</td>
<td>55</td>
<td>58</td>
<td>57</td>
<td>28</td>
<td>33</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>6'</td>
<td>21</td>
<td>21</td>
<td>72</td>
<td>64</td>
<td>74</td>
<td>81</td>
<td>67</td>
<td>30</td>
<td>29</td>
<td>32</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>13</td>
<td>26</td>
<td>74</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>40</td>
<td>26</td>
<td>29</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>7'</td>
<td>123</td>
<td>12</td>
<td>18</td>
<td>23</td>
<td>41</td>
<td>31</td>
<td>25</td>
<td>34</td>
<td>14</td>
<td>23</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>37</td>
<td>90</td>
<td>64</td>
<td>64</td>
<td>76</td>
<td>44</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>8'</td>
<td>30</td>
<td>32</td>
<td>48</td>
<td>72</td>
<td>80</td>
<td>63</td>
<td>45</td>
<td>41</td>
<td>14</td>
<td>13</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>112</td>
<td>12</td>
<td>13</td>
<td>70</td>
<td>40</td>
<td>70</td>
<td>54</td>
<td>37</td>
<td>24</td>
<td>27</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>9'</td>
<td>60</td>
<td>25</td>
<td>12</td>
<td>25</td>
<td>37</td>
<td>39</td>
<td>27</td>
<td>57</td>
<td>72</td>
<td>39</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>97</td>
<td>33</td>
<td>72</td>
<td>72</td>
<td>70</td>
<td>56</td>
<td>36</td>
<td>66</td>
<td>44</td>
<td>44</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>10'</td>
<td>101</td>
<td>49</td>
<td>70</td>
<td>100</td>
<td>106</td>
<td>72</td>
<td>57</td>
<td>103</td>
<td>51</td>
<td>23</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>41</td>
<td>57</td>
<td>144</td>
<td>164</td>
<td>86</td>
<td>83</td>
<td>63</td>
<td>42</td>
<td>37</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>42</td>
<td>20</td>
<td>18</td>
<td>34</td>
<td>49</td>
<td>22</td>
<td>40</td>
<td>48</td>
<td>28</td>
<td>8</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>36</td>
<td>12</td>
<td>10</td>
<td>26</td>
<td>74</td>
<td>85</td>
<td>46</td>
<td>75</td>
<td>33</td>
<td>19</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>109</td>
<td>25</td>
<td>44</td>
<td>68</td>
<td>64</td>
<td>64</td>
<td>45</td>
<td>52</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>141</td>
<td>32</td>
<td>22</td>
<td>72</td>
<td>45</td>
<td>36</td>
<td>90</td>
<td>74</td>
<td>45</td>
<td>62</td>
<td>59</td>
<td>23</td>
</tr>
</tbody>
</table>

* Ccr(creatinine clearance) is expressed as ml/min.

9, 11 では CDDP 投与終了後に高い活性値を示し、また No3, 10, 13, 15 のように後述する γ-GTP の変動に似た二相性のパターンを示すものであった。

尿中 γ-GTP は大部分のクールでは CDDP 投与開始後急激に増加し、CDDP 投与中に一度やや減少するが、投与終了直後に再び増加がみられ、以後漸減するという 2つのピークをもつ変動を示した。この2つのピークの活性値はおおむね第1ピークの方が第2ピークより高かったが、No4, 3, 9 では第2ピークの方が高い活性値を示し、No5, 6, 7, 8, 11 では不明かな二相性のパターンは認められなかった。

しかしながら全25クールをまとめると尿中酵素活性は CDDP 投与により増加がみられ、投与終了後減少した。それぞれの酵素の変動様式の関係をみてみると、Fig.1 のごとく NAG は CDDP 投与終了日（Day 5）をピークとして、以降漸減している。一方 γ-GTP は CDDP 投与にともなって著明に上昇し Day 3 に

Fig. 1. Acute change of urinary NAG and γ-GTP activity following CDDP administration (n=25)

第1のピークを示す。その後いったん下降するが、CDDP 投与終了後の Day 6 を第2のピークとする二相性の変動を示した。両者とも Day 10 には治療
開始前の値に戻っている。これら2つの酵素それぞれに特有の変動パターンは治療開始前の値やCcrの違いに影響されず、同様の動きを示した。

考察

CDDPは悪性腫瘍に対する高い有効性が確認されているが、腎毒性物質である白金の化合物であり、投与に際しては腎障害が最も大きな副作用となる。

腎毒性物質は細胞に対する直接障害作用として毒性を発揮するが、一般に腎障害の発現時期は近位尿細管であり9)。尿細管上皮細胞の複数消失が起こる。CDDPによる腎障害も急性変化としては、特に近位尿細管での刷子縁の失活と形成が起こる。特に近位尿細管直線（Pars recta、S-3 segment）に最も変化が強いとされている9)。この尿細管障害の発現機序については多くの研究が行なわれているが、充分な結論は得られていない。

尿細管細胞が障害されると細胞内に存在する酵素が尿中に漏出し、近位尿細管障害を示す指標となる。NAGは近位尿細管細胞内のライスゾームに存在する糖質分解酵素のひとつであり、細胞障害が生じると尿中に大量に排泄される。またγ-GTPは近位尿細管細胞の刷子縁に豊富に存在する酵素であるが、細胞障害によりNAGと同様に尿中排泄が増加する。CDDP投与とともにこれら尿中酵素のそれぞれの急性変動についてはすでに報告した10)。

今回、この2種類の酵素のCDDP投与においても急性変動様式の相違を比較し、尿細管障害の発現機序について検討した。

両者とも、CDDP投与にともなう急性変動様式の相違を比較し、尿細管障害の発現機序について検討した。

両者とも、CDDP投与にともなって尿中排泄は増加し、CDDP投与中（第3日）にγ-GTPは第1のピークを示し、投与終了日ないし直後（Day 5, 6）にNAGのピークおよびγ-GTPの第2のピークがみられる。γ-GTPがCDDP投与早期にその尿中活性が増加することから、まずγ-GTPを多く含む刷子縁が障害され、次にライスゾームを含む細胞実質の障害が起こると考えられる。すなわち細胞内の変化は管腔側のものより深く進化するということになる。

薬物性腎障害では薬物は尿細管管腔側からの再吸収により上皮細胞に達すると考えられているが、CDDPが上皮細胞に達するもう一つの経路として間質細胞血管から尿細管床鉱を通して上皮細胞内に移行する経路も考えられ、今回の結果も考え合わせると、上皮細胞にこれら2つの経路から障害を受けるであろうことは推測される。木村らもCDDP投与による腎障害の発生機序について動物実験を行ない、おもに電顕による形態学的観察からこの2つの延長を考察している。

重金周の中で白金に近いのは本稿であり、CDDPの腎に対する作用は本稿とは似た現象を類似しているとされている9)。本稿はCDDPの初期変化として刷子縁の微細構造の消失を認める報告10)があり、一般に動物を用いての阻塞性腎実験で最初に近位尿細管の直径において刷子縁の消失をみた報告11)もある。いずれもPars recta（S-3 segment）が腎血による影響を受けやすいたと報告。したがってγ-GTPの早顕上昇、すなわち第1のピークは腎毒性障害の初期変化としての刷子縁の変化の端緒との解釈もできる。Dobyanら12)はCDDPは本稿と同様に近位尿細管の特にS-3 segmentから多く分泌され、この部位に集積し、これが上皮細胞に直接の毒性として作用し、さらにCDDPの間接的作業として腎の血行動態に変化が起こり、比較的血流の乏しいPars rectaが腎毒性変化を受ける可能性を推論している。

尿中γ-GTPは電気泳動上、2ないし4つのbandに分けられることが報告されており10)，すなわちこのことは電荷を異にするいくつかのisozymeが存在することを意味している。したがってCDDP投与によりγ-GTPには2相性の活性上昇パターンが認められたことは、CDDP投与早期にその活性の上昇があらわれ、第1のピークをつくるγ-GTPと、CDDP投与終了時にその活性の上昇があらわれ、第2のピークをつくるγ-GTPと、第2のピークをつくるγ-GTPと、別なものである可能性がある。そして、この第2のピークはDay 5 6にみられ、NAGのピーク（Day 5）とほぼ一致することから、今まで述べてきた刷子縁に含まれるγ-GTPとは局在部位の異なるγ-GTPが存在し、CDDP投与によりNAGとともに尿中排泄が増加していることも考えられる。この細胞内局在に関して、今後さらに詳細な分析を行なってゆきたい。

以上述べてきたと、尿中酵素の変動からCDDPによる尿細管障害の発生機序がある程度推定されるが、今後さらに他の尿中酵素の変動に関して検討を行う予定である。また薬物性腎障害の特徴としてdose-response relationが認められることから、CDDPの投与量の問題や5日間単回投与と1回投与の差についても考慮しなければならない。この点、尿中酵素の測定に併せてCDDPの血中濃度の変動の検討も行なう必要があると考える。
結 語

CDDP 5 日間連続投与と患者の尿中 NAG および γ-GTP 活性を同時に測定し、その急性変動様式の比較から、尿細管障害の発生機序について検討し、以下の点を述べた。

1) CDDP 投与にともなって NAG および γ-GTP の尿中排泄は増加し、CDDP 投与中（Day 3）に γ-GTP は第 1 のピークを示し、投与終了 5 日後（Day 5, 6）に NAG のピークおよび γ-GTP の第 2 のピークがみられた。

2) γ-GTP が CDDP 投与時にその尿中活性が増加することから、まず γ-GTP を多く含む刷子縫が障害され、つぎにライツソームを含む細胞実質の障害が起こっていると考えられる。

3) CDDP が尿細管上皮細胞に達する経路として、尿細管管腔側からのもののが最も細管から基底膜を通して移行する経路が考えられるが、CDDP によって障害には虚血性変化による障害の存在も考えられる。

4) γ-GTP には二相性の活性上昇パターンがみられたことから、刷子縫に含まれる γ-GTP とは細胞内局在部位の異なる γ-GTP が存在する可能性がある。

文 献

1) 吉田薫一郎・高橋 卓・中目康彦・斎藤 博・堀 内 晋・金村史尚・根岸壮治：CDDP 投与にともなう尿中 NAG 活性の急性変動についての検討. 泌尿紀要 32：369-373, 1986

2) 吉田薫一郎・高橋 卓・中目康彦・斎藤 博・堀 内 晋・金村史尚・根岸壮治：尿中 NAG 活性からみた CDDP 障害一尿中 NAG 活性を増加させる因子についての検討. 泌尿紀要 48：1197-1203, 1986

3) 高橋 卓・吉田薫一郎・中目康彦・斎藤 博・堀 内 γ-GTP 活性からみた CDDP 障害. 泌尿紀要 32：789-794, 1986

5) 吉田薫一郎・堀 内 晋・金村史尚・根岸壮治：前立腺癌再発症における cisplatin, Adriamycin, Tegafur 併用療法の経験. 西日泌尿 48：1517-1521, 1985

6) 武内重五郎・新臨床腎臓病学会, 365 ～ 366, 産江堂, 東京, 1985

8) 木村茂三・中田昌明・田崎 寛：Cis-Diaminedichloroplatinum(II) 投与の腎毒性の観察. 日泌尿会誌 76: 1439～1453, 1985

12) 佐野紀代子・宇野恵美子・摂井晴美・長 裕子：尿 γ-GTP の臨床病態 56：53～64, 1983

(1986年10月6日受付)