<table>
<thead>
<tr>
<th>Title</th>
<th>Thomsen-Friedenreich antigen in bladder cancer tissues detected by monoclonal antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>YOKOYAMA, Masayoshi; OHOKA, Hiroji; ODA, Hideaki; ODA, Takashi; TAKEUCHI, Masafumi; UTSUMI, Sayaka</td>
</tr>
<tr>
<td>Citation</td>
<td>泌尿器科紀要 (1988), 34(2): 255-258</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1988-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/119472</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
THOMSEN-FRIEDENREICH ANTIGEN IN BLADDER CANCER TISSUES DETECTED BY MONOCLONAL ANTIBODY

Masayoshi Yokoyama, Hiroji Ohoka, Hideaki Oda, Takashi Oda, Sayaka Utsumi and Masafumi Takeuchi

From the Department of Urology (Director: Prof. M. Takeuchi) and Microbiology (Director: Prof. S. Utsumi) Ehime University School of Medicine

Monoclonal antibodies against Thomsen-Friedenreich antigen (T-Ag) were obtained by the hydridoma technique. The expression of T-Ag in 73 specimens of bladder cancer was examined by the immunofluorescence method using these monoclonal antibodies. Seventeen (53%) of grade I, 18 (44%) of grade II and 5 (50%) of grade III were diffusely stained with anti-T. Of the T-negative tumors, 14 (44%) of grade I and 13 (32%) of grade II showed positive staining after neuraminidase treatment (cryptic T-positive) while only 1 (10%) of grade III was cryptic T-positive. On the contrary, only 1 case (3%) of grade I was cryptic T-negative while 10 (24%) of grade II and 4 (40%) of grade III were. The T-antigen expression and the histological grades correlated significantly (p<0.05). Twenty-eight (70%) of the T-positive cases and 9 (60%) of the cryptic T-negative cases recurred while only 3 (11%) of the cryptic T-positive cases did (p<0.01). The monoclonal antibodies were more useful than peanut lectin (PNA) or conventional polyclonal antibodies on the detection of T-antigen.

Key words: Thomsen-Friedenreich antigen, Monoclonal antibody, Bladder cancer

INTRODUCTION

Thomsen-Friedenreich antigen (T-antigen) is composed of a non-sialated disaccharide side chain, D-galactose (beta 1-3)-N-acetyl-D-galactosamine and mostly attached to serine or threonine of carrier proteins such as glycophorin of erythrocyte. Springer and collaborators first observed that the T-antigen is expressed by the majority of breast adenocarcinoma, whereas it is poorly expressed by normal tissues. Normal tissues in turn carry fully sialated oligosaccharides in which T-antigen is masked by the sialic acid residue and becomes exposed only after neuraminidase treatment (cryptic T-positive)1-3). This has prompted subsequent investigations with carcinomas of various tissues and the evidence for the expression of T-antigen by bladder carcinoma has been accumulated as examined with peanut agglutinin as specific ligand4-6). We have previously observed that rabbit anti-body, raised to desialated glycophorin A and made specific T-antigen by extensive absorption, gives more distinct immunofluorescence staining of bladder cancer tissues and is more useful for predicting the prognosis of bladder cancer than peanut lectin7). In the present study, we have prepared mouse monoclonal antibodies to T-antigen and re-examine our previous results with these more specific reagents.

MATERIALS AND METHODS

Glycophorin (GP) was isolated from ghosts of pooled human erythrocytes of types O, NN, by the lithium diiodosalicylate-phenol method of Marches8). GP was desialated by mild hydrolysis with 1N HCl at 17°C for 1 hour9) which removed 80% of sialic acid residues, as judged by Warren's method10). The desialated material was adsorbed on a column of PNA conjugated gel (PNA-GEL, EY Laboratories) at 20 mg protein/5 ml column. After ex-
tensive washing, the column was eluted with 0.2 M D-galactose in Tris-buffered saline (TBS) containing 0.2% Triton X-100 at pH 7.4.

Balb/c mice were immunized by one ip followed 7 days later by another iv injection each with 0.5 mg of desialated glycophorin. Spleen cells from the immunized mice were fused with the mouse myeloma cells (SP2/O) by the standard polyethylene glycol method. Three antibody-producing hybridomas were cloned by limiting dilution and their culture supernatants were used as the source of monoclonal antibodies. The reactivity of monoclonal antibodies was tested by the hemagglutination test with desialated red blood cells and enzyme-linked-immunoassay (ELISA) with PNA-column purified desialated glycophorin.

Eighty-three operative specimens were obtained from patients bearing bladder tumors of various grades. These were fixed with neutral formalin and embedded in paraffin. After being deparaffinized, hydrated and washed thoroughly in PBS (pH 7.4), sections were covered with undiluted culture supernatants containing monoclonal antibodies at an IgG concentration of 0.5 mg/ml and incubated for 1 hour at room temperature. Sections were then washed extensively and incubated for another 1 hour with FITC-labeled anti-mouse IgG as the second antibody, washed 3 times with PBS, and were examined by the fluorescein microscopy.

RESULTS

None of the normal urothelial tissues examined as control were stained directly with anti-T monoclonal antibodies, but all gave positive staining for the cryptic T-antigen after the neuraminidase treatment. Forty of 83 urothelial tumors were stained positively with either of the three anti-T monoclonal antibodies tested.

Staining patterns of urothelial tumors with anti-T antibodies could be classified into three categories; (1) tumors which were directly stained with anti-T without neuraminidase pretreatment, (2) those stained only after neuraminidase treatment (cryptic T positive) and (3) those not stained at all with anti-T, regardless of the neuraminidase treatment (Fig. 1). With most of the T-positive specimens, diffuse and uniform staining of tumor masses was observed. The positive or negative staining after neuraminidase treatment was also uniform over the whole area of any given tumor specimen.

Fig. 1. A; Grade 2 transitional cell cancer tissue, which was stained with anti-T monoclonal antibody without neuraminidase treatment.
B; Grade 1 transitional cell cancer tissue, which was not stained before neuraminidase treatment.
C; The same case showed positive staining after neuraminidase treatment.
Such staining patterns contrasted sharply to spotty or focal staining patterns with PNA (Fig. 2). As summarized in Table 1, 17 (53%) of grade I, 18 (44%) of grade II and 5 (50%) of grade III were diffusely stained with anti-T. Of the T-negative tumors, 14 (44%) of grade I and 13 (32%) of grade II showed positive staining after neuraminidase treatment (cryptic T-positive) while only 1 (10%) of grade III was cryptic T-positive. On the contrary, only 1 case (3%) of grade I was cryptic T-negative while 10 (24%) of grade II and 4 (40%) of grade III were. The T-antigen expression and the histological grades correlated significantly (p<0.05). Seventy percent of T-positive tumors and 60% of T-negative and cryptic T-positive tumors recurred, while only 3 (11%) of 28 cryptic-T positive tumors did (Table 2). No difference in the intensity or pattern of staining was observed among the three monoclonal antibodies used when they were used at the same IgG concentrations.

DISCUSSION

We have reexamined our previous observation with conventional rabbit anti-T antibody that bladder cancer patients can be classified with respect to T-antigen expression now by using anti-T monoclonal antibodies. The frequency of T-antigen expression as revealed by the fluorescence antibody technique with our monoclonal antibodies correlated well to the histological grades and the clinical prognoses of the patients. The results were largely in concert with the previous observation. However, there were also several cases which gave discrepancies between results obtained with rabbit antibody and the present mouse monoclonal antibodies. Two cases were T-antigen positive with monoclonal but negative with polyclonal antibodies, while one case vice versa. The former cases may imply that the IgG monoclonal antibodies here had higher affinity to the T-antigen than the polyclonal antibody employed in the previous study. The affinity of antibody is crucial especially when only a small part of the sialic acid residues on the tumor cell membrane is delated and hence bivalent binding of antibody is limited. In such a case a sufficiently high affinity of antibody will be required to survive the extensive washing during the staining procedure. Yuan et al. reported that their IgM monoclonal antibody, in spite of its specificity, did not give satisfactory staining avidity. This failure of IgM antibody may well be ascribed to the inherent low affinity and low T-antigen density on the cell membrane which will not allow IgM antibody to assume polyvalent binding.

ACKNOWLEDGMENT

This work was supported by a Grant-in-Aid for Scientific Research (No. 60570752). We thank Miss Rie Yoshimura for her
secretarial assistance.

REFERENCES

3) Springer GF, Desai PR, Murthy MS, Tegtmeyer H and Dcanlon EF: Human carcinoma-associated precursor antigens of the blood group MN system and the host's immune responses to them. Prog, Allergy 26: 42-96 1979
(Accepted for publication February 26, 1987)