Hyperplasia of juxtaglomerular cells and renomedullary interstitial cells after renal arterial embolization in patients with renal cell carcinoma

AUTHOR(S):
NAKADA, Teruhiro; FURUTA, Hidekatsu; KOIKE, Hiroshi; AKIYA, Tohru; KATAYAMA, Takashi; WAKAKI, Kunihiko

CITATION:

ISSUE DATE:
1988-09

URL:
http://hdl.handle.net/2433/119712

RIGHT:
HYPERPLASIA OF JUXTAGLOMERULAR CELLS AND RENOMEDULLARY INTERSTITIAL CELLS AFTER RENAL ARTERIAL EMBOLIZATION IN PATIENTS WITH RENAL CELL CARCINOMA

*Teruhiro NAKADA, Hidekatsu FURUTA, Hiroshi KOIKE, Tohru AKIYA and Takashi KATAYAMA

From the Department of Urology, Faculty of Medicine, Toyama Medical and Pharmaceutical University (Director: Prof. T. Katayama)

Kunihiko WAKAKI
From the Second Department of Pathology, Faculty of Medicine, Toyama Medical and Pharmaceutical University (Director: Prof. F. Koizumi)

Renal tissue was obtained from 36 patients with renal cell carcinoma, some of whom received renal arterial embolization. The removed specimens was examined histopathologically and the concentration of some vasoactive substances in these patients was measured.

Nephrecotomy alone produced no discernible changes in blood pressure, vasoactive substances determined or histopathological findings of the kidney. Renal arterial embolization raised the blood pressure in association with the elevation of plasma renin activity (PRA) and urinary prostaglandin (PG) E2 excretion. A linear relationship was found to exist between PRA and mean blood pressure ($r=0.70$, $p<0.001$). Hyperplasia of the juxtaglomerular (JG) apparatus, and high granularity of sudan black B granules in renomedullary interstitial cells were confirmed in removed kidneys of patients who had received embolization alone.

Subsequently high renin production would be anticipated to influence overproduction of renal PG E2 in acute ischemic kidney in patients with renal cell carcinoma, and hypertension following renal arterial embolization appears to be caused by the hyperplasia of the JG apparatus.

Key words: Juxtaglomerular cell, Renomedullary interstitial cell Renal, carcinoma, Renal arterial embolization

INTRODUCTION

Preoperative embolization of the renal artery is undoubtedly useful for the removal of a renal mass. For inoperable primary tumors, this process can exert a beneficial effect on bleeding, pain or endocrine disturbances arising from the presence of the tumor. Reported complications include temporary hypertension, fever, necrotic tumor infection, temporary renal function impairment and accidental embolization of other organs[11,13]. Documentation of these clinical symptoms has been somewhat neglected, since embolization of the primary tumor can be contemplated as an adjuvant to radical nephrectomy by temporal decongestion of the tumor and reduction of its size. Renin has been assumed to be released into the circulation by several specific stimuli produced by the renal artery stenosis following renal arterial embolization and that angiotensin is then produced from blood-borne angiotensinogen in plasma. Previously we reported that acute constriction of the renal artery in a man led to hyperplastic change of the juxtaglomerular cells and the renomedullary interstitial cells, stimulating an inappropriate release of renin and renal prostaglandins[16]. We elucidated whether the change in plasma renin activity was related to the simultaneous alteration of urinary prostaglandin or blood pressure in patients received renal arterial embolization. The removed kidney specimen was also examined histopathologically with special
reference to hypertension.

MATERIALS AND METHODS

Between October, 1980 and March, 1986, a total of 36 cases diagnosed histopathologically as renal cell carcinoma were studied. Nine patients underwent radical nephrectomy, and 27 subjects underwent renal arterial embolization and subsequent radical nephrectomy. Computed tomography, echographic exploration of the kidney and intravenous urography with or without nephrotomography had previously been performed for diagnostic purposes. In each case, a preliminary abdominal aortogram was obtained to aid the transfer of embolizing particles. The age of the nephrectomized group (8 men 1 woman) (62±5 (mean±S.E.) years) was similar to that of the embolization plus nephrectomized group (20 men and 7 women) (61±3 (mean±S.E.) years). The stage of tumor was decided according to the system of Robson in both groups: stage I, 5 cases; stage II, 1 case; stage III, 1 case and stage IV, 2 cases in the former group and stage I, 7 cases; stage II 3 cases; stage III, 3 cases and stage IV, 14 cases in the latter group, respectively. Selective catheterization was accomplished using a guide wire over which a 7-French silicon catheter was advanced to the desired location of the expedient renal artery by transfemoral approach. For the angiographic catheter, a femoral visceral A-I (COBRA) III, or a femoral-cerebral B (SIDEWINDER) I or II (Cordis Corp. Miami, Fla, USA) was used. A coaxial system consisting of an outer 6.5-French polyethylene catheter was also used in some instances. Gelfoam cubes or Gelfoam powder (Upjohn Kalamazoo, Mich) was used for renal, arterial embolization. The untoward effects of renal embolization included flank pain, raised fever, nausea, vomiting, other gastrointestinal complications and hypertension. The severity of the symptoms appeared to be mostly related to the degree of infarction achieved. In most cases, radical nephrectomy was done 7 days after the embolization. Removed kidneys were dissected and fixed in 10% phosphate-buffered formalin at pH 7.4 or in Zenkel formalin. They were then stained with hematoxylin and eosin, periodic acid-Schiff, Bowie and Sudan black B.

After adaptation to the dietary environment (150~180 mEq/day of dietary sodium), 24-hour urine and blood were repeatedly collected. Plasma renin activity (PRA) was assayed by radioimmunoassay of generated angiotensin I, using the method originally devised by Katz and Smith as modified by Yun et al. Urinary PG E2 excretion was determined by a radioimmunoassay originally produced by Jaffe et al. and developed by Dray et al. and Zawada et al.

Statistical analyses were done by Student's t-test. Changes were considered significant when p values were less than 0.05.

RESULTS

As shown in Fig. 1, the average blood pressure for the nephrectomized group (A) before surgery (130±7/67±6 (mean±S.E.) mmHg) remained stable following nephrectomy at one week (133±9/61±4 (mean±S.E.) mmHg) or at least 2 weeks (126±7/61±6 (mean±S.E.) mmHg). The average blood pressures for the renal embolization and subsequent nephrectomy group (B) during the control period, one week after

(figure description and diagram)
Renal arterial embolization and one week after subsequent nephrectomy were 133±4/68±6, 158±6/94±5 (mean±S.E.) mmHg, respectively. The embolization caused a 21.5% (p<0.001) or 19.2% (p<0.001) increase in systolic or diastolic blood pressure at one week in this group of patients, but hypertension was completely normalized 2 weeks after the nephrectomy [132±4/58±6 (mean±S.E.) mmHg].

Remarkable hyperplasia and high juxtaglomerular granularity of juxtaglomerular apparatus (JGA) were not seen in patients who had undergone nephrectomy alone. Normal appearance of the JGA noted in 7 patients (77.8%), and a slightly granule content was seen in 2 patients (22.2%). As can be seen in Fig. 2A, PRA in normally appearing JGA of nephrectomized patients [1.86±0.21 (mean±S.E.) ng/ml/hr] was similar to that of slightly hyperplastic patients [1.85±0.15 (mean±S.E.) ng/ml/hr] who had undergone the same operation. The level of mean blood pressure (MBP) in the former group of patients [90±5 (mean±S.E.) mmHg] was similar to that in the latter group of patients [82±7 (mean±S.E.) mmHg] (Fig. 2B). As can be seen in Fig. 2C, there was no significant correlation in the regression line or coefficient between PRA and MBP.

Upon renal arterial embolization, the granularity of the JGA was enhanced except for one set of determinations. After the embolization, PRA also showed a similar increase in the histopathological analysis. Level of PRA in normally appearing JGA (Fig. 3), slight hyperplastic JGA and moderately hyperplastic JGA (Fig. 4) in patients who had undergone renal arterial embolization plus nephrectomy were 2.56±0.33, 3.82±0.18, and 4.37±0.24 (mean±S.E.) ng/ml/hr, respectively (Fig. 2A), and level of MBPs 115±3, 116±3 and 119±3 (mean±S.E.) mmHg, respectively (Fig. 2B) and PRA was directly proportional to MBP (Fig. 2C).

Normal appearance of interstitial cells

Fig. 2. A: PRA (ng/mg/hr) in patients who underwent nephrectomy alone (NX) or after arterial embolization (EMB+NX). JGG (-): Normally appearing juxtaglomerular granularity, JGG (+): Slightly hyperplastic juxtaglomerular granularity, JGG (★★): Marked hyperplasia of juxtaglomerular granularity. Vertical bars: ±S.E.M. *p<0.05, ***p<0.001: Paired comparisons. B: Mean blood pressure (MBP) (mmHg) in patients who underwent nephrectomy alone or after renal arterial embolization. Schematic presentation and statistical analysis are the same as in Fig. 2A. C: Relationship between MBP (mmHg) and PRA (ng/ml/hr) in patients who underwent nephrectomy alone (dotted line and open circle) or after renal arterial embolization (solid line and closed circle). Schematic presentations are the same as in Fig. 2A.
with sudan black B granules in the kidney (Fig. 5) and slightly high granularity of those renal cells (Fig. 6) were found in (57.1%) and 3 of 7 patients (42.9%) who had undergone radical nephrectomy, respectively. Urinary PG E2 excretion of the former group of patients [99±4 (mean±S.E.) µg/day] was not different from that of the latter group [109±9 (mean±S.E.) µg/day] (Fig. 7A). Renal arterial embolization raised this value (p<0.001) in the former group of patients [222±12 (mean±S.E.) µg/day] and the latter group of subjects [194±8 (mean±S.E.) µg/day], respectively.

In patients who underwent nephrectomy after embolization, there was a quite low correlation between PRA and urinary PG E2 excretion, but none in the subjects who underwent nephrectomy alone (Fig. 7B).

Sclerosis of interlobular artery was noted in all patients, although the extent varied considerably from patient to patient (Fig. 8, 9). As depicted in Table I, the degree of sclerosis was not related to the change in blood pressure following embolization or nephrectomy.

DISCUSSION

Biochemical changes following the renal embolization were appreciable within 7 days of the treatment, but they did not persist after the subsequent nephrectomy. As demonstrated in Fig. 2, the etiology of this type of hypertension following renal arterial embolization appears to be attributed to the increased liberation of renin acting on angiotensinogen to liberate angiotensin I, from which histidyl and leucine residues are cleaved by the converting enzyme to yield angiotensin II which produces potent vasoconstriction. Enhanced production of angiotensin II would lead to stimulation of aldosterone secretion.
which would raise circulating blood volume or vascular resistance and contribute to the elevation of blood pressure. Indeed, hypertrophy of JGA and high granularity of JG granules were predominantly confirmed in patients who had undergone renal arterial embolization (Fig. 2A). Recent immunochemical studies have revealed the coexistence of renin and angiotensin II in JG cells, and ultrastructural studies and the subcellular organelle fraction have demonstrated the localization of renin and angiotensin in renin granules. According to Mendelsohn et al., the renal tissue angiotensin II concentration was much higher than could be accounted for on the basis of circulating angiotensin II level. However, which of these factors have the
Table 1. Changes of blood pressure (BP) and sclerosis of interlobular artery in patients who received radical nephrectomy (A) and embolization plus radical nephrectomy (B).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Degree of sclerosis</th>
<th>BP before treatment</th>
<th>BP after treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 week</td>
</tr>
<tr>
<td>(A) Radial nephrectomy</td>
<td>++ (n = 5)</td>
<td>132 ± 11/70 ± 10</td>
<td>130 ± 10/68 ± 6</td>
</tr>
<tr>
<td></td>
<td>++ + (n = 4)</td>
<td>134 ± 10/68 ± 7</td>
<td>136 ± 9/70 ± 8</td>
</tr>
<tr>
<td>(B) Embolization plus</td>
<td>+ (n = 3)</td>
<td>128 ± 17/72 ± 8</td>
<td>154 ± 15/94 ± 12</td>
</tr>
<tr>
<td>Radial nephrectomy</td>
<td>++ + (n = 19)</td>
<td>136 ± 7/86 ± 6</td>
<td>158 ± 6/99 ± 5</td>
</tr>
<tr>
<td></td>
<td>++ + (n = 5)</td>
<td>140 ± 4/88 ± 5</td>
<td>164 ± 5/102 ± 6</td>
</tr>
</tbody>
</table>

Results are shown in mean ± S.E.
*p < 0.05, *** *p < 0.001; paired comparisons.
Degree of sclerosis: +; slight extent, ++; moderate extent, +++; severe extent. See detail in the text.

greatest influence is unknown. There is dispute about the origin of the angiotensin II found in the JG cells. Cantin et al. demonstrated that renin and angiotensin II coexist in the same granules. There were smaller amounts of the immunogold corresponding to renin. Under situations of ischemia the incitement is reversed with more angiotensin II and less renin. We did not perform such an analysis on this type of clinical hypertension.

Intensive biosynthetic ability for PG I_2 has been detected in the inner medulla of the dog kidney where the vascular blood volume is extremely poor compared with other areas. Previous studies have shown increased renal PGE_2 excretion rates and renal tissue PG intensity in patients with renal disease and in animals with renal failure. Studies on the dog have shown that PG E_2 reduces renal vascular resistance and studies on rat that I_2 causes vasodilation. The predominant pathway for the inactivation of PG E_2 in animal kidney entails its transformation to PG F_2alpha by way of PG E_2 ketoreductase. A high level of urinary PG E_2 excretion associated with an increment of PRA could be observed in our patients after renal arterial embolization (Fig. 7B). In addition, high granularity was seen in sudan black B granules in interstitial cells (Fig. 6). Subsequently, it appears reasonable to conclude from these findings that the ability of the renin-angiotensin system to cause hypertension is more effective than the effect of renal PG E_2 to reduce blood pressure. The significance of the coexistence of the hyperplastic JG apparatus and high granularity of sudan black stained granules in interstitial cells has not been assessed fully but a similar pathological finding has been observed in patients with obstructive renal artery.

Does the enhanced renin-angiotensin system promote the renal PG system in patients with renal cell carcinoma after renal arterial embolization? In experimental unilateral renal hypertension, participation of central norepinephrine or vascular non-collagenous protein appears to be important for raising blood pressure. Further studies are awaited.

REFERENCES

1) Barajas L and Salido E Renin-angiotensin juxtaglomerular apparatus and the renin-angiotensin system. Lab Invest 54;361-363, 1986
Nakada et al.: Renal arterial embolization, Hypertension

(Accepted for publication September 9, 1987)
腎動脈塞栓術後の腎癌患者にみられる傍系球体細胞、腎髓質間質細胞の過形成

富山医科薬科大学医学部泌尿器科学教室（主任：片山 喜教授）
中田 貴浩、古田 秀勝、小池 宏
秋 谷 敦、片 山 豪

腎癌患者36例に腎摘除術ないし腎動脈塞栓術兼腎摘除術を施行した。前者のみでは、血圧は不変で、測定したvasoactive substanceも変化しなかった。後者の術式を施行すると、まず腎摘除術に先行して行った腎動脈塞栓術により血圧は上昇し、血漿レニン活性（PRA）、尿中プロスタグランディンE₂（PG）排出量も増加した。しかも PRA と尿中 PGE₂ 排泄量との間に関の相関が認められた。摘除腎には、傍系球体装置および腎髓質間質細胞の過形成が見られた。すなわち、腎癌患者における急速な腎虚血はレニン分泌細胞の増殖とともに PG 分泌細胞の増殖も惹起させることが推測された。

（泌尿系要 34：1561-1568，1988）