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ABSTRACT

This thesis concerns with nonlinear behaviors of spin-related
bistable and tristable systems.

In recent years there has been a substantial theoretical and
experimental effort on optically bistable systems. An optically
bistable system is a device which exhibits two distinct states of
optical transmission. It has acquired much attention from the
aspect of practical application as optical devices and also from
the fundamental standpoint since it offers wvarious nonlinear
phenomena inherent in systems far from equilibrium.

It is shown, in this thesis, that inclusion of light
polarization leads to qualitatively new variations of the
phenomena. Light polarization is connected to the atomic spins of
the medium. So far no works on polarization effects in optical
bistability have been made. Here two types of such spin-related
optical system are proposed and studied.

The first system is a Fabry—-Perot cavity filled with atoms
with degenerate Zeeman sublevels in the ground state. It is found
that for linearly pclarized incident light, the high transmission
state is doubly degenerate with respect to the output light
polarization; one is almost right-circularly polarized (0+ state)
and the other is almost left-circularly polarized (o_ state). In
the low transmission state, the output remains linearly polarized
(linear state). Therefore the three states coexist and we call the
phenomenon optical tristability. In the o, {c_) state, the atomic
spins are oriented parallel (antiparallel) to the propagation

direction of the incident light, whereas in the linear state, they
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are random. When we increase the intensity of the linearly
polarized incident light, at a critical point, the linear state
becomes unstable and a discontinuous transition to the o, or o_
state takes place with equal probabilities.. The symmetry of the
system with respect to the polarization is spontaneously broken.
This is a result of a competitive interaction of the o, (right~-
circularly polarized) and o_ (left-circularly poiarized) 1ight
beams through optical pumping.

Bifurcations which appear'uhen the input intensities of o, and

+
G_ components are changed independently are also investigated., It
is found that the bifurcation structure can well be understood in
context of a butterfly catastrophe.

Next the dynamical property of the system is studied. It is
shown that when we apply a static magnetic field transversely to
the optical axis, self-sustained precession of the spin

polarization occurs. Correspondingly, the o, and o_ components of

+
the transmitted light are modulated at about the Larmor frequency.
It is also shown that a modified Bloch equation which describes the
motion of the spin polarization in the cavity can be reduced to the
van der Pol equation.

The second system we propose uses the same medium as the first
one but has no optical cavity. The optical system is composed of a
cell containing the atoms, a A/8 plate, and a mirror. The feedback
is realized by the optically induced Faraday effect. The system
exhibits a pitchfork bifurcation which breaks the symmetry as the
input intensity is increased. Namely, the symmetry breaking is of
a supercritical type, whereas in the first system it is of a

subcritical type. This system has also two input parameters and a

cusp catastrophe appears when they are changed independently. It
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is also found that in the presence of a transverse magnetic field,
self-sustained spin precession takes place.

The static behavior of the second system is confirmed
experimentally by using Na vapor and a multimode dye laser.

Chaotic (or turbulent) phenomena in optical bistability is
also investigated. Chaotic oscillation occurs when a delay time in
the feedback loop is longer than the response time of the medium as
predicted by lkeda. The delay—induced‘chaos in a simple and
familiar acoustic system is studied experimentally. It is an
acoustic analogue of optically bistable systems. The system goes
over into chaotic state after some cascades of period-doubling
bifurcations as we increase the loop gain.

The delay—induced chaos in the second optical system is
investigated. Particular attention is paid on the symmetry of the
solutions with respect to the polarizations. The output of the
system bifurcates in the following way as the input light intensity
increases! (1) symmetric steédy state, (2) asymmetric steady state,
{3) asymmetric periodic oscillation, (4) asymmetric chaos,

(3) symmetric chaos. The first bifurcation is a well-known
symmetry—-breaking transition. It is shown that the last
bifurcation through which the symmetry is recovered can be viewed
as a crisis of chaos, which has been defined by Grebogi et al. as a
sudden change of strange attractor. By changing system parameters,
we find three distinct types of the crises in the experiment with
an electronic circuit which simulates the differential-difference
system equation. Before and after the crises, wawveforms
characteristic of each type is observed. In a simple two-—
dimensional-map model, we can find the three types of crises. It

is also found that the types of crises are determined by the nature
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of unstable fixed (or periodic) points which cause the crises by
colliding to the chaotic attractors. The symmetry—recovering
crises seem to be general phenomena appearing in nonlinear systems

with some symmetries.
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CHAPTER 1

GENERAL INTROBUCTION

This thesis concerns with some of nonlinear phenomena in spin-
related optically bistable and tristable systems. The present
chapter contains an introduction to the topics which were
investigated. A short review of theoretical and experimental
studies on optical biétabi]ity is presented. A brief description
on nonlinear effects caused by laser optical pumping is given
because they plays an important role throughout this uoré‘ Finally

the outline of this work is presented.

1.1 Dptical Bistability

Recently a new class of optical systems which may have two {(or
more) distinct output states for a given input state has drawn
intense interests. Such a system is called an optically bistable
{or multistable) system. It will potentially be used as optical
logic devices for ultra-high—-speed signal processing and
communications. In principle, very fast switching with low power
consumption and two—dimensional parallel processing are possib)e'

Generally an optically bistable system is realized when the
transmitted light of a nonlinear mediﬁm is fed back to itself by
some means. If the feedback is through some electronic circuits
the system is called "hybrid," whereas an all-optical system is
called 'intrinsic.' The most popular intrinsic system is an optical
cavity filled with a nonlinear dispersive medium. Figure 1.1 shows

the principles of operation (Smith and Tomlinson, 1981)., Curves Ai
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Fig. 1.1 Principle of operation of an optica”yvbistable device which

utilizes a Fabry-Perot interferometer and a nonlinear dispersive medium.

(a) Curves Ai: interference patterns of Fabry-Perot cavity for input power

Ii (Ii < 12 < 13). Curves B: variation of the effective path length of the

medium under the influence of the intracavity laser field. Crossing points

a ~ bt equilibrium states of the system. - (b) Plots of equilibrium points vs

input power.
show fringe patterns of the optical cavity for the incident light
of intensities Ii' The abscissa represents the effective optical
length of the cévity and the coordinate represents the output
optical power.  The output power is proportional to the input
power, if the optical path length is fixed. The optical power in
the cavity is proportional to‘the output power. Curve B represents
the variation of the optical length of the medium under the
influence of intracavity light, which means the dispersion, or the
refractive index is dependent on the intensity of light propagating
through it. The crossings of Curwves Ai and B correspond to
equilibrium points of the system. We plot the equilibrium output

optical power for various values of Ii and obtain Fig. 1.1(b). The
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portion of negative slope is found to be unstable. The upper and
lower stable branches correspond to the transparent and opaque
states respectively. As the input light intensity is increased
from zero, at 1 = Icl’ a sudden jump from the lower branch to the
upper one takes place. Inversely the input is decreased passing
Ic2’ the output jumps back to the lower branch. Betuween Ic2 and
Icl’ two stable states coexist. By modifying the system
parameters, we can obtain devices which have a differential gain or
a switching characteristic.

Optical bistability is firstly proposed by Szoke et al.
(1969). Experimentally Gibbs et al. (1976) successfully
demonstrated the effect by using sodium vapor as a nonlinear
dispersive medium.

Under certain conditions a part of upper branches becomes
unstable and the output of the system shows oscillatory behavior.
The phenomenon is called “self-pulsing.” Possibility of self-
pulsing in optical bistability was firstly discussed by Sz;ke et
al. (1969)., Theory and a hybrid optical bistable experiment, both
by McCall (1978), showed that a bistable device can pulsate when
the nonlinearity has two contributions of opposite sign and
different time constants. The experimental evidence in an
intrinsic device was given by Jewell et al. (1982) in a GaAs
etalon, where the thermal and the electronic contributions to the
refractive index was utilized. Even in simpler media without the
above-mentioned character, self-pulsing is possible if we take the
light-propagation effects into account. The stability analysis for
the steady state solutions to the Maxwell-Bloch equation was
perFormed by Bonifacio and Lugiato (1978b) and it was.shown that

there is a part of the curve in Fig. 1.1(b) with positive slope in
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which some off-resonant cavity modes become unstable.

More recently, lkeda (1979) and lkeda et al. (1980) investi-
gated the dynamics of a ring cawvity containing a nonlinear di-
electric medium and predicted that the instability in such a system
gives rise to a turbulent behavior, or so-called chaos. This
instability comes from delayed feedback of the light transmitted
through the medium. They showed that chaos appears only when the
round-trip time tR of light is longer than the response time 1—1 of
the medium. Subsequently Gibbs et al. (1981) succeeded in the
first experimental observation of the phenomena in a hybrid optical
device. Chaos in an intrinsic device was observed by Nakatsuka et
al. (1983) where optical fiber was used as a nonlinear medium.
Later on, lkeda et al. (1982) pointed out even in the cases tR <<
7_1, chaotic pulsation is possible and interpreted it as a self-
induced Rabi nutation of the electric field vector.

Anyway their proposal has renewed interest in optical examples
of chaotic dynamics. All of the above-mentioned phenomena in
bistable systems, such as multiplicity of the state, a hysteresis
loop, a sudden change of state for a continuous change of the
parameters, self-pulsing, and chaos, are distinctive Feétures of a
nonlinear dynamical system. Thus optical bistability attracts much
attentions from a fundamental point of view and is now a
theoretical model to study nonlinear phenomena. Optical devices
are rather simple by comparison to the other systems such as
hydrodynamical and biophysical models. As such, comparison of
theory with experiment is sometimes more straightforward than in
other cases.

It should be noted that one can add moderate complexities to

optical systems by taking into account various effects and can find
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qualitatively new phenomena. For example, Moloney et al. (1982)
showed that the light beam of a bistable device, which is called
"spatial ring,’ may exhibit coherent spatial structure
spontaneously. The inclusion of the transverse profile of the
laser beam causes new phenomena which are similar to those in

hydrodynamics.

1.2 Optical Pumping and Spin Polarization

Before describing optical pumping itse]F,_ue mention its
relation to laser nonlinear spectroscopy. Nonlinear spectroscopy
is now a very powerful tool to study atomic and molecular
structures with high resolution and high sensitivity. The
nonlinearity is brought about when the popUlation distribution in
the atomic states is changed appreciably from the thermal
equilibrium by laser light with high intensity. The coherency or
the monochromaticity of laser enables us to modify the population
distribution selectively and to create atomic coherences. UWe can
not only select the atomic internal state but also its velocity and
coordinate. Intense laser light can populate highly excited states
efficiently against the fast relaxation to the ground state.

Before the advent of a laser, a method to create the
population changes by conventional light sources, such as atomic
resonance lamps, was proposed and various techniques has been
developed. The term ‘optical pumping”’ indicates these techniques
in its narrower sense. One of the key concepts of optical pumping
is the use of polarization of light. Irradiation of polarized
light can c¢reate an orientation or an alignment of the atoms, .,

namely the population difference in the magnetic sublevels. We can
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see a germ of nonlinear laser spectroscopy.  Furthermore, the laser
itself can be viewed as one of the resulting products from a-
development of optical pumping.

In order to describe the optical pumping process, we shall use

le—> AT TN |e+>
(0% o_
Ig "> \ 2N R4 lg+>

Fig. 1.2 Energy level diagram of atoms with J =-1/2 » J = 1/2 transition.

Real lines: excitation by o, (right-circularly polarized) and o_ (left-

+

circularly polarized) light. Wauy lines: spontaneous and collisional

decay. Dashed lines: spin relaxation.

a simplified atomic model shown in Fig. 1.2. The excited state
with a total angular momentum Je = 1/2 is coupled to the ground
state with Jg = 1/2 by optical transitions. Such a configuration

can be seen in the D, line (2P1/2 > 2

81/2) of an alkali metal, if
we neglect the effects of the nuclear spin. The m, = t1/2 levels
of the ground state are represented as lgt>. For the excited
state, lex> are defined similarly. The selection rule of an

electric—dipole transition is ﬂmJ = +]1 for o, (right-circularly

+
polarized) light and AmJ = ~1 for o_ {left—circularly polarized)
light. In the absence of light the levels Ig+> and lg-> are
equally populated. Suppose we irradiate an ensemble of such atoms
with o, light. Only the atoms in the lg—> level are excited to the

let+> level by the presence of the selection rule. Some of which

fluoresce and return to the level lg-> and the others to ig+>. IFf
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this process is repeated, a considerable part of atoms is
transferred From the lg-> to the lIg+> level. The Ffinal relative
population will be détermined by such parameters as the pumping
light intensity, relative transition probabilities, and spin-—
relaxation time of the ground state. \Genera1ly, the relaxation
time is relatively long (a few milliseconds or longer) and a large
population difference can be created by weak light. The population
difference corresponds to the orientation of the angular momentum
or the magnetic momentum of the atoms.

The process described above is a typical example of optical
pumping. It should be noted that owing to the light polarization,
a kind of selection as in the nonlinear spectroscopy Becomes
possible.

Use of lasers in the optical pumping experiments adds new
features. For example, polarization spectroscopy (Wieman and
Hansch, 1976), which uti]izes optical pumping to the full, is now a
very useful method in analyzing complex atomic or molecular |
structures. A;%dgﬂfrom spectroscopic use, laser optical pumping
was found to exhibit various interesting phenomena in nonlinear
optics, such as se]F—Focusing>oF a weak light beam (Yabuzaki et
'al., 1982), repulsion of two circularly-polarized beams of opposite
polarizations, (Tam and Happer, 1977), break up of a linearly
polarized beam into two coherent beams of opposite circular
polarization (Tam and Happer, 1977), and propagating wave front
generated by laser pumping (Bhaskar et af‘, 1979). Our studies are
on these lines,

To close this section we discuss on the nonlinearities caused
by optical pumping. Cénsider two extreme cases pictured in Fig.

1.3. In the case (a), the atoms are not optically pumped and the
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(a) NO PUMPING

1 X
\, .

(b) o, PUMPING

+Q
&
'
Wh

19-> i9+>

Fig. 1.3 Population distribution (a) in the absence of pumping light, and
'(b)’uﬁder the irradiation of intense o, light. In the case (a), the
ensemble of atoms can be considered as an isotropic medium, uwhereas in (b),

the circular dichroism and birefringence appear.

Ilg+> and the lg—> levels are equally populated. The absorption
coefficients a, (a_) and the incremental refractive indices n, - 1

(n_ - 1) for o, (o ) light are proportional to the populations of

lg+> and lg->. So the relations

@, =o_=a, ' (1.1a)

n, =n_=n, (1.1b)

hold, where @ and n are constants. In the case (b)), all atoms are

pumped to the Ig+> level by intense o, light and the optical

-+

characteristics are changed as

a, =0, a_ = 2a, : t1.2a)
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n, =1, n_=1+2(n - 1. (1.2b)

We see the medium shows circular dichroism and circular

= &
»bireffingence‘ We should firstly ;oié that the pumping by the o,
light changes the optical constants for itself yia‘optical
pumping. In other words, the atomic system acts as a nonlinear
medium. Secondly, the pumping light also influences the
propagation of o_ light if it exists. Conversely, o6_ light will
change the optical constants for o  light. This interaction
between the o, and o_ components of light and the nonlinearity play
important roles in the phenomena treated in this work.
The process of optical pumping can well be described by the
Bloch equation for the ground-state spin m (Appendix A):
dm

m=ax$y-Tm-Ph-2 -P.m+2), BN -5

where ﬁO’ rg, P,s and ; represent the magnetic field, thg spin
relaxation rate, the o, light intensities, and the unit vector
along the light propagation direction, respectively. Uhen these
’parameters are constant, Eq. (1.3) is an autonomous (time-
independent) linear equation which has one equi]ibriﬁm point. The
equilibrium point is stable and all solutions are attracted to this
point exponentially as time passes. Although the position of the
equilibrium point can be changed by adjusting the parameters, no
qualitative change does not occur. 1f, however, P, and P_ are
functions of ;, then Eq. (1‘3).becomes nonlinear and qualitatively
new phenomena can be expected. Such situation can be realized by
detecting the spin polarization by some means and feeding it back
to the light intensities Pi' Two types of feedback are used in

this thesisi one utilizes the interference in a Fabry-Perot cavity
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and the other uses the optically induced Faraday effect. In both
cases, the dependence of dispersion {(or refractive index) on the

* .
spin m plays an essential role.

1.3 Qutline of Present Work

In this thesis we treat two optical systems both of which

utilize the nonlinearity and the coupling between the o, and o_

+
light through optical pumping. The first system treated in
Chapters 2 and 3 is composed of a Fabry-Perot cavity and an
intracavity cell filled with atoms which have degenerate Zeeman
sublevels in the ground state. The second system in Chapters 4 and
6 is also of intrinsic type as the first one and uses the same
atomic system, but has no optical cavity. The feedback is realized
by the optically induced Faraday effect. Chapter é is devoted to
the description of chaotic behaviors seen in the no-cavity system.
Chaos appears when a delay in the feedback exists. Preparatory to
it, in Chapter 5, some general aspects of the delay—induced chaos
are presented. We also present experimental results on chaotic
oscillation observed in a simple and familiar acoustic system. The
system equation is essentially the same as that for the optically
bistable system.

Here we outline the content of each chapter. Chapter 2 is
devoted to the description of the static behavior of the first
system. At the beginning the mathematical model for the atomic
system is set up. kThe model is used throughout this work. From
the steady state solution the bifurcation structure is
investigated. The marked phenomenon predicted to occur in this

system is optical tristability. In the case of linearly polarized
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incident light the three states can be characterized as follows:
{1) The light in the cavity is Iinear1y polarized, (2) it is
essentially right-circularly polarized (c, state), and (3) it is
essentially left-circularly polarized (o_ state). In the o, (o )
state, the atomic spins are oriented parallel (anti-parallel) to
the direction of the incident light beam. The symmetry-breaking

bifurcation from the linear state to the o, or o_ states occurs

+
when the incident light intensity increases.

The bifurcations which appear in general cases where the o,
and ©_ components of the input light are changed independently are
also investigated. From the aspects of Thom’'s nowel theory, it is
interpreted as a butterfly catastrophe. Finally some extensions of
the tristable system and new predictions made by other authors are
reviewed, The experimental evidence of the optical tristability by
Cecchi et al. is also reviewed.

Chapter 3 is devoted to the dynamical behavior of the
tristable system. It is predicted that a new type of self-pulsing
is induced by a magnetic field applied perpendicularly to the
optical axis. The mechanism underlying is the self-sustained spin
precession about the magnetic Fie]d. The o, and o_ components of
the output light are modulated alternately. The oscillation
frequency can be controlled by the strength of the magnetic field.
It is shown that the system can be described by the van der Pol
equation. An experimental evidence shown by Mitschke et al. is
also represented.

In Chapter 4, we propose a spin-related bistable system
without cavity. The system utilizes the optically induced Faraday

rotation as the feedback mechanism. Use of no cavities relaxes the

condition for the light source that it should operate on a single
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mode and the freguency should be tuned at a definite part of the
cavity fringe. An incoherent light source may be enough if other
conditions are satisfied.

It is shown that in the case of linearly po]arized incident
light the system exhibits a pitchfork bifurcation which breaks the
- polarization symmetry and no hysteresis appears. In other words,
the symmetry breaking bifurcation is of a supercritical type, while
in the tristable system it is of a subcritical type (Joseph,

1981). Considering the difference between o, and o_ components of

+
the incident light or an asymmetry of the system as a parameter in
addition to the input intensity, we can see a cusp catastrophe.

Self-pulsing as in Chapter 3 can be expected to exist in this
system. The nonlinearity is simpler than before. So the
conditions for the oscillation can be written down explicitly.

The experiments were carried out to examine the static
behavior of this system. Sodium vapor in a heat-pipe oven was used
as the nonlinear medium, to which the multimode dye laser tuned on
a wing of the D1 line was applied. The operation of the proposed
systém was verified experimentally.

Chapter 5 is devoted to some general aspects for chaotic
phenomena. Our attention is focussed on the delay—-induced chaos in
optical bistability. The delay is caused by the propagation of
feedback light. To get intuition, an experiment in a simple
acoustic system was carried out. The system equation is
essentially the same as that for the optical system. There we
found that the system passes the period-doubling route to chaos as
seen in various kind of systems.

In Chapter 6, we investigate the delay-induced chaos in the

optical system treated in Chapter 4. The most striking phenomena
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is the bifurcation which recovers the polarization symmetry broken
by the symmetry-breaking bifurcation. The new bifurcation lies
between an asymmetric chaos and a symmetric chaos. UWe found some
types of such bifurcations by changing the system parameters. An
attempt to explain the underlying mechanism for each type is

presented by using a mathematical model.
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CHAPTER 2

OPTICAL TRISTABILITY

2.1 Introduction

In this chapter we study on an optical system composed of a
Fabry—-Perot cavity and an intracavity cell which contains atoms
with degenerate Zeeman sublevels in the ground state. The medium
shows polarization anisotropy in the nonlinear ??gime as shown in
Chapter 1. So we should treat the optical Fielaiaé a vector and
the dielectric susceptibility of the medium as a tensor. Although
many studies have been made on optical bistability, none of them
take into account the vectorial nature of the optical field nor the
tensorial nature of the medium. We show here that inclusion of
such natures brings qualitatively new phenomena. The most
remarkable feature of the system is optical tristability which is
the central subject of this chapter. For linearly polarized
incident light the system shows a hysteresis as in the ordinary
bistable system uwhen we observe only the output light intensity.
If, however, we also observe the polarization state, the high
transmission branch appears to be degenerate with respect to the
right- and left-circular polarizations. We have therefore three
stable states; the linear {(low transmission) state, the almost
right circular (high transmission) state, and the almost left
circular {(high transmission) state. The three states are
abbreviated to linear, c,s and o_ states. As easily seen, the
transition to the high transmission states, 6, or o_, is a symmetry

breaking one, which is a very important notion in a non-
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equilibrium dynamical system. Generally, a non—equilibrium system

acquires a spatial or temporal structure spontanecusly through

i Sl

symmetry breaking bifurcations (Nicolis and Prigogine, 1977).

The symmetry breaking can be connected to the atomic state.
In the o, state {o_ state), the atomic spins are oriented parallel
(anti-parallel) to the direction of the incident light beam and in
the linear state, they are random. Above the critical point for
the symmetry breaking, the medium behaves as if it were a.gaseous
ferromagnetic material.

In Sec. 2.2, we pPésenﬁ'the state equation for the optical
tristable system. The eqyation is obtained by coupling the steady
solution of the rate equation for the‘atomié.syétem and the input-
output characteristics of the Fabry-Perot cavity. In Sec. 2.3 the
conditions for theAsymmétry-bregking bifurcation are examined by
the stability analysis of a trivigl symmetric solution. The
numerically obtained double hysteresis loop is also presented.

It should be noted that_this system has two independent input
parameters; right—- and left-circularly polarized components of the
incident light. In Sec. 2.4 we investigate the bifurcations which
appear in general cases where the two parameters are varied
independently. The bifurcations occur in somewhat complicated
manners. Thé parameter space is divided into mono-, bi-, and tri-
stable regions. It ig found the bifurcation scheme can well be
understood in context of the catastréphe theory (Thom, 1975, In
Appendix B we describe the Thom’s theory on the classification of
elementary catastrophes. It is a deep result obtained from purely
mathematical discussions. So all that we can do is to explain it
intuitively from a physical point of view. In Sec. 2.4 it is shown

BN kg y
that our system is a good example of the butterfly catastrophe
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which is one of the seven elementary catastrophes.

In Sec. 2.5 we propose an experiment to observe optical
tristability. According to the proposal, Cecchi et al. (1982)
performed the experiment and observed the phenomena by using sodium
vapor as a nonlinear medium. A brief summary of their experiment

is given.

2.2 Theory

’
-

r/2

Fig. 2.1 Simplified atomic level scheme.

We consider atoms with energy levels indicated in Fig. 2.1.
The spin-up level 1+> and spin—-down level |-> in the ground state
are degenerate and have equal number densities N+ = N_ = N/2 in the
absence of light beams, where N is the total atomic density. The
optically excited levels are represented by a single level led,
which is possible when these levels are completely mixed by atomic
collisions. In such a three—-level system, the effect of optical
pumping is described by the rate equations for N+ and N_ (Appendix

Ads

dNy/dt = =PoNy + PNz - (T/2)(N, - N3, (2.1)
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where T is the spin relaxation rate, and the pumping rate P, have
been assumed to be smaller than the decay rate L of the excited
state, which therefore has negligible population. The rates P, are
expressed in terms of the light intensities {photon flux) I, and
the absorption cross—section ¢ by Py = (1/2)011‘ For homogeneously
broadened medium, the absorption cross—section © for monochromatic

Tight of the frequency w is given by
2
_ dﬂp UO Vab

c =
2 2
cFu ﬂ + .‘ab

s (2.2

where p is the atomic dipole moment, Yab is the relaxation rate for
optical coherence, wy is the transition frequency, and A = wg ~ w
is the atomic detuning.

The steady—-state solutions of Eq. (2.1) are

_ ol + T

Ni - O(I+ + I_) + 2T N . B ‘2#3?

With use of Egs., (2.2) and (2.3) the absorption coefficients o, and

the wavenumbers k, for the o, and o_ light are

E 3

Q
n

s = (0/2)Ng , (2.8

ky = kg + (0/2)CA/% Ny (2.5)

where ko is the wavenumber in a vacuum (see Sec. A.3). For
simplicity we will neglect the absorption losses by taking
relatively large values of A1, Inclusion of absorption losses
will not change the essential features of our discussion.

The transmission characteristics of a Fabry-Perot cavity which

includes a dispersive medium are derived as follows. Two mirrors
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Fig. 2.2 Cavity system.

with a ré?1ectiuity R are separated by a length L. The field
ampl itudes EI’ EF’ and ET at positions indicated in Fig. 2.2

. satisfy the following boundary conditions:

Ep = 1 - R E; + REge 21KE (2.6)
Ep = I - R Ege ik, | - (2.7)

where k is the wavenumber. From Egs. (2.6) and (2.7) we get

2 12 2 1

IE-12 = ¢1 - R)ZIE [1 + R® - 2R cos2kL1 ™, (2.8)

T 1

The relation is easily extended to the case where circular
birefringence, namely the difference between k, and k_, exists:

1

= 721,01 + R% = 2R cos2k,L17" , (2.9)

ITi =

where IIi are the incident light intensities, ITi are the trans-
mitted light intensities, and T = 1 - R is the transmissivity of
the mirrors. The wavenumbers ki are assumed to be constant over

the entire cavity length L because standing-wawve structure of the

spin—polarized atoms which have relatively long relaxation time is

washed out by their thermal motion. The moving atoms are pumped by

i -
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mean—field intensities Ii in the cavity which are related to 1

T+ by
{see Sec. A.2)
Ii = (ITi/T)(l + R). ‘ (2.102

With use of Egs. (2.3) and (2.10) the expressions (2.5) for ki

become
ki = ko + 2@(X$ + 1)/()(+ + X_ + 2), (2.11)

where k = (o/2)(ﬁ/vab)(N/2) is the linear dispersion and X, =

(o/T)Ii are the normalized transmitted intensitieé. Substitution
of Egq. (2.11) into Eg. (2.9) gives the following éoubled nonlinear
equations which relate the transmitted light intensifies to those

of incident onest

TY,

X, = § (24D

1 + R% = 2R cos(2[ky+2eXg+1)/ (X +X_+2)I)

where we introduced the normalized incident light intensities Y, =
(o/TH(1 + R)Ili'

The variables X, and X_'are not independent because k, and k_
in Eg. (2.11) are coqnected by the relation k+ + k_ = 2(k0 + k).
In fact, if we derive the equation for atomic variables, it
contains only m_ as will be seen later. In this chapter, houwever,

we will use Eq. (2.12) mainiy.

2.3 Symmetry—-Breaking Bifurcation

We consider, at first, the case where the incident light is
linearly polarized, namely, Y = Y_= Y. Eqguation (2.12) gives

trivial solutions!
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X, = X_ =X, (2.13)
where X = 1Y and
T = T{1 + R® - 2R cosL2(ky + L1t (2.18).

is the transmissivity of the Fabry-Perot cavity for weak-field
lTimit X, X_ << 1. As for the transmitted field amplitudes and
phases of both circularly po]arized components, the solutions
{2.13) are symmetric, and the polarization of resultant transmitted
light remains linear. The nonlinearity nor the coupling between
the two circularly polarized light may seem to play no role in the
solutions (2.13), but makes them unstablé under some conditions.
The stability of the solutions (2.13) can be examined by
calculating the differential gain which diverges at critical points
where stable solutions become unstable under a continuous change of
parameters (Gibbs et al.,1979). (The analysis can be done more
strgightforward]y by using the dynamical equation for the atomic
variable. See Chapter 3.) Expanding the light intensities around
the solutions (2.13) as Y, = Y + y,, Xy = X + x;, and substituting

into Eq. (2.12), we obtain linearized equations:

x
+
%
1l

6 X, = X_ = Ed(y+ - v_), (2.16)

where Ed = /{1 - 2n7) is the differential gain for the difference
between both light intensities, and n is a parameter representing

the strength of nonlinearity which is given by

n = (2R/THLEX/(X + 1)1 sin[2(k0 + w)L3]. ' (2.17)



OPTICAL TRISTABILITY | Qi

At the critical point o = LI 1i/(2v), £d diverges. In the region
n < LI which includes the linear case m = 0, the solutions (2.13)
are stable; hence in the region mn > LY they are unstable.

By using Eqs. (2.18) and (2.17), the unstable condition is

!
'
i

written down explicitly

cos[2(ka+ kLT + 2xL o2 sin[2(k~+ kLI > 1+ R (2.18)
0 - Xa+1 810 0 2R *

A

Consiée; tgelcase vhere the ineqda?ity (2.18) is satisfied in
the limit X * @ by choosing adequate values of kgs ®s L, and R.
When the incident light intensities are émal] enough, namely, X =
Y ¥ 0, the ineguality (2.18) is not satisfied because the left-
hand side is less than unity, whereas the right-hand side is
greater than unity for 0 { R { 1. Below the critical wvalue Xcl'(=_
TYcl) which satisfies the equation corresponding to the inequality
{2.18), the symmetric solutions (2,13) are stable. At the point
Y = Ycl symmetry-breaking transition occurs and for Y > YCl only
unsymmetric solutions are stable.

To obtain the unsymmetric solutions we solved Eq. (2.12)
numerically. By expressing Eq. (2.12) as X, = f (X, X_), the
iterative procedure to get the stable solutions is written as

A

follows:

(n) X(n)

(n+1)_ {n) _
X3 = SXi + (1 B)Fi(X+ s X_

), (2.19)

where B represents the properly chosen convergence factor and
satisfies 0 ¢ B ¢ 1. Starting from an initial value XiO), the
procedure is repeated until Xin) converge. In Fig. 2.3 we have
plotted X, as a function of Y for 2k0L = —ﬂ22 + 27M (M is an

integer), 2« = v, R = 0.7, With respect to X_, the same curves

are obtained but the upper branch corresponds to the lower one for
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Fig. 2.3 Hysteresis cycles of right-circularly polarized transmitted light
(X+) in the case of linearly polarized incident light. The same curve is
obtained for left—circularly po]ariéed transmitted light (X_) but the upper
(lower) branch corresponds to the lower (upper) branch for X, . At Y = YCl’
if X, jumps to the upper (lower) branch, then X_ necessarily jumps to the

lower (upper) one and the o, (c_) state is established.

3

Xy and vipgyvefsa. Increasing the incident light intensity one
Finds.fhag; at thé critical point Ycl’ X, jumps to the upper
(1ouer5 branch and X_ to the lower (upper) one. Above the point
Yci the two stable state, i.e., o ~dominant and o_-dominant states,
are possible.

If, qonverse]y. one decreases Y starting from values Y 5 Yci’
one sees that, at the other critical point Yc2’ both X, and X_ jump
back to the middle branch which represents the symmetric solutions
(2.13), Thgs in the region Yc2 <YL Yci there exist three stable

solutions.,

In Fig. 2.4 we show the bifurcation diagram with respect to
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Fig. 2.4 Hysteresis cycles for the spin polarization MZ. Corresponding.

- spin states are pictured schematically in-boxes.

the atomic variable N, - N_ or Mz, schematically. The z component
Mz of the magnetization is proportional to N, - N_ (Appendix A).
In the linear state N+ = N_ because no optical pumpingmtakes

place. In the o (c_) state N, - N_ takes positive (negative)

+

values as a consequence of optical pumping due to the imbalance

between the o, and o_ light components in the cell. As easily

+
seen, 1n the o, state, the atomic spins are oriented parallel
{antiparallel) to the optical axis, whereas in the linear state

they are random.

2.4 Butterfly Catastrophe

We also calculated solutions to Eq. (2.12) for general cases
Y+ #Y_. In Fig. 2.5 we have plotted critical points on the (Y+,
Y ) plane schematically. At the critical points, the number of

stable solutions changes. The single—stable, bistable, and
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Fig. 2.5 The plot of the critical points on the (Y+, Y_) plane. The
single-stable, bistable, and tristable regions are indicated by the letters
S, B, and T, respectively. If, by changing the inputs Y+ and Y_, an
operating point crosses the curve from the regions T to B or from B to S,
one of the stable solutions becomes unstable and discontinuous change in the
output occurs, The curve just corresponds to the bifurcation set of the

butterfly catastrophe (see Fig. 2.6).

tristable regions are indicated by the letters S, B, and T,
réspectiuely‘ The curve in Fig. 2.5 just corresponds to a section
of the bifurcation set of the butterfly catastrophe cut by a
’byperplan? t = t0 <0, u=0 in the control space (t, u, v, w)
{Thom, 19753 Zeeman, 1976; Appendix B). The system potential for

the butterfly catastrophe is represented as

Vix) = x6 + tx'Pﬂl + ux3 + vx2 + wx, (2,200

where x is the behavior variable and corresponds to X, - X_, or Mz
in our case. In Fig. 2.6 we have sketched the steady-state surface
in the (u, v, w) space on which the derivative W/8x becomes zero,

and the projection of the critical points to the (u, w) plane. The
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X,-X_)

x (=

Fig, 2.6 Steady—-state surface and bifurcation set for butterfly
catastrophe (t = to < 0, u=0), The surface is doubly folded and is

divided into three stable sheets.

upper {lower) part of the surface cbrresponds to the o,- (o_-)

dominant state and the intermediate part corresponds to the

compromised state.

For linearly polarized incident light, the control variables

move along the line w = 0 in Fig. 2.5 as the incident light -

25

intensity is varied and meet the ‘two critical points at Y = Ycl-and

Y = Yc2‘ In cases where incident light is circularly polarized,
control line passes through the regions S, B+ {B_), and S+ (S_).
This correéponds to the ordinary optical bistability, which has
been studied in detail by Agrawal and Carmichael(1979) in the

context of a cusp catastrophe. In that case, the potential V is

represented by a quartic polynomial including two control

. parameters.,

In order to see how the butterfly appears in our system, we
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investigate the system equation analytically. We use the Bloch
equation, which will be introduced in Chapter 3, in stead of the

system equilibrium equation (2,12).

dm_/dt = (T + P+ P_n_ + (P, - P (2.21)

2

P, = TE1 + R? - 2R cos2{ky + (1 ¥ m_)3171q, , (2.22)

0

where m, = (N, - N_I/N and Q; = (1/2)0(1 + R)Ili are the normalized
incident light intensities. Representing Eq. (2.22) as Py

= Ti(mz)Qi and expanding iqto.Taylor series, we have

= 2 3 4 5
Pi = (TO + Tym, + Tom, + Tam, + A, * Tgm_ )Qt‘ (2.23)

In the case of G, = Q_ = Q, Eq. (2.21) becomes
_ _ _ _ 3
dmz/dt = 2[¢-T + Q('r1 TO))mz + (73 Tz)sz
+ (ta - T,)0m_23 | (2.28)
5 4 z " *

The critical condition for the symmetry breaking can be written in

this context as

‘

Qq¢vy =~ 7g) - T =0. (2.25)

When Q < QCl’ m, = 0 is stable and when Q > QC1’ m_ = 0 is
unstable. In the unstable region we must consider the higher order
terms. Numerical calculation shows the coefficient Ty~ Ty is
positive for the parameter values used previously. This means

inclusion of the ng term is insufficient. The coefficient Ts - T

a4
is negative and therefore we can eliminate the terms higher than

6

m_, . The singularity mz5 leads the butterfly catastrophe.
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2.5 Experimental Evidence

Finally, we will estimate parameters for the experiment to
realize the optical tristability in which sodium vapor is used as a
dispersive medium. By filling He gas at pressure higher than 200
Torr as a buffer gas, Yab for 01 line at 589.6 nm becomes larger
than 2 GHz (McCartan and Farr, 1976), and we can neglect hole-
burning effect and hyperfine pumping especially for off-resonant
light. Furthermore, the buffer gas mixes the excited hyperfine and
Zeeman structure completely. Thus the situation is very close to
the model which we have used in this chapter. To satisfy the
inequality (2.18), 2xL must be of order of unity or larger, which

can be achieved by choosing N ~ 1012 crn-"3

sy L =10 cm, and 141 =
Borab‘ Then the absorption loss 2al is about 0.1 and will be
neglected. The required optical power density of a cw dye laser is
~ the order of 10 mU/mmz‘

To verify the prediction described in this chapter, Cecchi et
al. (1982) performed an experiment.  They used the temperature-
stabilized Na—filled Fabry—Perot interferometer with effective
finesse ~ 6. Sodium vapor density is ~ 1012 cm_3‘ The light
source was a cw dye laser tuned on the high-frequency wing of the
Dl‘line. The detuning was about 1.5 GHz, because they used the Na
cell containing the Ar buffer gas of relatively low pressure (1 -
23 Torr) which causes a small line broadening (< 0.2 GHz). A weak
magnetic field (few gauss) along the optical axis was applied to
align the ground state spin. They analyzed the transmitted.
intensity with a gquarter-wave plate followed by a Uo\iaston prism

and recorded the o, and o_ components simul taneously. By

-+

modulating the input intensity (0 - 25 mW) with a triangular wave
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at low fregquency (12 Hz), they observed the curve corresponds to
Fig. 2.3. They ajso scanned the input polarization from almost
circular polarization to the opposite circular polarization and
observed a hysteresis curve. The behavior is expected from Fig.
2.6, if we change parameters 1, and I_ keeping I, + I_ constant.
Modulating the cavity length, they observed the cavity transmission
function both o  and o_ output components. The dependence of the

system behavior on the cavity length of mistuning may be

understood, if we put forward the analysis in Sec. 2.4.
2.6 Conclusions and Discussion

We have investigated the static behavior of a Fabry-Perot
cavity containing atoms with degenerate Zeeman sublevels in the
ground state. It has been shown that when the intensity of the
linearly polarized incident light is increased, a symmetry breaking
bifurcation occurs at a critical level. Above the threshold, the
output light is circularly polarized in either direction. The
symmetry breaking is of a subcritical type and therefore a double-
loop hysteresis appears. The behavior of the system can be
interpreted in terms of the butterfly catastrophe, when we vary the
right and left circular components of the input light
independently.

The essential point of the phenomenon is a conflict of the two
beams. We notice that the optical tristability can be realized by

other methods; namely by replacing the o, and the o_ beams with a

+
pair of conflicting light beams. In fact some examples are
proposed. UWalls et al. (1981), and Agrawal and Flytzanis (1981)

showed that two beams with frequencies w,y and wy interacting
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through a two-photon transition wg ~ Wyt o, induce tristability
{See also Hermann and Walls, 1982). Kaplan and Meystre (1981)
utilized two counter-propagéting beams in a ring cavity, which
interact via the nonlinear refractive index grating generated by
themselves. They also suggested that the effect can be used to
enhance the Sagnac effect by several orders of magnitude.

Different nonlinearities causes wvarious bifurcations that have
not been discussed in this chapter (Parigger‘et al., 1983; Poston
et al., 19823 Savage et al., 19823 Areshev et ai., 19833 Arecchibet
al., 1983). Anyway, such two—parameter systems reveal the variety

of bifurcations and may be applicable to functional devices.
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CHAPTER 3

SELF-SUSTAINED SPIN PRECESSION

3.1 Introduction

We have sHoun in Chapter 2 that a Fabry-Perot cawvity
containing atoms with degenerate Zeeman sublevels in the ground
state exhibits optical tristability. The phenomena are due to spin
polarization in the ground state by optical pumping in the region
of anomalous dispersion. In the case of linearly polarized
incident light, the three states are characterized as follows: (i)
the transmitted light (ET) and the reflected light (ER) are both
linearly polarized {(linear state), (ii) ET is right—circularly
polarized and ER is left—-circularly polarized (0+ state), and (iii)

a state with opposite polarizations to the o, state (o_ state).

+
When the incident light intensity exceeds a threshold level, the
linear state becomes qnstab]e and a symmetry—breaking transition to
the o, or o_ states occurs. Above the threshold atomic spins are .
forced to orient parallel or antiparallel to the optical axis.

This phenomenon can be considered as an example of self-circular-
birefringence proposed by Tam and Happer (1977).

When static magnetic field transverse to the optical axis is
applied, the spontaneous magnetization begins to precess about it.
In general a precession of macroscopic magnetizatioﬁ is faded out
by thermal relaxations unless it is driven by periodic external
forces such as a radio—frequency magnetic field or a modulated

light beam (Kastler, 1961). In the present paper we show that

sel f-sustained precession is possible in our system without any
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periodic external forces. According to the precession the
circularly polarized components of the transmitted light are
modulated regeneratively. It is a new type of self-pulsing in
optical bistability (or multistabilty) and we may call it
‘magnetically induced self-pulsing.”’

Self-pulsing phenomena in an optically bistable system was
probosed and demonstrated experimentally by McCall (1978). It is
explained as a relaxation oscillation due to a medium having two
opposing contributions to the nonlinear refractive index, which
have different time responses each other. A similar relaxation
oscillation was proposed by Szoke et al. (1969), although its.
period is determined mainly by cavity holding time. Light
propagation effects in a ring cavity with nonlinear medium also
induce instabilities, where the pulsing frequency is related to the
freguency difference of the cavity modes (Bonifacio et al., 197%9).
In our system the frequency is determined by the Larmor fregquency,

namely, by the strength of the static magnetic field.

3.2 Modified Bloch Equation

We consider the same atomic system as in Chapter 2 except for
an application of a static magnetic field. The atoms are optically
pumped by right-circularly polarized light (o+) and left-
circularly polarized light {(c_) simultaneously. We can neglect the
population of the excited state assuming the spontaneous decay is'
fast enough compared to the pumping rates. The atomic state can be
characterized by the mégnetization,or the spin-polarization M in
the ground state. The time evolution of ﬁ can be described by the

Bloch equation {Appendix A3 Dehmelt, 1957).
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2

= M X A

¢

- TH - P(M - My - PR+ R, (3.1)

&P.
ot

0

where ¥ and T are the gvromagnetic ratio and the spin relaxation
rate of the ground state respectively. The third (fourth) term of
the right-hand side of Eq. (3.1) represents the effect of optical

pumping by the o, (o_) component of the intracavity light. If the

+
pumping rate P+ {(P_) is large enough, all atoms are pumped to the

: > >
state mJ=1/2 {(—-1/2) and maximum polarization MO (—MO) along the
opticaj axis is established. The pumping rates Pi are expressed in

terms of the>o+ and o_ light intensities {photon flux) 1, and the

absorption cross—section ¢ by

[y

Py = 301,. (3.2)

N

For a homogeneously broadened medium, the absorption cross—section
o for monochromatic light of the frequency w is given by
2
Amp “0  Yab

c = (3.3)
2 2’ ) *
ch AC + b

where p is the atomic dipole moment, Y.b is the relaxation rate for
the optical coher‘ence,vm0 is the optical transition frequency, and
A =w - wg is the afomic detuning. For simplicity we neglected -
effects of the static magnetic Field.HO on o assuming the Zeeman
fregquency QO = THO is small compared with the homogeneous width
Yab‘

Taking the light propagation direction along the z axis and
the static magnetic field ﬁO along the y axis (Fig. 3.1), we obtain
the equations for the normalized magnetization components m,

= Mi/MO (1 = xyy,2)%
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dm

X _
e —Qomz - AT + P+ + P_)mx, (3.4a)
dm
EEZ = —(T + P+ + P_)my, {3.:4b)
dmZ .
prreali QOmx - (T + P+ + P_)mZ + (P+ - P, » (3.4c)

From Eq..(S‘db) we see that m, decays sooner or later, so hereafter

we concern qurse]ves only with Egqs. (3.4a) and (3.4c).

Fig. 3.1 Fabry—-Perot cavity with a nonlinear medium cell. Static magnetic

field Ho is applied along the y axis.

The susceptibilities of the medium for o, and o_ light are

3
determined by the magnetization component along their propagation
direction, namely, m_ {Dehmelt, 19573 Happef, 1572). We assume
that m varies slowly with respect to the cavity damping time
L/C{cT), where L is the length of the cavity and T is the
transmissivity of the mirrors. We can also adopt the gquasi-static

susceptibility approximation (Happer, 1972). The absorption

coefficients ay and the wawvenumbers ki are
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“i(mz) qo(i F mz), . | (3.5a)

ky(m ) = kg + k(1 F m_), ‘ (3.5b)

where ay and ko + k is the absorption coefficient and the wave
number for the unpolarized medium. To simplify the situation we
neglect the absorption effect by taking relatively large detuning
1A,

Thus the transmission characteristics of the Fabry-Perot

cavity is given by the egquation

2 2

= - -1 :
Iry = T9I;,01 + R® - 2R cos2k,(m LI, (3.6)

where IIi and ITi are the incident andvtransmitted.light
intensities respectively and R =1 - T is the reflectivity of the
mirrors, we also assumed that m_ has no =z dépendence due to the
standing—waue structure of the pumping field, because the atoms
move many wavelengths during the pumping time Pi and the decay time
T_l. The effective pumping light intensity in the cavity is
represented as a sum of the forward and backward wave intensities

{Appendix A):
Ii =‘ITi(1 + RY/T. ) (3.7)

By using Eqs. (3.2), (3.6), and (3.7), the pumping rates in Egs. -

(3.4) are represented as follows:

2

Py = T[1 + R? - 2R cos2k,(n_JL1 'q,, (3.8)

where Qi=(1/2)°(1+R)IIi are gquantities which relate to the incident
light intensities. Substituting Eq. (3.8) into Egs. (3.4a) and

(3.4c), we obtain two—dimensional nonlinear differential equations
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which describe the motion of the Bloch vector m = (mz,mx) in the
cavity.

Let us consider, at first, the case where no external magnetic
field is applied, namely,'the’case of QD = 0. UWe rewrite Eq.

{3.3c) with QO = 0 as

dm
z

where W represents parameters;such as ' and Qi as a whole. The
equilibrium points are Found by solving the equation ?u(mz)=0,
which is equivalent to Eq. (2.9, a]thpugh the ]atter is for the
field variables aha the former is for the atomic variable. UWe also
find equivalence of Fu(mz) to BW/Ox in Chapter 2, where V(x) is a
system potential introduced in context of the catastrophe theory.
The stability of a equilibrium point is detérmined by the first
derivative of fu with respect to m at'the point. If dFu/dﬁz'> o,
the‘equilibrium point is unstable and if dfu/dmz < 0, then stable.
Figure 3.2 shows some example of Fu(mz) in the case of linearly
polarized incident 1ighf‘ We choose the parameters u so as to give
single-stable, tristable, and bistable cases. UWe also show, in N
Fig. 3.3, the motion of the Bloch vector on the (mz, mk) plane for
the bistable case. There the equilibrium point m=0 is unstéble
and the atomic spins orient parallel or antiparallel to the z axis
spontanecusly. It is quite natural to expect that if QO # 0, the
spontaneous magnetization continues to precess about the stati§

&5
magnetic field without decaying to m = 0.

3.3 Self-Sustained Spin Precession

To see the effect qualitatively we introduce following
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Fig. 3.2 Plot of the function Fu(mz) for single-stable, tristable, and
bistable cases. Parameters are R = 0.7; 2k0L = -7 + 2Mn (M: integer); 2xL

= 1,573 and Q+ = Q_ = 0.1T (single stable), Q+ = Q_ = 0.3T (tristable), Q+

Q_ = 1.0T (bistable). The equilibrium points satisFying‘Fu(mz) = 0 are
- stable (unstable) when d*Fu/dmz < 0¢(¢>0). In the bistable case, for

example, the point m = 0 is unstable and m, = +0.44 are stable.

eguations:

|
0

It —Qomz - £mx, (3.10a)

2y, (3.10b)

EEE = QOmx_ nmz(mz2 - m
where £ and n are positive constants.  The first terms of the
right—hand side represent;the precession about the y axis and the
second terms simulate the motion of m governed by Egs.. (3,4a) and
(3.4c) in the absence of the magnetic field. Namely, in the case

of QO = 0, Egs. (3.10) have two stable equilibrium points (ims, 0)

and an unstable equilibrium point (0,0) and give gualitatively the
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Fig. 3.3 Some trajectories of ; on the (mz, mx) plane for the bistable

i . . . . e ) -
case. The stable equilibrium point m = (ms,-O) corresponds to the o, state

+
>
and m = (—ms, 0) corresponds to the o_ state.

same flow as shown in Fig, 3.3. Equations (3.10) are quite similar
to van der Pol’s equations which describes the operation of
electron-tube oscillators. The difference is the presence of the
term me in Eq. (3.,10a) but it can easily be eliminated by a
variable transformation. By choosing suitable parameters, Egs.
(3.10) give a stable limit cycle on the (mz, mx) plane. To confirm
the oscillation we solved Egs. (3.4a) and (3.4¢) numérica]iy.
Figure 3.4 gives an example of the trajectories, which starts from
a point close to the origin, spirals out, and approaches to a limit
cycle asymptotically. Two bends on the limit cycle are vestiges of
the attractors which are located at the points (ims, 0) when no
magnetic field is applied. The velocity of the moving point
becomes slower in the neighborhood of the bends, and therefore the
period of rotation is longer than the Larmor period T0 = 21/Q0.

With an increase of QO’ the period approaches to the Larmor period
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Fig. 3.4 Self-sustained precession of Bloch vector m. Parameters are R

= 0.7, QO = 50T, ZkOL = -% + 2Mn, 2<L = 1.57, and Q_ = Q_ = 10T.

and the limit cycle becomes rounder. There is a critical value of
QO below which the trajectories trapped to either of the attractors
{for the parameters used in Fig. 3.4, the critical value is about
40T). UWe note that the limit cycle lies in the real space, whereas
in cases of other self-pulsing phenomena, it lies in a
mathematically constructed space, namely, in a phase space.

We also calculated temporal behaviors of Pt which are

proportional to the intensities of the ¢, and o_ components of the

+
transmitted light respectively (Fig. 3.5). The oscillation in Pi
are built up according to the growth of the trajectory in Fig.
3.4, In the steady state alternative pulsation in Pi are

observed. In the half cycle of m_ >0 (< 0, P, (P_) is enhanced

+
and Imzl is elongated through optical pumping. Thus the length of
the Bloch vector m is maintained against the thermal relaxations.
The two peaks in each pulse, one of which is sharp and the
which is a

other broad, are explained as follows. For example, P+
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Fig. 3.5 Self-pulsing in o+'and S_ components of the transmitted light.

. . 2>, . .
Corresponding trajectory of m is shown in Fig. 3.4.

function of m, takes the maximum value on the dotted line in the
half plane m, > 0 of Fig. 3.4. The trajectory crosses the line
twice in a cycle, first rapidly in the uppér half-plane. and

secondly slowly in the lower half-plane.

3.4 Experimental Evidence

Here we propose an actual system which exhibits the phenomenon
" described above. The system is essentially the same as that shown
in Chapter 1, where sodium vapor was used as a nonlinear medium.
The D1 line (589.6 nm) is homogeneously broadened by filling a
relatively high—pressure buffer gas (e.g. Yab ~ 2 GHz for 200 torr
of helium), and the Doppler broadening can be neglected. The
buffer gas also serves to prevent the hyperfine pumping in the
ground state 3281/2. Thus the behavior of the atom can be

described substantially by the model depicted in Fig. 3.1. Taking
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12

1A} ~ 301&b, vapor density N ~ 3x10 cm-a, and L ~ 10 cm, we obtain

the maximum phase shift 2xL ~ 5. The spin relaxation rate I is

1

estimated to be ~ 103 s —, and therefore the oscillation will be

observed for the Larmor frequency QO > 40T . dxloa 5_1, which
corresponds to H0 2 10 mG. The required power density of a CW dye
laser is of the order of 10 mU/mmz.

According to the proposal described above, Mitschke et al.
(1983) performed the experiment successfully. They used a heated
13

stainless—steal cell containing sodium atoms (N ~ 10 cm—a) in an
argon atmosphere {~ 150 Torr); the length of the heated zone is
about 20 mm. The cell was placed in the center of a
piezoelectrically controlled near confocal Fabry-Perot cavity
(finesse = 17). The light source was a dye laser which was tuned
by 10-20 GHz on either side of the Na-D1 line. The light with a
power of 5-50 mW could be switched on to observe transient
phenomena. The transverse magnetic field H0 was applied by
Helmholtz coils. The right- and left-circular components were
measured by a pair of photodiodes separately. Measurments were
performed in either region HG < Hcr or H0 > Hcr‘ The critical
magnetic field Hcr’ above which oscillation took place, was in the
range 0.3 to 1.5 Gauss.

(1 H0 < Hcr: When the input intensity was switched from zero
to I > Icr (~ 10 mW), the system stayed in the linear state for a
time 0 {~ 35 us). For t = s the sudden transition to the o, or
the G_ state took place. The delay was explained as é result of a
critical slowing down {(Haken, 1983).

<2),H0 > Hcr: When H0 was increased above a critical value Hcr
with other parameters fixed, then a build—~up of switching between

the o, and 6_ states was seen. The pulse train in the o, output

+
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and o_ output were complementary as in Fig. 3.5. They could easily
observed the pulse train for minutes. Repetition rate could be
varied between 200 kHz and 13 MHz. They showed that when the laser
intensity was changed with other parameters kept fixed, there was a
range where self-pulsing was observed, which is consistent with a
theoretical result.

They also observed the pulse-shape precisely and found two
maxima exist in each pulse as in Fig. 3.5. They proposed to apply
the apparatus as a current-controlled oscillator, and demonstrated

the experiment of “optical FM signal transmission.'

3.5 Conclusions and Discussion

We have predicted that the optical tristable system in Chapter
2 exhibits self-pulsing induced and controlled by a static magnetic
field. The self-sustained spin precession is rgsponsib]e for the
phenomenon and can be described by a modified Bloch equation which
includes a nonlinearity. The conventional linear Bloch equation
having oscillating-magnetic—Ffield terms has been wide?y_used to
describe various kinds of resonance phenomena. It is also used as
an analog model for an optical transition in two—level atoms.
Therefore it is an interesting problem to investigate resonance
phenomena in our nonlinear Bloch equation by including oscillating—
magnetic-field terms.

Another extension of our equation is possible. UWe have
assumed that the field variables adiabatically follow the atomic
variables. When the oscillating frequency is comparable to the
cavity response cT/L (.~ 100 MHz), the assumption is incorrect and a

modification is needed. The interplay between the dynamics for the
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'Fie]d_and that for the medium may cause new phenomena.
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CHAPTER 4

OPTICALLY BISTABLE SYSTEM WITHOUT A CAVITY

4.1 Introduction

The optical bistability exhibited in all of the systems
studied so far can be characterized by the presence of hysteresis,
which appears in intensity chanées of theloutput ]ight (transmitted
or reF]ected light) as the 1nc1dent llght 1nten51ty is var1ed' The
optlcal b1stab111ty that we propose and study in this chapter ‘is
largely dlfferent from ordlnary b1stab1]1ty' The most striking
difference is that thls opt1ca] b1stab111ty has no hystere51s but
has symmetry breaklng (or a pltchFork bifurcation), for the
variation of intensity of the 1inear1y polarized incident 1ight.
The optical system has a p051t1ue Feedback loop for the 1nten51ty
difference oF c1rcular1y po]ar1zed components of 11ght, not for the
light 1ntens1ty itself as in the ordlnary optical blstab]e
systems. UWhen the incident 11ght 1nten31ty exceeds a cr1t1cal
value and the d1FFerent1a] ga1n overcomes the loss in the ]oop, the
stable state blFurcates 1nto two symmetr1ca]]y ]y1ng branches
called o, and o_ states. In the o, (o ) state the po]ar1zat10n oF
the 1lght in the cell is a]most rxght (left) c1rcu1ar. At the
critical po1nt the system gets 1nto e1ther of these states with
equal probability, where no jump in the output occurs. So‘the N
biFurcationvcan be viewed as a second—order phase transition. The
jump between two stable branches, which can be observed in ordlnary

optical bistability, does not occur in the present system, when its

input intensity is wvaried. In the case of optical tr1stab111ty
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{Chapter 2), the symmetry breaking occurs simul taneously with a
jump in a doubled hysteresis cycle, and can be viewed as a first-
order phase tranéition. Another interesting Featﬁre of this system
is that when the polarization plane of the incident light is
rotated continuously, a sudden jump from one state to the other
occurs. A hysteresis loop appears when we swing the polarization
plane.

The obtica] system to be studied theoretically and
bexperimenfa]7y in this chapter is very siﬁple, which has no optical
cavity. So careful ad justments of laser frequency to the cavity
fringe are not needed. Use of multimode laser is also allowed. It
consists of a cell containing atoms with spin in the gfound state,
which is used as a nonlinear dispersive medium, a A/8 plate which
converts an polarization state, and a mirror to feedback the
transmitted light to the cell. The incident light is near-
resonant to the atomic absorption line and linearly polarized.
Competitive optical pumping by o, components is caused by the
optical #eedback through the phenomenon called optically rotatory
power (Gozzini, 1962), or (optically induced) Faraday rotation.

Two stable states of this system can be characterized by the
pofarization of output light or the direction of spin polarization
of étoms‘ In Sec. 4.2 we describe about the setup of the optical
system, and study its stable states using a simplified atomic
model. The présent optical bistability is discussed from the point
of view of catastrophe theory (Thom, 1975; Zeeman 1977), and we
show that it can be explained in context with the cusp catastrophe,
similarly to the ordinary bistability with hyéteresis {Agrawal and
Carmichael, 1979). In Sec. 4.3, we study theoreticai]y oﬁ the

phenomenon of self-sustained spin precession occurring in this
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system when a static magnetic field is applied perpendicularly to
the light beam. This results in the modulation of polarization of
the oufput light at about the Larmor frequency. This phenomenon is
similar to that in an optically tristable system, which has been
theoretically studied in Chapter 3 and recently observed by
Mitschké et al. (1983). In Sec. 4.4, we study experimentally about
the new type of optical bistability, using sodium vapor and a laser
beam tuned at the 01 line, and we show an evidence of symmetfy

breaking and pitchfork bifurcation.

4.2 Optical System and Stable States

g, (CELL o A[/_IS 'E 12
juu h-e T OUTPUT
X ]___ L _q% .
-
y

Fig. 4.1 Optical system exhibiting bistability with symmetry breaking,
together with the definition of coordinates. The A/8 plate shown by dashed

lines is used to monitor the field ET or ER'

The optical system consists of a cell containing atoms with
Zeeman sublevels in the ground state, such as a]kali—metallatomé,vé
A/8 plate, and a mirror, as shown in ?ig. 4.1. Incident‘light‘is
linearly polarized and its frequency is near-resonant to the atbmic
absorption line, i.e. it is in a region of anoma]ous‘dispéfsiOn; 

After transmitted through the cell, the light is passed through a
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A/8 and then reflected back to the cell by a mirror. Since the
light beém passes twice the A/S»p]ate, it plays a role of a A/4
pléte for a single path. So, unless the optical axis of the A/8
plate is Qriented to the direction parallel or perpendicular to the
polarization of the incident light, the backward light is
elliptically polarized in general, i.e. the intensities of o,
circularly polarized components become different. Because of this
intensity difference, the atoms in the cell are optically pumped
and atomic spins are oriented parallel Qr_éntipara]]e] to to the
beam axis. ‘When the spin—polarization is produced in this way, the
incident light is subjected to the rotafion of polarization because
of the difference of refractive indices for the o, components. If
the optical axis of the A/8 plate is adequately oriented, the
rotation of polarization for the incident light beam can increase
the intensity difference oF‘éircu]ar]y po]érized cémponents in the
backward )ight‘ ‘As'sthn in Fig. d‘i, we take the x and z axes to
the di%écfi;ns of polarization and probagation of the incident
light, respectively. Let us write © as the rotation angle of
polarization and 90 as the angle between the x axis and‘the
direction of optical axis of the A/8 plate, which we shall call
‘offset angle.”

A sméjl amount of the light passed‘though the mirror is
applied to another A/8 plate shown by dashed lines in Fig. 4.1,
which is used to monitor the changes of polarization and |
intensities qF the forward and backward light beams. When the
optical axes of two A/8 plates are oriented perpendicularly to each
other, the phase-retardation is cancelled out, so that the
polarization of the output light becomes the same as that of the

forward light beam transmitted through the cell. On the other
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hand, when they are oriented parallel, the polarization of the
output light becomes the same as that of the backward light fed
back to the cell.

The atomic system we utilize is essentially the same that was:

used in Chapters 2 and 3. So we begin with the Bloch equation:

dmx ; v .
;;— = -Qomz - (T + 1, + Im , _ (4.1a) .
dm '
—2 = (T + 1+ Im, (4.1b)
dt Y _
'dmz
;——- = Qomx - (T + I, + Im + (I, - 1), (4,1¢)
} : .
uhere‘; = t(mx, my, mz) is the normalized sSpPin polarization in. the

ground state, I is the spin relaxation rate, and Ii are the oy
light intensities which are normalized so as to give the pumping
rate. The optical axis is taken along the z axis. The Larmor

frequency QO is given by the relationt

Q) = vHy, | . @2

where ¥ and H0 is the gyromagnetic ratio and the strength.of the
magnetic field applied along the ¥y axis. The absorption
coefficients oy and the wavenumbers ki for oy light propagating in

this medium are given as

aym_) = all ¥ m), . (4.3a)

kym ) = kg + w(l ¥ m_), . (4.3b)

where a and ® are the absorption coefficient and the incremental

wavenumber for the unpolarized (mz = 0) medium, respectively, and
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k0 is the wavenumber in a vacuum. As in Chapters 2 and 3, we
neglect the absorption effect by taking the laser frequency on a
far wing of the absorption line. When linearly polarized light is
propagated through the polarized (mz # 0) médium with a length L,
the polarization plane is rotated by an angle © (Faraday

rotation). Hereafter we represent a state of light polarization in
the following form:

~ A~

g = E x + Ex = E,e, + E_e_, (4.4)

where e, = (x ¥ iy)/¥2. The lineaf components Ex’ Ey and the

circular components E,, E_ are related by the following relation:

KERNIER

b4

Now for the linearly polarized incident light
E; = Egxs : (8.6)

the transmitted light ET is represenfed as

~ik.L
[ETx:I - [e T 1| Fo

‘ coso : ’ '
= E0 ) s (4.7)
L sin®
where © = (k_ - k+)L/2. We have neglected a common phase factor.

The Faraday rotation angle © is represented in term of m_, as

The fast axis of the K/B‘plate and the x axis form a offset
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angle 90, We set an x° axis along the fast axis and a ¥y’ axis

along the slow axis. In this frame of reference gT is represented

Er . E
T} = uc-ey| T
Er . 0"l e
Ty Ty

cosB
= EU R {(4.9)

sin8

as

where 8 = 6 + 90 and

cosB -sin®
uce) = N (4.10)

sin® cosf

The polarization state ER of light reflected back to the cell is

~-in/8 2
ERX, - R e ETxf
E | e17/8 E
Ry" Ty'

E.ft(1 - i)cos® '
=0 1, (4.11)
L2(1 + i)sin®

where R is the reflectivity of the mirror and the squared matrix
represents the forward and backward passes through the A/8 plate.

The state ER in the circular representation is
E _ Eo -
Rel - plue y| R
E 0" g .
R- Ry

[Ecos§ - 8in® -i(cos® - sinB)le

[2in8 + sind -i(cos® + sin§)3ei90

ieo
. 4.12)
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Thus we have the oy intensities of the feedback light as

RI

_ 2 _ ] . AE ,
IRi 'ERi| = —5—(1 + sin20), (4.13)
where I0 = Eoz‘ The total intensities of o, light in the cell is
_ 2 — . AR
Ii = E0 /2 + IRi = (10/2)E(R + 1) £ R sin201]. (4.14)

Substitution of Eq. (4.14) into Eq. (4.1) gives the system
equations. In the absence of a magnetic field, it is sufficient to

consider only Eq. (4.1c).

—= = (T + 21yOm_ + 1y sin2(klm, + 63), (4.15)

where we have assumed R = 1 for simplicity. Firstly we study on
the steady state solution of this equation for the case of 90 = 0.
Apparently m, = 0 is a steady state solution in any cases. The
stability of this solution is determined by estimating the
derivative of the right-hand side at m, = 0; when it is negative
(positive), the solution is stable (unstable). The stability

condition is
—(T + 210) + ZIONL'< 0. ‘ (4.16)

Consider a case where k. >> 1. UWhen 0 ¢ I0 < Icr = (T/2)(wL -

1)_1, the solution m_ = 0 is stable and when I, > 1 , it is
4 0 cr

unstable. At I0 = Icr’ a symmetry breaking bifurcation occurs. To

see how the bifurcation takes place we introduce new variables:

x
n

2¢lm_ << 1,

a = Icr - I0 << 1.

Substitution of these variables into Eq. (4.15) vields
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= —2a(k} - 1IX - (mLIcr/3>x3 + 0(X>)

&P.
ot >

= —SVG(X)/SX, - _ (4.17)

It is important to note that the coefficient of X?'te?m is
negative. This means a solution staﬁtiﬁg near th;"origin does not
run away to the infinity and gl]ogs ps‘to neglect the terms higher
than X3‘ If the X3 coefFiciéﬂfvis ﬁésiéive, we must include the XS
term as in the case of optical tristability.

It is easy to see thevpptentiaj function Vq(X) is i&entica] to

SN

Eq. (B.9) with vy = 0

4

Fuxo = x% & w2, S (8.18)

which iz a normal form to represent a pitchfork bifurcation.
Furthermore we can assert, from the discussion in Appendix B, that

inclusion of asymmetry'giveé the cusp catastrophe!

4

F ;<x> = x% 4 0%+ . (4.19)

U

in fact, if we repeat the same procedure as above for the. case 90 #

0, we have a Taylor expansion of Eq. (4.13):

dX _ _ 2 _ 3 '
It - aoeo alcx + 8290X aq X, _ ‘(4‘202
where éi'(i = 0,..4,3) are positive’cénstants‘ Byié variagle

transformation X = X’ + a290/3, the X2 term can be e]iminatéd;

-1 dX'_ - - -3 . : e :
az” 3§ = (aola3)90 (ai/aa)ax X7, (4.21)>

The correspondence to the cusp catastrophe is clear.

We performed the numerical calculations to obtain the solution
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Fig. 4.2 Equilibrium rotation angle © as a function of incident light
intensity I in the case that (a) 83 = 0, and (b) 6, = 2°, 7° and 12°. In
abouve cases kL is fixed at 3.5. Dashed lines show the unstable equilibrium

values,

quantitatively. Figure 4.2(a) shows the equilibrium values of 0 as
a function of the incident light intensity IO in the case that 90
= 0, The stable and unstable values are shown by solid and dotted
lines, respectively. Uhen I0 is increased from zero and exceeds
the critical value given by Eq. (4.186), a symmetry breaking takes
place and the rotation of polarization occurs toward either of

positive or negative direction with egqual probability. The upper
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and lower branches in Fig. 8.2(a) correspond to the atomic stable
states in which spins in the ground state are oriented parallel and
antiparallel to the light axis, respectively. It is important to
note that a hysteresis cycle cannof be seen in the rotation angle ©
as a function of IO'

Figure 4.2(b) shows the cases that the offset angle 60 is 7°,
12° and 18°. UWhen 90 has non-zero value, © changes monotonously as
seen in Fig. 4.2(b), because the amplification of 8 becomes
asymmetry for the directions of rotation of polarization. Even in
these cases, there appears another stable state when I0 exceeds a
critical value, but the system does not get into this state unless
it is subjected to additional perturbation to convert the direction

of spin polarization.

Fig. 4.3 Rotation angle © as a function of the offset angle 90. The

incident light intensity IO is varied as a parameter.

The switching between stable states in the bistable region
becomes possible when we vary 90‘ Figure 4.3 shows the

calculated rotation angle © as a function of 90, in which I0 is
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varied as a parameter. In Fig. 4.3, we see that the surface
representing (9,10,60) has a close resemblance to the steady state
surface of the cusp catastrophe {(Thom, 1975: Poston and Stewart,
1978). In this way, we see that the present optical bistability
bejongs to the same catastrophe as the ordinary one, and different
features can be explained by orthogonal cross—sections of the

steady—-state surface.

4.3 Self-Pulsing by Spin Precession

lLet us consider the case where a static magnetic field ﬁo'is
applied transwversely to the laser beam in Fig. 4.1.  In this case,
Eaqs. {(4.1a) and (4.1c) should be considered. It is unnecessary to
consider the y component of ; because it does not couple to m_ nor
m and decays to zero. .Substitution of Eg. (4.15) into Egs. (4.1la)

and (4.,1c) gives

dm

—X = . - :

It Qomz (T + 210)mx, (4.22)
dmz

preatl Qomx - (T + 210)mz + Iosin 2K1mz, (4.23)

For simplicity, we have assumed 60 = 0. Eliminating m from Eqgs.

(4.22) and (4.23), we obtain the equation of motion for mZ:

d2
m v dmz
5 + F(mz)——— + g(mz) = 0, ' (4.248)

dt

dt

with

F(mz) = 2T + 210) - 2nllbcos2nlm,
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olm_) = c902+ (T + 210)23mz - 1g¢T + 215) sin2«im_.

If we expand the trigonometric functions with respect to m_ up to
second order, Eq. (4.24) is reduced to the van der Pol equation.
So we can expect that m precesses around ﬁO without any external
driving forces. We can apply the theorem on the existence of a
limit cycle to Eq. (4.24) (See Appendix C). Using the theorem we

can assert that when

1

Ig > Tl = 2077, | (4,25a)

and
9y > C(T + 2I)€2¢eL - DI, ~ 1112, (4.25b)

at least one limit cycle exists for Eq. (4.24). We show in Fig.

4.4 the region in the (IO,QO) plane where the condition are

satisfied. A more precise bifurcation structure is drawn in

reFeren;e to Takens’ normal form of vector field (Appendix C).
Figure 8.5 shows the trajectories of ; calculated numerically

by using Eqs. (4.22) and (4.23), in the cases that (a) kL = 3.5,

I

1.0T, QO = 20, (b) kL = 3,5, 1. = 3.0T, QO = 45, and (c)

0
kL = 3.5, 1

0
= 3.0T and QO = 55, As seen in Fig. 4.5(c), the

a
magnetization, starting from the nearly zero value, spirals out and
approaches asymptotically a limit cycle. It must be noted that,
when Qovis.not zero, the growth of m is much faster than abowve
case of 90 = 0, and the limit cycle becomes asymmetry with respect
to the origin m = (0,0). The frequency of the spin precession is
lower than the Larmor freqguency QO‘ Figure 4.6 shows the

precession freguency as a function of QO’ in the cases that 90 = 0,

ki = 3‘5’ and IO = 3‘01", 6‘01.‘ 8nd 9;0‘[‘0 In Fig, a‘é, we see that,



56 : : CHAPTER 4

IMIT CYCLE
- MONOSTABLE LIMIT CY

nhwh

Qo —

BISTABLE

T

]
'i(KL— ' oreLe-2y' le—

Fig. 4.4 Schematic bifurcation diagram on the (10, QO) plane. Roughly

. speaking, it is divided into three regions: a monostable, bistable, and
limit-cycle regions. Curves 1 and 2 correspond to the conditions (4.25a)
and (4.25b) for the existence of a limit cycle. On the curves 1 and 2, a
Hopf bifurcation and a pitchfork bifurcation (symmetric saddle—node
connection) take place, respectively. On the curve 3, there appears a Hopf
bifurcation of eéch bistable point. On the curve 4, a saddle connection
occurs and two homoclinic orbits are créated‘ On the curve S5, a stable and
unstabIe limit cycles appear (dynamic saddle-node conneétion). Above the
curve 5, a stable limit cycle exists but below the curve 3, two bistable
points coexist. Above the curve 3, the limit cycle is a unigue attractor.

The condition given by the curve 2 is a little severe.

when QO is just above the critical value ch, the precession
frequency is considerably lower than the Larmor frequency QO (the
straight line from the origin), and it approaches asymptotically to
QO with the increase of the applied field intensity. The self-
sustained spin precession can be observed as the modulation of the
rotation angle © for the forward light beam or as the alternative

switching of o, components in the backward beam.
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4.4 Experiment with Sodium Vapor

An experiment to realize the
has been carried out by using the

shown in Fig. 4.7, in which a A/4

Fig. 4.5

normalized
on a plane
the static

HO’ in the

(a) Ig =1,
(b) Iy = 3.

and (c) 1
55T .
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fixed at 3.
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new type of optical bistability

optical system schematically
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plate is used instead of the A/8
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> .
Fig. 4.6 Frequency of steady state precession of m as a function .of the-
strength of the applied magnetic field in terms of QO’ for three values of

10. The straight line from the origin shows the frequency of free

precession.
plate. The light from a cw dye laser, tuned on a wing of the Na-
D1 line, is applied to the sodium cell (heat-pipe oven) with 25 cm
length and 3.5 cm i.d. The cell contains helium gas at about 500
torr, at which the pressure broadening of the D1 line by the helium
gas was measured to be about 8 GHz (HWHM). This value is much
larger than the Doppler width (~ 1.7 GHz) and the hyperfine
splitting in the ground state of sodium (1.7 GHz). So we can
neglect the hyperfine optical pumping. In addition, the excited
state 32P1/2 is completely mixed at this helium pressure, so that
the three—level approximation used in Section 4.2 may be good under
the present condition. After passed through the cell, the light
beam is transmitted though a A/4 plate and then fed back to the
cell, The A/4 plate for a single optical path is equivalent to the

A/8 plate in the optical system shown in Fig. 4.1+ The incident
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SODIUM CELL
™M
= K ™
DYE EO
LASER MODULATOR M A\/4 PLATE
LP
PD

Fig. 4.7 Schematic illustration of experimental setup. Symbols bhave the
following significance: M ~ mirror, LP - linear polarizer, and PD

- photodetector.

light intensity IO is varied in the range 0-120 m\ by using an
electro-optic modulator. The beam diameters of the.incident and
backward beams were 5 mm and 8 mm, respectively, at the position of
the sodium cell. A beam splitter is inserted between the cell and
the A/4 plate, aﬁd the rotation of polarization ® is measured by
detecting the intensity of the light passed through a linear
polarizer whose optical axis is inclined by 45 degree from the
polarization axis of the incident light. Thus, the detected light
intensity Id is given by Iocosz(9+ﬂ/4), when the absorption of the
light can be neglected. The detuning Aw of the laser frequency
from the center of the D1 line was measured by applying a part of
laser output to a’Na cell without a buffer gas and to a Fabry-
Perot interferometer. In the present experiment, the detuning Aw
was kept constant at 100 GHz, and the cell temperature at 463°K,
which gives the sodium density of ~>2.3x1012 cm_a.

Figure 4.8 shows the experimentally obtained change of the
detected light intensity Id as a function of the incident light
intensity IO’ which is expressed in terms of power (mW). >Figuré

4.8(a) shows the case that 90 is set at the value close to =zero
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Fig. 4.8 Detected light intensity Id’ which is approximately proportiocan!
to,IOEosz(e + w/4), as a function of the incident light intensity 10 for (a)

90 = -0.2°% and (b eo = -1°, Black circles shows the case that the backward

light is blocked.

(00 = -0.2%). As I0 is inéreased, Id changes along the lower
branch because the system is ﬁot exactly symmetric. At IO = 120
mW, the switching from the lower branch to the upper one was made
by changing 60 from the original value to a relatively large
positive value and then back to the original value again. After

0

such a procedure, the system can be put on the upper branch. As I. -

is decreased in this situation, IT changes along the upper branch
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and a small jump back to the lower branch takes place at IO = 26
mW. The straight dash-dotted line from the origin shows the pjots
of Id in the case that the backward beam is blocked. UWhen 90 is
careful ly adjusted to zero, we could observe the phenomenon of
symmetry breaking in Id’ i.e. the random choice of its change along
the upper or lower branch in each scan of IO' But it was difficult
to keep such a condition for a minute. Figure 4.8(b) shows the
similar plots of Id as a function of 10, in the case that BO =
-1°. The switching from the lower to upper branches at IO = 120 mW
was made by changing 90 as mentioned above.

In order to verify the theoretical prediction that the present

system behaves with hysteresis when 90 is varied, we have measured

60 -
lp=105mW
" XXX XXX YRR X
g v ;
a - 1
2% 3 ! 60mW
' _ﬁtaearﬂrjrékﬁk—ﬂ—ﬁ—ﬁ
] ) .
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OFFSET ANGLE 6, {deg)

Fig. 4.9 Detected light intensity Id as a function of the offset angle 60\

for incident light intensities I0 = 30, 60 and 105 mW.

Id as a function of the offset angle 90, keeping I0 constant. The
results are shown in Fig. 4.9, for the cases that I0 = 30, 60 and
105 mW. In Fig. 4.9, we see clearly a hysteresis cycle in Id(eo),

whose bistable region spreads out for larger values of IO' The
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critical value of 10 to obtain a hysteresis cycle was about 20 mW.

4.5 Conclusions and Discussion

In this‘chapter we have studied on a simple optically bistable
system with no optical cavity and found that the behavior of this
system is largely different from ordinary optical bistability
reported so far. As incident light intensity IO is varied, the
present system behaves with pitchfork bifurcation {(or symmetry-—
breaking), which is in contrast with the ordinary optical
bistability with hysteresis. We have shown that the present
optical bistability can well be explained in context with the cusp
catastrophe similarly to the ordinary one, different features being
attributable to the different (orthogonal) cross—sections of the
steady state surface of the cusp catastrophe. In the present
system, a hysteresis cycle can be obtained when one varies the
offset angle 90 oF’the A/8 plate (or the A/4 plate in the system
shown in Fig. 4.?). Namely, both of the first and second order
phase transitions can be observed by varying respectively the
quantities 90 and IO' In a ferromagnetic material, for example,
hysteresis and pitchfork bifurcation in magnetization are observed
when magnetic field intensity is varied and when the temperature is
varied in the vicinity oF.the Curie point, respectively.

Theoretical study has been made on the behavior of the present‘
system under a static magnetic field applied perpendicularly to the
beam axis, and we have found that the magnetization produced
spontaneously by symmetry breaking precesses around the field

without any external periodic forces.

In the theoretical analysis presented in this chapter, we have
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neglected the loss of light intensity by the absorption. Such
simplification may be valid when the laser frequency is tuned on
the far wing of the absorption line, as in the present experiment.
When the light absorption cannot be neglected, the incident light
is subjected to the circular dichroism, in addition to the rotation
of polarization, which makes the polarization elliptical as it is
propagated in the optically pumped medium. Numerical calculations
were made in such cases, and we found that the light absorption
modifies quantitatively the rotation angle 8 or the magnetization
m and critical incident light intensity Icr from those presented
in this chapter, but it does not cause important changes in physics
involved. We found that, when the absorption loss is less than
about 10 % for a single path, i.e. the circular dichroism is not
important and the effect of light absorption can be well described
by a homogeneous loss introduced in the feedback loop.

We have carried out the experiments using sodium vapor, and we
have been able to obtain the evidence that the system shown in Fig.
4.7 behaves with symmetry breaking, or pitchfork bifurcation, when
the offset angle 90 is zero. Furthermore, a hysteresis cycle has
been observed when 90 is uaried, as predicted by the theory.
Experiments using the simpler system shown in Fig. 4.1 are now
under way in our laboratory, and preliminary results show that the
behavior is quite similar to that reported in this paper.

1+ must be pointed out that the present optical bistability
has some similarities to the optical tristability, the behavior of
which was theoretically studied in Chapter 2 and recently cbserved
by Cecchi et al. (1982) and Mitschke et al. (1983) in the
experiments using sodium vapor. Similarly to the present case, the

optically tristable system has a positive feedback loop for the
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intensity differences of two circularly polarized components of
light and it exhibits symmetry breaking and self-pulsing in a
static magnetic field. In the case of optical tristability and
also in the case of ordinary bistability, the optical feedback is
achieved by using a Fabry-Perot cavity and differential gain is
obtained by using the slope of the resonance of cavity. Three
stable states observed at the same incident light intensity can be
described in terms of atomic spin states! spin oriented parallel,
antiparallel to the beam axis, and at random. The random spin
state is unstable in the bfstable region of the present case, as
seen in Fig. 84.2(a). The important thing to note is that the
symmetry breaking takes place simultaneously with a jump in a
doubled hysteresis cycle in the optical tristability, and such
features can be explained in context with the butterfly
catastrophe.

The requirement for the laser spectrum to obtain the present
optical bistability is not so severe. We have to avoid the strong
absorption at the central region of the resonance line, but it is
enough to tune the laser frequency roughly in a relatively wide
range on the far wing. In the case of optical tristability, the
laser frequency must be tuned both on wings of atomic absorption
line and to a foot of a sharp resonance of optical cavity. So, the

single-mode and highly frequency—stabilized laser is required.
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CHAPTER 5

CHAOS IN AN ACOUSTIC SYSTEM

5.1 Introduction

The chaotic or turbulent behavior seen in’a physical systeﬁ
which is governed by deterministic equations has attracted intense
interest recently. Ikeda et al. (1980) have pointed out tBat
chaotic behavior can occur in an optically bistable system which is
described by a differential-difference equation. By the
differential-difference equation we mean a differential equation

with delayed argument; namely an equation in the following form

LB = fee, X8, XCt - 1)), (5.1)
where tp > 0 represents a delay time. The mathematical treatment
of such equatiéns is much more difficult than that of an ordinary
differential equation because it is a kind of functional equation.
But it often appears when we analyze a feedback control system
because the existence of delay in the feedback loop is not rare.
In physiological control system (homeostasis), such delay is
unavoidable. The delay or lag time causes instabilities when one
raises the feedback gain to improve the time response of the
system. When a strong nonlinearity exists in the feedback loop,
chaotic instabilities also occur. Some attempts have been made to
ascribe some kinds of diseases to chaotic instabilities in
physié]ogica] control systems (Mackey and Glass, 1977).

According to lkeda’s proposal, Gibbs et al. (1981) have
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observed such chaos in an optical hybrid device with a delay in the
feedback. In the recent article they showed their system takes the
period-doubling route to chaos (Hopf et al., 1982). It is
surprising that the period-doubling scenario seems to be realized
in many different physical systems.

In this chapter we report the observation of lkeda type
instability and novel period-doubling bifurcations in a simple
ac&ustic system composed of a microphoné, a nonlinear circuit, an

amplifier, and a loudspeaker.

5.2 A Differential-Difference Equation

Here we derive lkeda’s equation (lkeda, 1979) for some

simplified model; a ring cavity containing a very thin nonlinear

NONLINEAR MEDIUM

1 2
E| , ” Er
2=0,L q
2=]

N 7

4 3

Fig. 5.1 Ring cavity containing a thin dielectric medium.

dielectric medium (Fig. 5.1). The position z is measured from
mirror 1 along the optical path and the total length of the ring is
L. Mirrors 1 and 2 have a reflectivity R and mirror 3 and 4 are
per#ectly reflecting. The slley varving envelope of the electric

field &(t,z) satisfies the boundary conditionst



CHAOS IN AN ACOUSTIC SYSTEM 67

e, 00 = (1 - RM2e, & Rece, L), (5.2a)
et L) = RECt - Lo1, g+ etk = D), (5.2b)
Et, 1+ 0) = £t, 1 - 0)el®E) | (5.2¢)
e, 1 - 0) = &t - L, oye7iK (5.2d)

where €(t, 1 ¥ 0) is the electric field at the input (output) of
the medium, EI is the aﬁplitude of the incident light. Equation
(5.2c) means the phase shift causediby the medium is 8(t). From

these eguations we have

—ilkL-0¢t - ==y
e c .

L

£¢t,0) = (1—R)1/2£I+ RECt - 5,00 (5.3)

As for the dielectric medium we assume the dynamical equation:

do(t)/dt = —¥0(t) + BIE(E, 112, (5.4)

where ¥ is the relaxation rate of the medium. This equation means
that the medium has a quadratic dependence of refractive index on
the electric field amplitude. Introducing new variables E(t) =

- BE(e, 0O, A = B - R)EI, B =R, tp = L/c, and #{t) = 8{(t - (L -

R

1)/¢c), we have Ikeda’s equation:

E(t) = A + BE(t - tR)exp{iEV(t) - WOJ}, (5.5a)

v 1 dettdsde = —wle) + 1E(t - tR>|2 , (5.5b)

where ) is the cavity mistuning parameter.
In the case where B << 1 , A2B ~ 0{1), Egs. (5.5) are

simplified as
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v lde(t)/dt = —e(t) + AZ(1 + 2B cosle(t - t5) = 9433,  (5.6)

2 2

and E(t) is given by IE(t)I* = A°{1l + 2B coslCy(t —tR) —VOJ}‘ This
equation is essentially the same as that for the acoustic system we

study in this chapter.

5.3 Experimental Setup

SP

AMP
FULL-WAVE RECTIFIER

Fig, 5.2 Experimental setup. A microphone (MIC), a full-wave rectifier,
an amplifier (AMP), and a loudspeaker (SP) form a feedback loop. An example

of the chaotic-sound waveform is also shown.

The experimental setup of our acoustic system is shown in Fig.
5.2, The time delay tR which plays a key role in inducing
instabilities corresponds to the propagation time of sound from the
aspeaker to the microphone which are faced about 13 cm apart (tR
~ 0,37 ms). The other key element is a nonlinear circuit which has
at least one peak in its input vs output characteristic curve. The

most popular and easily constructed circuit having such a peak is a
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full-wave rectifier.

We could hear chaotic oscillation when the amplifier gain was
high enough, whereas without the rectifier only periodic
oscillations could be observed. In the following experiment to
observe the period-doubling bifurcations we used a rectifier with
operational amplifiers (Graeme, 1973) which has more precise
characteristics than the conventional two—diode rectifier in Fig.
5.2. The output Vy and thebinput Vx are related by the equation Vy
= —IVx + Uxol + VyO’ where va and VyO are the input and output
offset voltages respectively. As described later, adjustments of
the offsets are needed to observe the period—-doubling
bifurcations.

By the analogy of our system to those in Refs. 1-3, we

introduce the differential-difference equation

¥ a;x(t) = -x{t) + uFl(x(t—tR)), (5.7
with
Fl(x) = -lx + 0.5 + 0‘5’ (5‘8)

where x = V/ZVO, V is the voltage fed to the speaker, VO is the
input offset of the rectifier reduced to the speaker voltage, and u
is the loop gain. The response time rﬂl of the amplifier was set
at about 0.15 ms.

In the experiment we set VyO = on so that the condition
F1(0) = 0 is satisfied, which assures that x = 0 is an equilibrium
point. The sma]]—amp]itude oscillation is expected to be almost
symmetric with respect to the equilibrium point and to have a small
dc component. Thus we can neglect the effeét that the dc component

cannot pass through the feedback loop in the actual system.

Equation (5.7) has the nonlinearity F1 with a sharp peak
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whereas Eq. (5.6) treated by lkeda et al. (1980) and Gibbs et al.
{1981) have round smooth peaks which are approximated by a
quadratic function. In the theory of one-dimensional maps, these

two types of function may be viewed as representatives (0tt,

1981).

5.4 Experimental Results

Our system shows various modes of oscillation, such as

“1y (.1.04 ms),

periodic oscillation with period ~ 2(tR + ¥
oscillations with much smaller period, oscillations modulated with
long period (~ 10 ms), chaotic oscillation, or intermittent chaotic
oscillation, some of which are not expected from Eq. (5.7).

Perhaps this is because ué have neglected in Eq. (5.7) the low-
frequency response of the system, phase shifts of the loudspeaker
and the microphone, and the room acoustics. The appearance of each
mode depends complicatedly on parameters such as the amplifier gain
or the position of the microphone. However near the threshold we
could observe the period-doubling bifurcations to chaos with good
reproducibility,

We show an example of such bifurcations in Fig. 5.3. As the
amplifier gain is increased, periodic oscillation (Fig. 5.3(a))
begins, which we may call ‘period-two’ oscillation, for its period
is about 2(tR+v—1). Next the period doubling to period four (Fig.
5.3(b)) occurs. The bifurcation to period-eight (Fig. 5.3(c))
follows, but careful adjustment is needed to observe it. Usually
the period-four seems to bifurcate directly to the chaotic

oscillation (Fig. S5.3(d)).

Sometimes in the course of the bifurcations, low-frequency
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Fig. 5.3 The output voltage of the microphone. As the amplifier gain
increased, {(a) period-two, (b) period-four, (c) period-eight, and

(d) chaotic oscillation appear successively.

osci]lafion (~ 100 Hz) begins to be superimposed and the
bifurcation series is interrupted. Such a low-frequency
instability can be removed by decreasing the low-frequency gain of
the amplifier.

Figure 5.4 shows the bifurcation diagram obtained
experimentally. The horizontal axis of a cathode-ray tube (CRT) is
swept by the ramp voltage applied to the voltage—controlled
amplifier (VCA) which is inserted in the feedback loop to vary the
parameter u slowly. The output of the microphone is applied to the
vertical axis.

The horizontal trace on the left means that no oscillation
takes place for small values of u. Next we see the period-two
oscillation builds sudden\? up to a level determined by the offset
of the rectifier. The top peaks and the bottom peaks of the

period-two waveform (Fig. 5.3(a)) are seen as bright edges, whose
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Fig., 5.4 ({a) Bifurcation diagram, i.e., output voltage vs loop gain u
which is swept by VCA. (b) Same as (a) except the beam intensity of the CRT

is increased to see the chaotic region.

separation corresponds to the amplitude of the oscillation. The
enhancement of the edges takes place because the vertically
oscillating beam—spot of the CRT moves slowly there.

As uw is increased one finds each edge splits into two branches
which correspond to the four principal peaks of the period-four
waveform in Fig. 5.3(b). The inmost two excess branches due to the
subpeaks are also seen. The interval of the period-eight is too
narrow to observe.

Next there comes the chaotic region which can hardly be seen
in Fig. 5.4(a) for no enhancement on the CRT occurs. Increasing

the beam intensity we can see the chaotic region (Fig. 5.4(b)).

5.5 Comparison with Theory

Let us return to Eq. (5.7). In the limit th << 1, namely
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when the time response of the system is extremely fast, Eq. (5.8)

is reduced to a difference egquation, or a one-dimensional map?

Xn+p = HFq(x ). (5.9)

It is well known that when F1 is replaced by a quadratic function
such as F2 = -x{x - 1), the_bifgréation diagram shows a series of
pitchfork bifurcations at W = w_ with period doubling by 2X, k =
1,2,... . There is an accumulation point u, to which {u 3
converges, above which the cbgétic beHavioF‘appears‘ This is a
route to chao§ seen in variouﬁ'physical éystems (Appendix D).
Anothef feature éeen in the diaéram is baﬁd merging or inverse
bi?urcatiﬁn of the chaotic bagag‘i As,ugis increased, the chaotic
bands merge in pairs succeséﬁvg]& unti].fu]jy developed chaos
appears. Schematically the bifurcations can be summafizéd és
follows: PO i P1 % ... * {onset of chaos) * ... * P(i) *ZP(O)’
where Pk and P(k) represent the region of period—2k and that of
period-2k chaos respectively. ‘ ' »

For the map F1, which contains the absolute value function,
the bifurcation diaéram is quite diFFereﬁt. In Fig. S‘S(a), we
plotted the iterative values of X of Eq. (5.9) for eachiu.‘ Ué can
see the bifurcations: P0 »> (onset of chaos) * ... = P(i) > P(O)'
Namely, the bifurcation points W (k =1, 2, ...) are degenerate to

a point u = 1, Thus the period-doubling bifurcations can’t be seen
.and chaotic oscillation begins suddenly. The period-doubling
bifyrcat;ons are observed experimentally in our system in spite of
the nonlinearity Fl' Perhaps it is because the condition tR¥ >> 1
to reduce Eq. (5.7) to Eq. (5.9) is not satisfied in our case.

We solved Eq. (5.7) numerically to see the effect of finite

response time 1_1 on the bifurcation diagram. The diagrams in Fig.
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Fig. 5.5 (a) Bifurcation diagram for the difference equation (5.9): 150
successive plots of X after preiteration for each u. BiFur;ation diagrams
for the differential—difference equation (5.7) with (b) tR* = 9.0, (c) tpv
= 6.0, (d) th = 3,0, The figures are obtained by plotting the peak values

of the stationary solution during SOtR for each u.
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5.5(b)~(d) were obtained as follows. For each u, we calculated the
stationary solution x{t) to Eg. (5.7) during SOtR‘ Then we picked
up times tp where dx/dt(tp) = 0 and plotted the values x(tp).

41 though, as in the diagram obtained experimentally, there appear
spurious branches due to subpeaks in x{t), we can see how the
bifurcations proceed as v increased.

In the case of tpy = 9.0, the diagram {(Fig. 5.5(b)) is fairly
close to Fig. 3.5(a) except for the portion just after the first
bifurcation. There appears the period—-two region (Pl). The width
of the upper branch comes from the subpeaks of the waveform not
from the chaotic behavior. Above the second bifurcation we can see
some band mergings of the chaotic oscillation as in Fig. 5.5(a).

It is interesting to note that the chaotic regime is changed
to the ordered regime by the effect of ¥. The newly appeared
region may be P(l) not Pl‘ The discrimination between them by
numerical methods is very difficult but there is a reason to
believe that it is P1 as described later.

As increasing th, we can see the P1 region extends and the
transition to chaos is delayed. UWe also see the bifurcation to P1
and that to PZ {Fig. 5.5(c)). We note Fig. 3.5(d) for tRT = 3 is
qualitatively similar to the diaéram obtained in our experiment
where tp¥ is estimated to be . 2.5,

The period-doubling bifurcations seen in Fig. 5.5(d) convince
us that the newly appeared region is Pk (k = 1,2,3) rather than

P

(k) because the latter bifurcate inversely as u is increased.
Another interesting feature in Fig. 5.5 is that as tRY is .
decreased the periodic regions (Pk) extend at the expense of the

chaotic regions (P(k) Y. In Fig. 5.5(a) we see only PO as periodic

region, whereas in Fig. 5.5{(d) there seems only P(O) as chaotic
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region.

5.6 Concluding Remarks

In summary, we have observed the lkeda typeé instability in a
simple acoustic system. The system bifurcates to chaos through
some period doublings. The numerical analysis well explains the
novel ‘bifurcation diagram observed experimentally and shows that
the bifurcation structure is sensible to the time response of the
system., One of the matters to be clarified is the detailed
structures near the onset of chaos, for example, whether the
bifurcation series is truncated or not, and if not, what is the
value of the Feigenbaum constant.

Inclusion of the low-freguency response to Eq. (5.7) is
expected to give a better description of our system. It should be

generalized as {(Schumacher, 1983)

t
y(£) = J 6(t - TIF(y(t))dT, (5.10)
o

where y(t) is the voltage output of the microphone, F{y) is the
nonlinear function, and G{t) is the owerall impulse response from
the amplifier input to the microphone output. The impulse response

satisfies
G{t) = 0 {(t £ tR). (5.11)

Schumacher (1981) used the same type of equation in the analysis of

autonomously oscillating musical instruments such as a flute and a

violin.
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CHAPTER 6

SYMMETRY~RECOVERING CRISES IN OPTICAL BISTABILITY

6.1 lntroduction

The phenomenon of chaos has been the subject of intense
interest in the last few years., It is now recognizéd as a common
phase of a nonlinear dynamical system in addition to the
conventional phases of stationary equilibrium and periodic (or
quasi-periodic) oscillation. Since lkeda et al. (1980) have
predicted chaotic behawviors in an optically bistable system, many
theoretical and experimental studies have been made (lkeda and
Akimoto, 19823 lkeda et al., 1982; Gibbs et al., 19813 Hopf et al.,
1982; Derstine et al., 19823 Derstine et al., 1983; Carmichael et
al., 19833 Carmichael, 19833 Nakatsuka et al., 1983). Optical
system is a suitable method with which to study nonlinear phenomena
including chaos because it has tractable theoretical models and
precise experiments are possible. If necessary, we can add
moderate complexities to it (Poston et al., 1982; Moloney and
Gibbs, 19823 McLaughlin, 1983). Along this line, we have proposed
an optical system which utilizes interactions between right- and
left-circularly polarized light beams through a J = 1/2 to J = 1/2
transition (Kitano et al., 1981la; Chapter 2). We have shown that
symmetry breaking and optical tristability are possible for this
system. Since then, various kind of phenomena have been predicted
(Carmichael et al., 19833 Carmichael, 1983:.Savage et al., 19823
Arecchi et al., 1983) and some of them have been demonstrated

expérimenta]]y {Cecchi et al., 1982; Mitschke et al., 19833 Sandle
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et al., 1983).

In Chapter 4, we proposed a new version‘of such polarization-
related bistable system that utilizes optically induced Faraday
effect and needs no optical cavify (Yabuzaki et al., 1983). Ve
also performed the experiment by using a sodium cell and a multi-
mode dye laser tuned to a wing of the D1 line (Yabuzaki et al.,
1984). An interesting feature of the system is that it exhibits
the most‘typica) pitchfork bifurcation thch breaks the
po]arizétion symmetry. Namely the symmetry—breaking bifurcation is
of a supercritica] type, while in the triétab]e system discussed in
Chapter 2, it is of a subcritical type. In this chapter we
investigate the:de]ay—induced chaos in this opticé] system. When
we increase fhe input light intensity passing over the first
biFurcation,.a cHaotic state having polarizatioh asymmetry
appears. If we increase the intensity stil) more; fully dewveloped
symﬁetric chaos is reached. Thus we are interested in the
bifurcation uhichvlies between those two states. As we will see
later, the symmetry recovering occurs through a sudden change of
the chaotic attractors. Recently Grebogi et al. (1982; 1983) have
introduced a new classiof bifurcation named "crises of chaos, *
where fhe size of chaotic attractor suddenly changes. We will éﬁou
that in our case the symmetry is recovered through the crisis.

In Sec, 6.2, we show the setup of the system and derive the
system equation which is a one-dimensional differential-difference
equation having symmetry with respect to the exchange of two
circular polarizations., In Seé‘ 6.3, we discuss a one-—
dimensional-map model and show a simple example of symmetry-
recovering crisis. In Sec. 6.4, we describe the experimental setup

of an electronic circuit to simulate the optical system. In the



SYMMETRY~RECOVERING CRISES IN OPTICAL BISTABILITY 79

experiment we cbserve three distinct types of symmetry-recovering
crises. In Sec. 6.5, we introduce a two-dimensional-map model to
explain the experimental results. Although the model seems to be
oversimplified to approximate our system in an infinite-
dimensional space, it can reproduce all three types of crises. We
present the strange attractors near crises for each type, and
discuss how they recover the symmetry. As we will see, unstable
fixed points play important roles in crises. So we show the
classification of fixed points of two—dimensional map in Appendix
E. Finally, we summarize our results and discuss the remaining

questions.,

6.2 System Equation

CELL A/8 M A/8
El f —’ET | (4 ﬂ E — E"i _______
= e U P om

P e ——
L.
Yy

Fig, 6.1 Schematic i}lustration of the optically bistable system without

an optical cavity.

We consider an optically bistable system shown in Fig. 6.1.
It is largely the same as the one in Chapter 4 except that a delay
in the feedback is introduced by taking a large‘distance L between
the cell and the mirror (M), Fo1lo§ing thé ﬁode] adopted for the
previous chapters we consider spin-1/2 atoms which are optically

pumped by the incident and the reflected light beams which are
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tuned to the wing of the resonance line. The state of the ensemble
of atoms can be characterized by the magnetization component Mz
along the optical axis, which is proportional to the population
difference between m, = 1/2 and m, = -1/2 sublevels in the ground
state. The time evolution of Mz is described by the Bloch
equation?
iﬂg =~ (T +' I, + I _M_ + (I, - I_OM (6.1)
dt T T |
where T is the relaxation rate of the magnetization and I, are the
o, light intensities which are normalized so as to give pumping
rates. If I, (I_) is large enough compared to I_ (I ) and T, all
atoms are oriented along the +z (-z) direction and the maximum
polarization Mz = MO (—MO) is attained.

The absorption coefficients o, and the wavenumber ky for o,

light are determined by the normalized magnetization component m_ =

z
MZ/M0 as
oy, = all F mz), (6.2)
ki = ko + k(1 F mz), (6.3)

where @ and k are the absorption coefficient and the-incremental
wavenumber for the unpolarized (mz = 0) medium respectively, and k0
is the wavenumber in a vacuum. In the dispersion regime we can
neglect the absorption losses.

The polarization plane of the linearly polarized incident
light is rotated by an angle © when the difference between k+ and

k_ exists (Faraday rotation). If we represent the incident light
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field as EI = on, the transmitted field gT is given by
ET = 4Tb(x cos 8 + y sin ), {(6.4)
O(t) = (k_ - k172 = mz(t)nl, (6.5)

where 1 is the length of the cell and ; and ; are the unit
vectors. |

The transmitted light is reflected by the mirror M set-at a
distance L and is fed back to the cell. Thus the feedback is
delayed by the amount th = 2L/c. In the feedback path, a A/8 plate
is inserted whose optic axis is oriented to the x axis. By its

action, the polarization state of the light fed back to the cell

becomes
By = Mg, + Mg e, | (6.6
IRi = RIOE1 + sin 206(t - tR)3/2f ‘ _ ’(6‘?)

where o, = (x ¥ iy)/¥Z and R is the reflectivity of the mirror.
The o, components of the reflected light suffer complementary
modulations according to sin 28(t - tR)‘ Experimentally, the
polarization state of ER can be observed by monitoring the outpqt
light transmitting through the mirror M and an auxiliary A/8
plate. We can also monitor the polarization state éT by setting
the fast axes of two A/8 plates to form right angles. From Eas.

{6.7) and (46.5) we have the light intensities in the cell
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I, = (1572) [{1 + R) £ R sin 2eim_(t - tR)J’ : (6.8)
Substitution Eq. (6.8) into Eq. (46.1) gives the system equation:

dm
—Z = - (T + 21dm_(t) + Igsin 2cIm_(t - tp), (6.9)

dt

where we set R = 1. Changing the time scale by t' = T—l(r + 210)t
and introducing a new wvariable X{t’) = ZR]mz(t), we have a

normalized form:

1 X

= =X(t’) + uw sin X(t' - t5°), (6.10)
dt’ . R

where u = 2e110/(T + 21> and 5" = v N(T + 2I)tp. In the case T
>> IO’ M is proportional to I0 and tR' is independent of IO‘ In
the experiment we can vary tRl' by changing the length L or the
relaxation rate I'. Hereafter we drop the primes in t° and tR"
When th = 0, Eq. (6.10) is an ordinafy differential equation in
one dimension, while in the 1imit tp¥ >> 1, the system can be
described by a difference equation as described in the next
section. Therefore thé parameter th represents whether Eq. (6.10)
is close to>a difference equation or to a differential equation.
Nofe that Eq. (6.10) is invariant under the transformation X -

-X, which corresponds to the exchange of the roles of the spin-up

and —down atoms, and the right— and left—circular polarized light.

6.3 One-Dimensional—-Map Model

In the limiting case tRx >> 1, we can formally reduce Eq.

{6.10) to the difference equation:
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Xopq = W sin X, (6.11)

which defines an iteration of one dimensional map. As is well
known {(Ikeda, 1979; Hopf et al., 1982; Chapter 5), this eguation
give an adequate qualitative prediction for the bifurcation

structure for Eg. (6.,10) with th >> 1.

4.0}

zok i,
Xn I L
} o0 \
-20

-4.0 l

10

Fig. 6.2 Bifurcation diagram for the map, Eq. (6.11). For a given value

of U, an initial point is chosen and its orbit is plotted after preiteration
to avoid transient phenomena., The same procedure is repeated for slightly
increased value of u, where the last point is used as the initial value. At -
W= uy = 1, a symmetry-breaking bifurcation occurs. For u > Ug only the
negative branch is pictured. The positive branch can be obtained by the

transformation X 2 —-X. At n = Uenys @ symmetry recovering is seen.

Figure 6.2 shows the bifurcation diagram for Eq. (6.11). For
u < Ug = 1, there exists only one stable fixed point X = 0, At n =
Uy @ pitchfork bifurcation occurs at which the solution X = 0
becomes unstable and a symmetry—breaking transition takes place.
This symmetry breaking can be seen also for the case th =0

{Chapter 4). We pictured in Fig. 6.2 only the negative branch
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after the bifurcation. As u increases, each asymmetric branch
undergoes period doublings followed by chaos. For u < Yegy? the
chaotic orbit.is confined to the regions X > 0 or X < 0, namely,
the output state is chaotic but still elliptically polarized to
either direction. At u = Yegy? the chaotic band suddenly doubles
its width, There the two oppositely polarized bands collide to
form a single band. Thus the symmetry broken at u = ¥y is
recovered at u = Uegy.

The sudden change may be viewed as "crisis" of chaos named by
Grebogi et al. (19823 1983). The crisis occurs when a strange
attractor collides with a coexisting unstable fixed point or
periodic orbit. In our case the situation is somewhat degenerate
due to the symmetry, namely, a strange attractor collides with an
unstable fixed point X = 0 and the other coexisting strange
attractor simultaneously. We call the phenomenon ‘symmetry
recovering crisis.’

Figures 6.3(a) and {(b) show examples of chaotic orbits for
cases before (n N u(o)) and after (u 2 Yig>y? the crisis. The short
time behaviors are the same for both cases, but in the latter
crossover to the other polarized state occurs sometimes. Accbrding
to Grebogil et al. (1982; 1983), the average lifetime Tau of each

polarized state is estimated as

_ -1/2 ’
Tao (u u(o)) . | (6.12)

We confirmed the estimation numerically.

6.4 Simulation by Analog Circuit

In order to see how the symmetry recovering crises for Eq.
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(a) Fig. 6.3 Waveforms of Eq.
3

(6.11) for (a) u = 3,11
125
(before the crisis) and (b)

u = 3,17 (after the

crisis). Bar graph of X
)(rlO 250 n

as a function of n for 375

iteration after

preiteration.
375

1D T Y T S I N A B B R A AR N N |
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n

125

3
_X"O 250
-3
:
3
-3}
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o . 25 50 78 100 125
n

(6.10) appear we constructed an analog circuit which simu]ate§ Eé.
{6.,10), Figure 6.4 shows the experimental setup. The nohlinear |
function sin X in Eq. (6.10) is approximated by X - X3 andléea]ized
by two analog multipliers (Intersil ICL8013) and an operational
amplifier. The delay tp is given by a digital delay line equipped
with a 12-bit A-D, a D-A converter, and a 4096-word buffer. The
cutoff Frequency ¥ of the low-pass filter is set at 2 Hz when we
record waveforms on a strip chart recorder. UWe can conveniently
find bifurcation points or crises on a CRT instead of the recorder
by setting ¥ ~ 102 - 103 Hz and shortening tR correspondingly.

By changing tR’ we could find three distinct types of



86 ‘ CHAPTER 6

AMPLIFIER DELAY LINE tg

R
98 A-D |BUFFER | D-A
V

Xt / X(t-t)
LOW-PASS FILTER  NONLINEAR CIRCUIT
RECORDER

Fig. 6.4 Experimental setup. The analog circuit simulates the

differential-difference équation (6.10).

symmetry-recovering crises. We named Type I, II, and III according
to the order of the values tR for which each type was cbserved.

The critical value Yeg) for crisis decreases as th increases.

Iype I: Before the crisis, rather regular pulsing is observed
(Fig. 6.5(a)). Ve can see damped oscillations near X = 0 between
the bu]ses, whose durations are‘different from pulse to pulse,
Such osciT]ation is ndt observed when u is Fér below Yoy and
appears as u approaches gy After the crisis (Fig. 6.5{b)), the
crossover to the other polarized state necessarily occurs through
the damped oscillation. Thus th¢ oacillation may be viewed as a

precursor for the crisis and also as a crossover transient.

Iype 11t The waveform before the crisis (Fig. 6.6(a)) is
fairly random. The bursts of periodic oscillation are precursors
for the crisis.  They appear at random and their duration is also

random. After the crisis (Fig. 6.6{(b)), the crossouver occurs
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X(t) | BERE T
bl TR
. |

° TRV
VIV

A

6s

Fig. 6.5 Waveforms (a) before and (b) after the symmetry-recovering crisis
of Type 1. Parameters: tR = 0,41 s, ¥ = 2.0 Hz, (a) w = 4,263 (b) u=

4.38.
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(a) before and (b) after Type Il crisis. Parameters:

Fig. 6.6 Waveforms

g = 2.05 s, ¥ = 2.0 Hz, (a) u = 2.96; (b) v = 3.02.
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——p

60s

Fig. 6.7 Waveforms (a) before and (b) after Type III crisis. Parameters:
tg = 4.10 s, ¥ = 2.0 Hz, (a) u = 2,773 (b) u = 2.7%9.

through the burst of oscillation.

Type 111: At a glance there seems to be no differences between
Figs. 6.7{a) and 6.7(b). However the waveform in Fig. 6.7{(a) shows
period-4 chaos which has an asymmetry with respect to X3 the upper
boundary is flat while the lower is not. In the middle of Fig.
6.7(b) we can see a crossover. No marked precursory phenomena nor

crossover transients are seen for this type.

6.5 Two-Dimensional—-Map Model

By the analog-circuit simulation we have confirmed symmetry—
recovering crises exist for Eq. (6.10), as predicted by the one-
dimensional-map model. However, the waveforms at the three

types of crises were very different from that for the one-
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dimensional map. In this section we introduce a two-dimensional
difference equation and show the three typés'o?*crises dccqr for
the equation with appropriate values of parameters.,

We formally discretize Eq. (6.10) as

n+l n

L e TR e A P (63

where N is an integer, 8t = /N, X_ = X(nt), and FOX) = X(1 -
Xz). By introducing a parameter a = ¥At, we obtain the following

(N + 1)-dimensional difference equation:

X

feg = (4T X+ awF(X__ ), (6.18)

In the limit o » 0, N and tR = constant, Eqg. (é‘ldi apbré%im;tes’
the differential equation (6.105 ui£h’£R = 0. For the cagse o« = 1,
Eq. (6.18) reduces to the one—diﬁensiona] differeﬁce éqdafion
{(6,11)., So @ is a parameter uhich qonnects a difference equation
and a differential equation as tRi does in Eq. (6.10).

Here we crudely set N = 1 in Eq. (6.14) and obtain.a two

dimensional difference eéuation (Kauakaﬁi, 1979):

Xn41 =1 - c)Xn'+‘muF(Yn), : . ‘ (6(153?
Yn+1 = Xn’ ' (6.15b)
where Yn = xn—l‘ The equation is invariant under the.

transformation (X, ¥Y) = (=X, -Y).
Surprisingly we could find the three types .of crises in.this .-
oversimplified equation. In Figs. 6.8, 6.9, and 6.10, we show the:

waveforms near the crises. The clear correspondences to Figs. 6.3;
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Fig. 6.8 Calculated

. waveforms (a) before and

(b) after Type I crisis.
Graph of Xn of Eq. (6.13)
for 750 iteration after

preiteration. Parameters:

a

0.1, (a) u = 10.24; (b)

w = 10.30.

6.6, and 6.7 are seen. FEspecially the same precursors and

crossover transients appear for Types 1 and 1I. Type I was found

for smaller values of a (near differential-equation limit), Type

111 was for a i 1 (near difference—equation limit), and Type Il was

in the middle. The order is consistent with the results in the

previous section.

As described in Sec. 6.3, for the one-dimensional map, the

symmetry recovering crisis is undergone when a strange attractor

collides with an unstable fixed point and the other strange

attractor. Here we investigate the situation for the two-

dimensional cases. Figure 6.11, 6.12, and 6.13 show the strange
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(a) . Fig. 6.9 Calculated’
waveforms (a) before and

(b) after Type II crisis.
Parameters: a = 0.5, (a)

Cw = 3,583 (b) u = 3.57.
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n

I R A I A N I R |
o 50 100 150 200 250
n

attractors near the crises of Type I, 11, and 11l respectively,

Type It Figure 6.11(a) shows the strange attractor just'beforé
the crisis. The other coexisting attractor is obtained by the
transformation (X, Y) » (=X, -Y). The two limit-cycle like
attractors are about to touch each other near the origin' A round
trip of the cycle forms a pulse in Fig. 6.8. At u = Yigy? tqo
attractors are merged and for u < B.gys a@n orbit on an attractor
can go over to the other.

Figure 6.11(b) is an enlargement of part of Fig. 6.11(a). The
two attractors are clearly separatedq The regular structure of the

attractors is a reflection of the existence of a fixed point (0,0)
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@ | A Fig. 6.10 Calculated

o i » 250 " waveforms, (a) before and

-1 (b) after Type 11l crisis.

1} Parameters: a = D.85, (a)
X o il 800w =.2.944; (b) u = 2.946.
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. of Eq..(6.15). By the stability analysis, we can see that the
eigenvalues Pys Py of the linearized map at (0,0) satisfy the
reTéffons: —1 { Py = —0.66.< 0, 1< Py = 1.56, The corresponding
eigenQeétbrs‘are Zi = —0;66;'+ ;, 32 = 1;56; + ;; According to the
classiFicafion of the Fixed points in Appendix D, the point (0,0)
ié DR1 for fheseiparamefér values. To‘simblify the sitdation, ué
consider a composite map.T(Z) =(TaTvuhere T is;a map deFined by Eq.
(6.15)., Tge point is a}séddle (02) For.T(2) since 0 < 912 <1 <‘
P22‘ Ue use schematic illustrations in Fig;'s.ld.fo give general
d{;cussiéﬁé. The pointIS”is a'séddlé} énd Cs and Cuvare.thezgtab]e

. b 4 . - ‘ o K s s ) R . Y :
and unstable invariant curves respectively. The eigenvectors uy
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Fig. 6.11 l(a) Chaotic attractor for Eq. (6.15) before Type I crisis. An

nitial point is chosen and its orbit is plotted after preiteration. The

[%

other coexisting attractor is obtained by the transformation (X, Y) = (=X, -
Y). Parameters: a = 0.1, u = 10,24,
(b) Blowup of the boxed region in (a). Both coexisting attractors are

plotted. A cross represents an unstable fixed point at (0, 80). Parameters:

‘a = 0.1, u= 10.244.
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and 32 are tangent to C_ and C, at S. When u < Yoy (Fig.
6.14¢ad)), Cs is also thechundary'separatihg the basins of
attraction for the two attractors. The region Rl’ which is mapped
from somewhere in-the attractor, is mapped to R2, toARa, vee s
successively, and at last repelled back along C . When the crisis
is reached, Rl touches the boundary Cs’ as a result, Ri (i =
2,3544.) touch Cs and R, touches to Sf As seen in Fig. 6.14(b),
for u Z Yegy? points in R1 over CS are repelled over to the other
attractors along Cu after some iterations of the map.

Near the crisis, a point mapped c]ose'to-Cs in R1 will need
many iterations to be repelled away from S, naﬁe]y, the orbit is
traﬁpéd to S temporarily.  If S is a period-n point (a fixed point
for T(h)), one will observe n—periodic oscillation with some
duration. SucH phenomena will be séen as precursor of crisis when

< ' . >
"o~ u(o) and as crossover transient when u 2 Yoy

ngerl .t A wide-spread attractor is seen in Fig. 6.12(a). The
other coexisting attractor lies symmetrically. The touch occurs
near péribd—Z points (£0.39, F¥0.3%9), whose stability is Dz‘ Figure
6.12(b) show a blowup, where we see the samé structure as in Fig,
6.14(a). We can hardly see the regular structure in Fig, 6.12(a)
becaﬁsé u.is not éo close to Yipye The bursts of oscillation seen
in Fig. 6;9 mean that the orbit is trapped to the period-2 points.
The closer the point is dropped to the stable invariant curve, the

longer the regular oscillation continues,

Type 111t The situation is rather complicated than in Types 1
and I1I. Before the crisis, two Four—piecé strange attractors are

coexisting. In Fig. 6.13(a), only the attractor (Al, A2,VA3, Aa)

v

is pictured. The other attractor (Al', Az', A3 s Aa') is obtained



0.2 ;
-0.6

Fig. 6.12 (a) Chaotic attractor for Eq. (6.15) before Type Il crisis. The
other coexisting attractor is obtained by the transformation (X, Y) = (-X, -
Y). Parameters: a = 0.5, u = 3.51,

(b) Blowup of the boxed region in (a). Both coexisting attractors are
plotted. Parameter u is closer to LYS) than in (a). A cross represents one
of unstable period-2 points. at (+0.3%9, ¥0.39). ‘Parameters: a¢ = 0.5, u =

3.541.
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(a)

“ (b)
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Fig. 6:13 (a) Four-piece chaotic attractor (A;, A,, Aj, A;) for Ea: (6.15)
before Type 111 crisis. The other coexisting attractor Abu\. DN\. >w‘. »b\v
is obtained rk the transformation (X, Y) 2 (=X, -Y). Parameters: a = 0.85,
w = 2.93. .

(b) Blowup of the boxed region in (a). Parameter u is above the critical
value for the crisis, therefore attractor pieces are merged to form a two-

piece attractor. Parameters: a = 0.5, u = 2,946,
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(a) Fig. 6.14 Schematic
Cs illustration for crisis of

chaotic attractor through a
saddle point S. (a) Before
and (b) after the crisis,
the regions Ri are mapped
to Ry,q. C, and C,
represent the ;tab]e and
unstable invariant curves

of S respectively,

by the transformation (X, Y) » (=X, -Y). An orbit cycles as Al »
Ay > Ag > Ay > Ajoras A" > A 2 A" > A 2 AT, and g?ves
period-4 chaos as in Fig. 6.10(a). The flat boundary in the
waveform comes from the fact that the attractor pieces Ad and Aa'
have narrower width in the X direction than the other piecés.

After the crisis occurs, the two attractors are merged as seen
in Fig. 6.13(b). To see how the merging occurs a further blowup is
given in Fig. 6‘15‘ Between A3 and Az', there exists an invariant
curve Cy which forms a part of the basin boundary before the
crisis. We can see that the regions Ri (i =1, 2, f“> are mapped

T(a). In the course of iterations of the map, the

to Ri+1 by
regions are stretched in the direction across the curve C, and
their tips are attracted to AZ'. The regions Ri (i > 12) can’t be

seen for the points are so dispersed by the stretching.
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Fig. 6.15 Blowup of part
between Ag and A2' of Fig.
6.13(b). Parameter u is

above Higye The regions Ri

are mapped to Ri+1 by
T(A). C represents an
unstable invariant curve.

Parameters: a = 0.85,

w =2,2447.

The configuration of Ri along C can be understood as follows.

Restriction T(a) to the invariant curve C gives a one—dimensional

unimodal map which exhibits period-2 chaos. So the configuration

of Ri is somewhat erratic, although we can group them into (R2n—1)

and (Rzn) (n = 1’ 2, o‘o)'-

It is seen, from the theory of unimodal map, that there exist

infinite numbers of unstable fixed points on C; one URd, two URS,

four UR
(k =

16

s ++s Therefore we may say the crisis occurs through URk

2n, n =0, 1, 2, +..). Here, however, we are tempted to

modify ghe Grebogi’s definition of crises as 'a collision of a

chaotic attractor to the basin boundary.”

6.6 Conclusions

In summary we have investigated the symmetry-recovering crises
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of chaos in a spin-related optically bistable system. Through the
crises, chaotic states having the polarization asymmetry, uwhich is
inherited from the first bifurcation, jumps back to a symmetric
state. We hawve found three distinct types of the crises by
changing the parameter tpv. A1l of the waveforms near these crises
are very different from that for the one—-dimensional ~map model
which has been used to analyze differential-difference equations
such as Eq. (6.10). UWhereas a two—dimensional-map model we
introduced gives good qualitative explanations to the three types
of crises.

As Grebogi et al. (1982; 1983) said, crises occurs when a
chaotic attractor collides with an unstable fixed point or an
unstable periodic orbit. In our cases of Types I, II, and III,

collisions to the unstable fixed points of types DR1, Dz, and U

de
(k = 2°) occur. For Types 1 and 11 unstable fixed point ﬁas a
stable invariant curve in addition to an unstable invariant curve.
The stable curve forms a part of the basin boundary which separate
the paired chaotic attractors before the crisis. Along the stable
invariant curve, regular sfructures are formed just before and
after the crisis. For Type 111, a one-dimensional map on the
invariant curve, which yields chaos, gives marked structure to the
strange attractors near the crisis.

Perhaps there exist other types of symmetry-recovering crises
than those we treated here. {(For example Fig. 3(c) in Arecchi and
Lisi (1982) suggests another type which is close to Type 1I11.)
Some of them may need models in higher dimensions. Even for such
cases, types of the unstable fixed point will characterize the

crises. Statistical behavior near each crisis such as Eq. (6.12)

should be investigated.
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Finally we estimate experimental parameters to observe the
phenomena in an all-optical system. The Na system of Chapter 4
with which we have observed the symmetry-breaking bifurcation
should be modified. The delay tR can be provided by an optical
fiber with sufficient length L. We see from Eq. (6.10) and the
requirement tRv Z 1 that the required power density I0 is inversely
proportional to tps or L. For L =1 km (tR = 6 us), IO is
estimated to be 1 . 10 U/mmz, which is not unrealistic value

considering the use of a multi-mode laser.
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CHAPTER 7

CONCLUSIONS

In this thesis, theoretical and experimental studies have been
made on the nonlinear phenomena which appear in the spin-related
optically bistable and tristable systems. It has been shown that
inclusion of polarization effects brings various new features which
are not seen in the conventional bistable systems. In particular,
the symmetry with respect to the light polarization plays an
important role.

In Chapter 1, we have presented a short review of the
theoretical and experimental studies on optical bistability. We
have mentioned some phenomena which attract attentions and pointed
out that the optical bistability is acquiring importance as a model
to study nonlinear dynamicé. We have also described an optical
pumping process by using a simple atomic model and showed that it
brings about nonlinearity in optical characteristics of the
medium,

In Chapter 2, we have investigated the static behavior oF a
Fabry—-Perot cavity containing atoms with degenerate Zeeman
sublevels in the ground state. It has been shown that when the
intensity of the linearly polarized incident light is increased, a
symmetry—-breaking bifurcation occurs at a critical level. Above
the threshold, the output light turns to be circularly polarized in
either direction. The symmetry breaking is of a subcritical type
and therefore a double-loop hystersis appears. The behavior of the
system can be interpreted in terms of the butterfly catastrophe,

when we wary the right- and left—circular components of the input
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light independently.

In Chapter 3, we have predicted that the optically tristable
system in Chapter 2 exhibits self-pulsing induced and controlled by
a static magnetic field. The self-sustained spin precession is
responsible for the phenomenon and can be described by a modified
Bloch equation which includes a nonlinearity.

In Chapter d, we have studied on a simple optically bistable
system uith‘no optical cavity and found that the behavior of this
system is largely different from ordinary optical bistability
reporfed so far. As incident light jntensity I0 is varied, the
present sysfem behaves with pitchfdrk bifurcation {(or symmetry-
breaking), which is in contrast with the ordinary optical
bistability with hysteresis. UWe have shown thét the present
optical bistability can well be explained in context with the cusp
catastrophe similarly to the ordinary one, different features being
attributable to the different (orthogonal) cross sections of the
steady state surface of the cusp catastrophe. In the present
system, a hysteresis cycle can be obtained when one varies the
offset angle 90; the angle between the optic axis of the A/8 plate
and the polarization plane of the incident light.

Theoretical study has been made on the behavior of the system
under a static magnetic field applied perpendicularly to the beam
axis, and we have found that the magnetization produced |
spontaneously by‘symmetry breaking precesses around the field
without any external periodic forces.

We have carried out the experiments using sodium vapor, and we
have been able to obtain the evidence that the system shows
symmetry breaking, or pitchfork bifurcation, when the offset angle

90 is zero. Furthermore, a hysteresis cycle has been observed when
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90 is varied, as predicted by the theory.

In Chapter 5, we have observed the Ikeda type instability in a
simple acoustic system which can be regarded as an acoustic
analogue of optically bistable system. The system bifurcates to
chaos through some period doublings. The numerical analysis well
explains the.novel bifurcation diagram observed experimentally and
shows that the biFurcation structure is sensible to the time
response of the system.

In Chapter 6, we have investigated the symmetry-recovefing
crises of chaos in the spin-related optically bistable system.
Through the crises, chaotic states having the polarization
asymmetry, which is inherited from the first bifurcation, jumps
back to a symmetric state. UWe have found three distinct types of
the crises by changing the parameter Tty All of the waveforms
near these crises are very different from that for the one-
dimensional—map model which has been used to analyze difference-
differential equations. A tub—dimensional—map model introduced has
been found to give good qualitative explanations to the three types
of crises.

Crises occurs when a chaotic attractor collides with an
unstable fixed point or an unstable periodic orbit. In our cases
of Types I, 11, and 111, collisions to the unstable fixed points of

k (k = 2") occur. For Types I and 11

types DRI, Dz, and URA
unstable fixed point has a stable invariant curve in addition to an
unstable invariant curve. The stable curve forms é part of the
basin boundary which separateé the paired chaotic attractors before
the crisis. Along the stable invariant curve, regular structures

are formed just before and after the crisis. For Type 111, a one

dimensional map on the invariant curve, which yields chaos, gives
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marked structure to the strange attractors near the crisis.
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APPENDIX A

OPTICAL PUMPING IN FOUR-LEVEL ATOMS

In this appendix we set up the atomic model from the first
principles to treat the optical pumping process rigorously. UWe
begin with an equation of motion of the density métrix for atoms
with a J = 1/2 2 1/2 transition (four—-level model), which are
irradiated by o, and o_ light simultaneously. The equation can be
reduced to the Bloch equation for the ground—-state spin m when the
light intensities are not so strong. We also show that in the
absence of magnetic fields it can be reduced to the rate equation
for the ground state populations N, and N_.

When the atoms are pumped by two beams propagating in opposite
directions, we must take the standing-wave structure into account.
Ue show that a spatially averaged Bloch equation can be used in the
cases where an atom moves many wavelengths before its spin evo]Qes
appreciably.

We also discuss on the propagation of light through fhe épin—
po]arizea medium. We see that the circular dichroism and the
circular birefringence are proportional to the spin component along

the wave vector.

A.1 Optical Pumping in Four-level Atoms

In order to formulate optical pumping process, we consider an
ensemble of atoms with a J=1/2 » J=1/2 transition, which is
homogeneously broadened, namely all the atoms have a same

transition frequency wg . The state of each atom can be represented
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by a density matrix:

Patgt Pgrg- Pgte+ Pgre-
P P P P
— — g e of — g —
p= | 979 Temem Tovedr Torem |, (A.1)
pe+g+ pe+g— pe+e+ Pe+e-—
_‘pe—g+ pe—g- Pe—et+ Pe-e- ]

where the diagonal element Pis represents the probability that we

find an atom in the level 1i> and the conservation low asserts
2 p.. = 1 (1 = g+, g, e+, e-). (A.2)

The off-diagonal elements pij (i # Jj) represent the coherence

between the levels 1i)> and 1j>, and satisfy following relationst

% ' .
.= . = -+ - + -).
le le (i, | g+, g-, et, e-) (A,3)

As will be seen later, the coherence between Zeeman sublevels
of the ground or excited states is related to the transverse
magnetic—dipole moment, whereas the coherence between the ground

and excited states, such as p «ss 18 related to the

g+,e+’ Pg+,e-’
electric—dipole moment oscillating at the optical frequency.
The time evolution of p can be described by the equation of

motion?

-g_P_= i d_P_
1'r‘clt X, o3 + 1'._'[d'l:]r‘e}ax’ (A.4)

where X is the Hamiltonian and (dp/dt)r represents the

elax
relaxation due to the spontaneous decay or atomic collisions. The

Hamiltonian R is decomposed as follows:
X = )(0 + ){m + ){opt, (A.5)

where KO is the unperturbed Hamiltonian. The terms Xm and Kopt
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represent the perturbations due to external magnetic fields and

light fields respectively. The unperturbed Hamiltonian RO is

represented as

. (A.6)
hwo e
0

The magnetic Hamiltonian Xm under a static magnetic field ﬁo is

N .
N T S E c 0 |2
){m = 1J‘H0 = 5 1[ 0 2 ]HO’ (A.7)

. . . >,

where v is the gyromagnetic ratio and J is the angular momentum
> . :

operator. The vector o is composed of three 2x2 matrices G s oy,

and o which are Pauli’s spin matrices:

GX' = 0 1 . [o] = 0 —i 'y OZ = 1 0 . (A‘S)
1 0 Y i 0 0 -1

For simplicity, we assume that the magnetic field ﬁO is applied
along the y axis, i.e. Hy = %(0, Hy, 0).

Under the electric-dipole—interaction approximation, xopt can
be written as

opt = -p.E(), (A.9)

-; . 0 .
where p is the dipole moment operator and E is the electric field
of the laser beam, which is propagated along the z axis. With use

of the circular basis wvector, E is represented as
Beo) = e,€, (e + e € (v)e!¥t + cic., (A.10)

where €+(t) and €_(t) are the complex amplitudes of o, and o_

components of light respectively, and w is the frequency of the

Jaser. The circular basis vectors e, are defined as follows!
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~

e, = (x F iy)/ 2. | (A.11)

The dipole moment ; for a J=1/2 » 1/2 transition is (Condon

and Shortley, 1970)

_ ~ ~
e, ]
> e_ -z
P =P ~ ~ ’ (A‘lz)
z’ e,
”~ ~
e e— —Z’ -
where p is the modulus of the dipole moment and z° = z/¥2.

From Egqs. (A.10) and (A.12), xopt becomes

- +3
E_B 1wt 7

e +iwt‘
= -p +€ A . (A.13)

* —juwt
€+e

opt

Efe—lmt

Here we have used a 'rétating—uave approximation,” namely neglected
the influence of the o, light to Am = -1 transition and o_ to &m =
+1.

The relaxation term (dp/dt)relax in Eq. (A.8) is introduced

phenomenologically. Each component is given as follows:

1/3% p

Porgt! Perer T 2/ p o T /20 - p ), (Alda)
Py—g-? 1/3% P o + 2/3% P, 4 ~ Tg/2(pg_g_ - pg+g+), (A.14b)
Potrert “YePoret+ - Te/2(9e+e+ T Pa—e-)r (Adldc)
Pooe? VP on - T /2 = p,oy)s (A.14d)
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Patg-® —Tgpg+g_ {A.l4e)
Pe+e_: ‘repe+e_, (Aold":)
pgiej: -'egpgiej (1,j = +,-), (A.14q9)

where L and Vog B€ the rate for the spontaneous and collisional
decay of the population and that of the optical cocherence,
respectively. We have assumed the relaxation processes are
isotropic. We have alsc assumed the relaxation in the Zeeman
insltiplets of the ground state and the excited state are isotropic
{Manabe, 19793 Omont, 1977) and their rates are Tg and re,
respectively.

NoQ we can write down the egquation of motion (A.4) explicitly

by using Eqs. (A.5) and (A.14);

: =1 2 - L _
Patgt- 3¥ePete+ * VP 2rg(pg+g+ pg-g-')
+8Q< + ) - ig(E_el®t —gXemiut, 5 (A.15a)
Z Pog-g+ Pgtg- 1gte_ e Pe-gs ™= gte="7"""
P = -¥_p - LT' {p -p )
ete+ e ete+ 2 e Tetet e—e-
E-’J—( + )y - ig(E¥eTiut —g olut, Y, (A.15b)
T3 Pe-ettPere-’ T 19054 Poer™ s P
] 2
Patg-" _rgpg“'-g— * 5Py g Pgigt)
- ig(E _el¥t 5 _gX Tiut, (A.15¢)
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. 9
Pete-" _repe+e— 5_(pe-e— pe+e+)
. %¥ —jwt iwt
- ig(€le Poem € e Potgt)?
. QO
P = =¥ _ P iw.p 5{p P
gte+ eg gte+ 0D gte+ 2 g~e+ gte—
. iwt
1g(€_pe_e+ €+§g+g_) s
Q
P = =¥ __pP iw,p —g(p + p )
g-e+t eg g-et 0 et 2 gtet g-e—
o imt
19C, (P yes™ Pgg-’ »
where g = p/R, ° = d/dt, and Q = vH,.

in subscripts gives three more independent equations.

APPENDIX A

(A.15d)

(A.15e)

(A.15F)

Alternation between + and -

{(For Egs.

{A.15a) and (A.15b), QO should be replaced by —Qo additiona]]y.)/;

Hereafter such alternation is assumed implicitly.

~ ~

1wt .

s . e = . = +,- .
Poiej 25 Pgiej Poie;® s (i, »—), Eas
become

2 ~ QO ~ ~
= [~ + ié + —
Pote+ L Yeq i Jpg+e+ 5 (pg_e+ Pore—
—iet€ie oy Ep i)
A ~ QO ~ ~
= [- + id + =
Pomet Yeg Iy e+ ¥ T Pgies P e
o
ig +(pe+e+ g_g__).
where & = wg ~w. In the rate—equation limit L

Jdt =

{i = +,-), we can set dp .
gie

0,

If we introduce

(A.15e) and (A.15F)

(A.16a)

{(A.16b)

s >> (1/Ei)(8£i/8t)’

{i,j = +,-) and obtain
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= dgl-v, + 183 M€ e __, - Ep . ), (A7)

LR

gte+

~

e irw o iga—lp _
Po-e+ = 19077 g 161 & (e, ., Porgs)® (A.17b)

We have also assumed T, > QO‘ Substitution Egs. (A.17) into Egs.

g
(A.158)-(A.15¢c) yields

_ 1 2 e )
pg+9+ = I¥ePeter Y 3V ePee- 2rg(pg+g+ pg—g—)
gg(p b . ) - 29218 128, v (A.18a)
Z Pg-g+ gto- 9 1= * Yeg'Pgtgt? P
) 2
Porg- = TgPgrg- * 7 Pg-g- ~ Pgig+)
~2g2 [(1E, 12+ 1E_1%) Les, Yoo
- i(l€+12_ la_;2> D¢S, xeg)]pg+g_, (A,18b)
¢ = ~y_p -ir -r
pe+e+ ve etet 2 e " etet e—-e—
+ 8Q( + y + 2a21€ 12L¢8, ¥v_ e (A.18¢)
7 ‘Pe—e+ Pote- 9 18t ' Teg’g-g~’ *

2

where Lix,y) = y/(x"~ + y2), Dix,y) = x/(x2 + yz)‘ We have

neglected some terms including Potet and Po_e— aSSUMING Yo >
2 2

-1 ..
. (d/dt)peiej’ (i,§ =

Furthermore if we assume LR >> Peie]

- i i ms
+,-) then we can write P_, . and Pome— IN ter of Potgt and Po—g-

as follows:
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2 2
2g2 (T _+ ve)|€+‘gfg—g—+ T_IE_1%

. _ g+—
Potet™ e L(é,veg) (A.19)

1e(27e + Ve)

Substituting of Eg. (A.19) into Eg. (A.18a), we have

: = -4 (o - p ) + 8g(p + p )
Potg+ g gtgt “g-g- 2 ‘"g-gt Tgtg-
+ 2F92L(w0—m,1eg) (|e+|2pg_g_- 1€_1%_, 00 (A.20)
where
T /v_ + 3/2
f=—2-=2 , (A.21)

2(Te/te) + 1

is pumping efficiency which we shall set 1/2 assuming Felve >> 1,
hereafter.

Equations (A.18b) and (A.20) are the equations of motion
reduced to the ground state. The first and second terms of each
equation represent the Zeeman relaxation and the spin precession
due to the external magnetic field, respectively. The first and
second terms in the brackets of Eq. (A.18b) represent the spin re-
laxation due to optical excitation and the light shift,
respectively. The third term of Eqg. (A.20) represents the optical
pumping.

Here we introduce new variables by ; = t(mx, my, mz)

= TrEngl, where

My = Porget Pooge (A.22a)

m_= {p _¥i, (A.22b)

y g-g+ P

gtg
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m, = Pgrgs” Pg-g-? (A.22¢)

where Pgy is the density matrix reduced to the ground state.

Equations (A.18b) and (A.20) become the well-known Bloch equation:

m, = —(Tg + P, + P_)mx - QOmz + QLSmy’ (A.23a)

m, = =(T_+ P, +Pm - Qm, , (A.23b)

52 = AT+ P, +POm_+ Qm + (P, - P, : (A.23c)
where

Py = 2fg7L(6,v, ) 1€,1%, (A.24)

_ 52 2_ 2

QLS_ 29 D(é,?eg) (IE+| |8~| . {A.25)
Using vector notation, we obtain

dé > > > ~ > ~

SE=mX QO =T n - Py(n - 2) - P_(m + 2), (A.26)
where ﬁO = t(0, QO’ QLS)' In the cases which we concern in this

thesis, the light—-shift term can be neglected.
In the absence of a magnetic field, from Eq. (A.20) we have a

rate equation for the ground-state populations Ni:

=
I

1
3TNy = Ngd o+ (PyNg = PeNy), (A.27)

+ = Npgigi ]

where N is the atomic density.



114 APPENDIX A

. . A .
The macroscopic magnetization M per unit volume can be

—)
expressed in terms of m

M = ms (A.28)

N
én

and the z component can be represented as

M, = %E(N+ - N_D, ‘ (A.28)

A.2 Spatially Averaged Bloch Equation

When the atoms are pumped simultaneously by a forwardly
propagating beam EFi and a backwardly propagating beam EBi’ we must
consider the standing-wave effect. Namely the pumping rates Pi in

Eq. (A.26) becomes to depend on =z}

Py(z) = 2fg%LU8,v M1, 12 + 185,17 + £,(2)), (A.29)

Fx B+

where f, are rapidly oscillating functions of z and vanish when
(they are averaged over an interval much longer than the
‘wavelength.

We must spatially average Eq. {(A.26) having z dependence

because the atoms in vapor mowves rapidly. The average is taken

over many wavelengths.

dKm>/de = <m> x 8y - T @ - P> - 2)
- CP_X(m> + 2), (A.30)

where {-> represents a spatially averaged quantity. The terms
> > :
<Pim> can be decomposed as (Pi><m>, because the atoms mouve many
-3
wavelengths before m changes appreciably. (Typically thermal

velocity v ~ 500 m/s and the wavelength ~ 0.5 um. So an atom takes
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1 ns to traverse a wavelength, whereas it takes at least 1 us for
-) . . . 1)
<{m> to shift appreciably under the conditions we concern.) The

spatially averaged pﬁmping.rate is
N o sp 2 2 2 ‘
<Pi> = 2fg L(é,veg){leFil + 'EBi‘ 3. (A.31)

So we may consider that the atoms are pumped, on the average, by

the sum of the forward and the backward light intensities.

A.3 Light Propagation in a Spin-Polarized Medium

In this section we shall study on the optical characteristics
of a spin-polarized medium. At first we calculate the induced

electric—dipole moment

Bty = (Pye, + Pe_ + P_20e'% + cuc. (A.32)
by an external electric field
Bee) = (Epe, + E e+ € 2T + cuco, (A.33)

» » . s .
in the case where m or p (i,j = +,—) is given, and the

gigj’
excited-state population is negligibly small. The dielectric

susceptibility tensor X is given by the relationt

P, Xop Xoo X4y |1 &y ,
Pool = | ooy %o %, £ 1. (A.34)
PZ XZ"’ XZ_ XZZ aZ

In terms of p, 3 is given as an expectation value of the electric-

>
dipole operator p.
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B(t) = N TrLppl

-~ ~ A

+ p

~

+ (p - e z'1e'%t 4 c.c.(A.3D)

= Nplp gte+ g-e

g—e+e+ g+e—e+

Repeating the same procedure from Eq. (A.1) to Eq. (A.17), we can

~

express pgiej in terms of ngg] (i,jo,k,1 = +,-)3
P, Pg-g- 0 I~ €,
P l=c|o Pgtgt —pg+g_/4§ £_ |, (A.36)
P Porg-?Z Pggs/ 2 1/2 €
where C = ing(‘ieg + i6)—1. In terms of ;, we can have an
equivalent relation:
B=c+ im xB), (A.37)
or
X; = C((Sij + ieikjmk)’ A (A.38)

where 6ij and Eijk are Kronecker’s & and Eddington’s €,
respectively.

When we consider a wave propagating in the z direction, we can
neglect the components I and X4 (i = x,¥4z Or +,-,z). It is
because the z components of the susceptibility cannot affect the
propagation of light in first order, since the z component of the
induced polarization does not reradiate light in the z direction

(Happer, 19723 Landau and Lifshitz, 1960). So we have

O
il

+ = %€y = Cpgxgxat

(C/2X(1 ¥ mz)ii, (A.39)

where Xy = Xgge

From Maxwell’'s equation we have the dispersion relation:
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2 m2
kci = 25{1 + dwxi), o (A.40)
with
kci= ki - iai, : o - (AJ81) -

where ki and a, are the wavenumbers and the absorptiqn coefficients
for oy light. When !xil 144 1, namely when the field envelope does
not change éppreciably over a'uavélength; we have from Eqgqs. (A.40)

and (A.41);

oy = ~2kgmImixy) = a(l ¥ m_), (A.42a)
ky = kg(1 + 2nRe(x,)) = kg + w(l F m_), | <A‘a2b}i
where.
a = wkoNpal (8, ¥_ ), o o (A.43a)
Kk = wkgNeaD(6, ¥ ). | :(A‘QSb)

It should be noted that if we choose w on the wing region of '

the absorption line (i.e. & >> 1eg)’ then

K. 3> 1, ' ‘ (A.44)
eg o .

< |0

and we can neglect the absorption and can consider the atoms as a-

dispersive medium.
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APPENDIX B

CATASTROPHE

B.1 Thom's Theorem

In this appendix we describe Thom’s theorem on the
classification of elementary catastrophes in physical context. We

set up a model called a "static model.®' The system equation is

gilven b}‘
dt gra s UJ,

where x = t(xl,-.‘,xn) e Mc R, u= t(ui,‘..,un)_E C cR and F:
M x C » R is a smooth (infinitely differentiable) function. The
variable x is usually called behavior {(or state) and u is called
control {or parameter). A static model can be viewed as an r-
parameter family of smooth functions. As easily seen a stable
steady state of the system (B.1l) corresponds to a minimal point of
F with respect to.x for a fixed u., Generally two or more stable
states coexist for given parameter values. As the parameter u is
changed slowly, at some point, the number of minimal points
decreases or increases. The set of such points in C is called the
bifurcation set which is denoted by B. A sudden change of steady
state (catastrophe) may occur when parameters are changed
continuously through B (See Fié. B.1). 1t should be noted that
only the gualitative shape of the function F{x, u) governs the
behavior of the system. (In fact, Fig. B.1 was drawn with a free

hand.) If models F and G are qualitatively the same, the study on
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Fig. B.1 Example of a static model.

either of them is sufficient. The equivalence between F and G‘are
stated mathematically as follows;

Definitiont There exist a diffeomorphism (smooth and
reversible map) ht € » C, a diffeomorphism Hu: MM parametrized

by ueC, and a smooth map at C »* R, such that

Fix, u) G(Hu(x), hi{u)) + atu), (B.2)

and H{x, u) = Hu(x) defines a smooth map Ht M x C =+ M.

If a model F is changed qualitatively by a small perturbation
p, then such model is inappropriate to describe the phenomena in
the real world where unpredictable perturbations are unavoidable.
So we can restrict our attentions to models which do not Havé such
property. The restriction is described as

Definitiont If a model Ft M x C » R is equivalent to any model

F+pt MxC~>R, then F is structurally stable model.
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Now we can state Thom's theorem as follows;

Theorem: A structurally stable static model F: MxC >R (M
c R, c ¢ R") for any n and for aTl.r < 4, is equivalent to one of
the Fo]lquing mode]swwith normal forms:

{1) Non—critical

x5 | | (B.3a)
{2) Nondegenerate critical, or Morse

Q(xl,‘..,xn), | | _ {B.3b)

(3) The fold

x3 + ux + Q(xz,"‘,xn), (BoSC)

{4) The cusp

» ixd + UX2”+ VX + Q(Xz,tv‘,xn)) V (B.3d)

(5) The swallowtail

5 3

X7+ uxT o+ ux + wx + Q(xz,‘..;xn), (B.3e)

{6) The butterfly

ix6 + tx44+ ux3 + vx2 + wx + Q(xz,‘.‘,xn), {B.3F>

(7) The hyperbolic umbilic

U y3 + wxy + ux + vy + Q(xa;.‘.,xﬁ), (B.3g)

{8) The elliptic umbilic

x3 -~ xy2 + w(x2 + y2) + ux + vy + Q(x3,;‘,,xn), (B.3h>

(9) The parabolic umbilic
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t(xzy + ya) + tx2 + uy2 + ux + vy + Q(x3,‘..,xn), (B.3i)

. .
where (xl,.“,xn) € M, x= Xgs ¥ T Xo and t(ui,.‘,.,ur‘);E C, u

= 91: V= Uy WT ug, and t = Uy . The function Q(xi,...,xn) ig of

a form:

In the cases (1) and (2), the catastrophe does not occur. In
the former, F does not have an equilibrium éoint. In the»1a£tér, X
= 0 is a stable equilibrium point if Q@ takes the form 2?=1 xiz'

The other seven cases represent the elementary catastrophes.
1t should be noted that if Q = 2?=i sz, the stable eqdi]ibriqm

points lie in the subspace Xe = eee =X 0= D, where the catastrophe
occurs. We can, therefore, neglect the term Q. This greatly
reduces the degrees of freedom of the system. Even if we have a

rl984

large system on M = , C = R, for example, what we have to

investigate is a one—parameter family x3 + ux (the fold).

B.2 Examples

Here we take up two examples, fold and cusp, and describe how
the catastrophe takes place there.

Fold: when u < 0, the function %3 + ux has two extrema X
= Y473, and -Yu/3; one is stable and the other unstable. When u
> 0, it has no extrema. So the catastrophe occurs at u = 0, Ve
plot the extrema as functions of u in Fig. B.2(a). The upper and
the lower half of the parabola correspond to the stable and the
unstable equilibrium point, respectively. The parabola is the

catastrophe manifold, which is defined as a subset of M x C on
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Fig, B.2 Catastrophe manifolds and bifurcation sets of (a} fold, and
(b) cusp catastrophes. The numbers of stable equilibrium points are a]so

shown .

which gradxF(x, u) = 0 is satisfied. The set B = {0} is the
bifurcation set where thg catastrophe takes place.

Qggg{ In this case, C is two—dimensional (r = 2)., The
catastrophe manifold and the bifurcation set are pictured in Fig.
B.2(b). |

Now we discuss the implications of the theorem using the tuo

examples above mentioned. Consider a bne—parameter family:
'Fv(x) = xd + u0x2 + ux, (B.4>

which is reduced from the normal form of the cusp by setting uy = Uy

= const. The equilibrium point X satisfies the relation for a

given value of v = V'
8Fv 3 :
— ﬂx + 2U x + oy = Ot (BtS)
Ox Ix = X, < 07c . -

"

To investigate the local structure of the equilibrium point, we

introdﬁce new variables X and V by
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x
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x
+
b

Equation (B.4) becomes

4
Fy syt + %0 = X0+ Bx X3+ (6x % + ugix? + vx + X0 term

Consider the following three cases:

(1 Yy > 0: The coefficient of X2 is positive and therefore
the local behavior oF»GV(X) is equivalent to +X2; which means X is
nondegenerate critical point. In fact, the higher-order terms X3
and )(4 can be eliminated by a transformation given in the theorem,
when the second-order term is not zero. The first—order term can
be eliminated by X & X -~ V/2(6xc2 + uo)a"So the parameter V is a
dummy parameter in this casé‘

(2) Yo < 0: We must consider three cases where the coefficient
of X2 is positive, negative, and zero. In the first and second
ﬁases, GV(X) is equivalent to +X2 and —X2 respectively. In the

third case, we must take X3 term into account. Apparently the

equation?

3

Gy(X) = 4x X2 + vX + x? term), (B.7)

v

gives the fold.
(3 ug = 0: Two cases where the coefficient of X2 is positive

and zero are possible. In the former case GV(X) is equivalent to

2

+X“ as described above. In the latter, the Xz‘and‘X? terms. vanishi

4 0

G,{X) = X7 + UX + (X~ term). (B.8)

v
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This one—parameter family is structurally unstable. The family
corresponds to the line on the {(u,v)-plane passing the point of the
cusp. It is easy to make the line not to pass there by a small
perturbation.

a Fig. B.3 One-parameter

families reduced from the

4 2

2 cusp x ux® + vx by
xt setting u =.u0 = const.
ta) ug > 0, (b) uy =0,
v
(c)_uo < 0.
b
structurally
unstable
] :
2
c +X
: FOLD
e
R
-
1

o’

We summarize the three cases (1)-(3) in Fig. B.3, where
catastrophe manifolds are pictured.

We consider the other one—parameter families buried in the

cusp:?

F 00 = A+ ux? o+ v ' O (B.)

where vg i= a fixed constant. The above analysis can be applied to
this case and the result is shown in Fig. B.4. Again the one-
parameter family which passes the cusp point (vo = 0) is

structurally unstable.



CATASTROPHE 125

Fig. B.4 One—parameter

2
a +X families reduced from the
4 ’_.——"’———— cusp <3+ w® + vx by
+Xz —x2
e setting v = vg = const.
o (a) vg = 0y (b) vg ¥ 0.

structurally

unstable
b
FOLD X2
—_ L
\\\\\\\\\\\§§~ +X2
\\

From these examples, we can get the feeling that catastrophe
typically encountered in a one—parameter family is the fold; a
sudden disappearance {(or appearance) of a stable state and an
unstable state iﬁ pair. If the other type of catastrophe appesrs
in a one—parameter family, the family is structuraliy unstable; in
other words, it is not typical. More generally, Thom’s theorem
assures that in r—-parameter families (r { 4) we cannot see any

types of catastrophe other than the seven elementary catastrophes.
B.3 Remarks
Here we make some remarks which should be considered when we

apply the theorem to our systems.

{1) Localnesst: The boxes in Figs. B.3 and B.4 represent the
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set M x C. If we extend the height of the box of the fold in Fig.
B.3{c) to contain the other branch, the figure in the box cannot be
corresponded to the fold structure in Fig. B.2(a). This means the
localness of the theorem. Similarly when we extend the parameter
range C to contain the other fold, the correspondence also breaks.
It should be noted, however, the whole structure in Fig. B.3(c) is
not a patch-work of the one—parameter families but a cross—section
of the catastrophe manifold of the cusp. The‘cusp point (x = u = v
= 0) determines the configuration of critical points in Fig. B.3.
So even when we treat an r—parameter family, consideration of an
r'-parametér family {r’ > r) is sometimes needed, namely, we must
include some hidden parameters.

{2) Symmetry: Although a one—parameter family:
F 00 = x* + ux?, (B.10)

is structurally unstable (Fig. B.4(a)), it frequently appears in
text books and is referred as a pitchfork bifurcation. It appears
when the system has a symmetry with respect to the transformation x
? —-x. Strictly speaking, such system may have some imperfections
and behaves as in Fig. B.4(b); namely a symmetric system is
structuarlly unstable or not generic. Ewven so, the pitchfork
bifurcation is meaningful because it approximates the situation. A
more positive attitude is possible. Haken (1981) said,

At the risk 6? provoking mathematicians 1 should nevertheless
mention that in hy opinion conclusions based on generic properties
may be different for mathematicians and physicists. The reason for
this lies in the fact that in mathematical sense generic refers to
a typical property for solutions of a large class of different

equations. On the other hand in physics we deal with specific
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equations bringing out specific laws and having, more or less
obvious, symmetry properties. Thus in my opinion the laws of
nature are highly non~generic and it is just the aim of physics to
explain why such laws have such and such specific properties.’

Finally we present the bifurcation set for the butterfly:

x6 + txd + ux3 + vx2 + wx, (B.11)

for cases t > 0 (Fig. B.5(a)) and t < 0 (Fig. B.5{(b)). It is used

in Chapter 2.
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BIFURCATION IN MODIFIED BLOCH EQUATION

In this appendix we investigate bifurcation phenomena seen in

the modified Bloch equation (4.24),

C.1 Liedard’ s Method

At first, we present a sufficient condition for the existence
of a limit cycle in a certain class of differential equation called
Liénard’s equation (Nemytskii and Stepanov, 1960). Liénard’s

equation has the following form:

2 -
I £09% 4 g(x) = 0. (C.1)
dt dt

Introducing a new variable ¥y = (dx/dt) + Fi{x) where

x .
Fix) = j FUx)dx, (C.2)
0

we obtain the equations

]

dx/dt y - F(x), _ (C.3a)

dy/dt = ~gi{x). (C.3b)

For this system we have a theorem on the existence of a limit
cycle,
Theorem: Suppose that -

1. g{x) satisfies
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xg{x) > 0 for x # O, j alx)dx = @,
0

2. F(x) is single valued for - { x ¢ +®, gatisfies a Lipschitz
condition in every finite intervals and xF(x) < 0 for x # 0 and Ix]
sufficiently small.

3. There exist constants N, k,>k' {k’ < k) such that Fi{x) > k for
x > N, F{x) ¢ k" for x < -N.

Then the system (C.1) admit at least one limit cycle.

C.2 Takens’' Normal Form

A

[

3=

’ H
P
Symetric ( @
saddle 1 0o !
node L
7 —Ky
/ 1ia
m
b
\Y
wo?
/“.% Hle \/@\./DO
Saddle
onnection
/Annihiktion
of two
closed

orbils
(dynamic saddle:node)

Fig. C.1 Bifurcation set of Takens’ normal form (from Abraham and Marsden,
19783, ’ -

The qualitative bifurcations of Eq. (4.24) can be analyzed
more precisely. Takens (1973) has classified certain generic or
stable bifurcations of two—parameter families of vector fields on

the plane. Our system can be reduced to one of the normal forms:
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dx/dt

¥ (C.4a)

dy/dt

—sz ~ Kiy - x3 —xzy‘ ‘ (C.4b)>

At the point 31 = 32 = 0, the linear part has degenerate
singularities. The point corresponds to the crossing of the
critical lines 1 and 2 in Fig. 4.4, The bifurcation diagram for
Eq. (C.4) is given in Fig. C.1. Phase portrait in each region is

also shown. The correspondence to Fig. 4.4 is clear.
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CHAOS

D.1 Introduction

In this appendix, we give a short review on chaos and
introduce some terms used in Chapters 3 and 6. By the term
"chaos,’ we mean an irregular motion of a dynamical system which
is, however, governed by deterministic equations. The seeming
contradiction prevents people from studying chaos substantially for
a long time, although it was known to some people (e.9. Poincaré).

In 1963, Lorenz showed that a simple equation system:

dr - . & - (D.1b)
dt = Tx= rx ¥ .

dz - ., - b ’ (D.1¢)
dt = Xy 2, +1cC

exhibits an irregular (non—-periodic) motion for some values of
‘parameters o, b, and r. The Lorenz equation was reduced from a
fluid-convection problem and the irregular motion is connected to
the turbulence. In Fig. D.1 we show an example of the trajectory
in the (x,¥,z) space. Any solutions originating from different
initial points, eventually attracted to the two—leaf strﬁcture.
The cross—section of the attractor is very complicated, namely, no
matter how much we magnify a part, we can see some structures
{Mandelbrot, 1982). So it is called a "strange attractor.'

We have correspondences between the attractors and the steady~
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X+y

Fig. D.1 A trajectory of the Lorenz equation with o = 10, b = 8/3, r

= 28.

state solutions listed below:?

fixed point —— stationary equilibrium

limit cycle ——— periodic motion .

torus ———— multiply periodic mofion‘
strange attractor — aperiodic motion (turbulence)

Ruelle and Takens (1971) offered a possible mechanism by which
turbulent solutions to the Navier—-Stokes equations could appear.
They showed that, as the system parameter is varied, the
bifurcations progress as followst fixed point 2 limit cycle * torus
+ strange attractor. They also showed on the basis of quite
general argument that such bifurcation scheme is not so rare, in
-other words, the occurrence of strange attractor is not special.
affairs,

Here we introduce the Poincaré map which is a useful tool to
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Fig, D,.2 Poincaré map.

investigate the bifurcations of a periodic orbit. Consider a
differential equation in a three—dimensional space and a surface S
transverse to the orbits (Fig. D.2). An orbit starting from x, on

S hits S again at x Such a correspondence defines a map from S

n+l1’
to S@

Xo41 = F(xn?. v (D.2)

We can draw many informations from the Poincaré map inétead of the
original differential equation. For example, if x is a fixed point
of the map F then we know the orbit through x is a closed orbit.
Aside from above point of view, Eq. (D.2) with discrete time n
{difference equation) has its importances. The dynamics of
biological populations can be described by Eq. (D.2) where n
represents the generation (May, 1976). Mathematicaliy, a one-
dimensicnal map is rather simple and many rigorous results on chaos
are obtained {Collet and Eckmann, 1980). |

To get an insight into the mechanism which generates chaos, we
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consider a one—dimensional map:

Xo4q = 1 - 2Ix = 1/21, (D.3)

where x. & £0,13. UWe can easily see that if the initial condition
has an uncertainty e, then after m ~ 1092(1/5) iteration of the
map, we will have essentially no clue as to where x lies in the
interval [0,11. For example, for € ~ 10712, m = 40 (Ott, 1981),
This sensitive dependence on the initial condition is one of the
criteria for chaos. UWe show another way to see how erratically a
sequence {xo, Xps Xp» eess2 is generated by Eq. (D0.3). From the

sequence we make a binary segquence (bo, bl’ b2’ eses) Where bn is

defined as

0 (x_ € [0, 1/2))
oy = [ n < L0
1 (x € [1/2, 11).

In Fig. D.3, we show the sequences as functions of initial value

When xg = 0.3, for instance, we have a sequence (0, 1, 0, O,

X e
0
1, 1, ¢se.2: In Fig. D.3 we can find any binary sequence (even if

it is given from coin tosses).
D.2 Roads to Chaos

In Appendix B, we have seen the bifurcations of fixed points,
such as a saddle—node connection and a pitchfork bifurcation, and,
in Appendix C, the bifurcations lying between periodic motion and a
stationary state such as a Hopf bifurcation (Marsden and.McCracken,
1976), a coalescence of stable and unstasle limit cycles, and a
saddle connection. In the course of nature, a bifurcation (or a
sequence of bifurcations) which lies between a non-chaotic state

and a chaotic state should be investigated. Such bifurcation is
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1 —————
] S et
1 — —
b — — =~ 4l — = - — — - - —
0
3F — — A — = —— — —
! .
c2F
1
1+ J LI
0
o._
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o 0.3 0.5 1.0

x°‘_">

Fig. D.3 Binary sequence generated by the iteration of map (D.3). For
initial value xq = 0.3, for example, the sequence (0, 1, 0, 0, 1, 1, ....2

is generated.

important becauée it corresponds to the onset of turbulence. There
are many possibi]étiesvbut some of them are more likely. They are
called 'scenarios' by Eckmann (1981). He pfcked up three prominent
scenarios:

Ruel]e—Takens—Neuhouse scenario

Feigenbaum scenario (period doubling)

Pomeau-Manville scenario (intermittency)
Each scenario has a'répresentative mathematical model and has been
found experimentally to be played in real physical systems.

Here we describe each scenario briefly,

Ruelle-Takens—Newhouse: As the parameter u is increased, a
system undergoes a Hopf bifurcation at uy and begins to oscillate

at a frequency Fl' At Yo the second Hopf bifurcation leads to
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doubly periodic motion (in Fl and Fz). Then it is likely that
through the third bifurcation the system possesses a strange

attractor.

Feigenbaum: An infinite sequence of subharmonic bifurcations
a ear atu " e s Th i . -~ . . - .
PR 12 Yo e ratio (u1+1 ul)/(ul ul_l)
approaches a constant & = 4.66920... {(Feigenbaum constant) as i
tends to infinity. Above the accumulation point uy,, one will see

aperiodic behavior.

Pomeau—~Manville: As the parameter W is varied over a critical
value u_, one sees intermittently turbulent behavior of random
duration with ]aminar phases of mean duration ~ (lu - ucl—1/2) in

between.

D.3 Bifurcations in One-Dimensional Maps

To see the examples of the scenarios, we consider a family of

one—~dimensional mapst

Xn+1

= uxn(l - xn). , ‘ (D.4)
We show the bifurcation diagram in Fig. D.4 which is obtained as
follows. For a given value of W, we choose an initial value 20 and
iterate the mapping (D.4) until the transient behavior settles
down. Then we plot successive values X The procedure is
repeated for each u. In Fig. D.4, typical period-doubling
bifurcations to chaos are seen. At u = Ugs 2 bifurcation takes
place from a stationary state (xn+1 = xn) to a period-2 oscillation

{x = xn), and at u = Uy, @ bifurcation from the period-2 to a

n+2

period—4 (xn+d = xn). Generally, at n = w a bifurcation from a
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Fig. B.4 Bifurcation diagram of Eq. (D.4).

period-2k to a period—2k+1

oscillation occurs. Above the
accumulation point u,, the system oscillates aperiodically. Using
a method of renormalization group in statistical mechanics,
Feigenbaum (1978) showed that a ratio (un+1 - un)/(un - un—l)
approaches a constant 6 = 4.66%20... asymptotically. The
remarkable point is that the constant does not depend on the choice
of the family of mapping.

Above u,, a series of reverse bifurcations at v = Y
appears. A state between Y and Yi-1) is called a period—'2k
chaos, where the orbit drops in the 2k bands in cyclic and
therefore a kind of order remains. A series {u(n)} has the same
universal property as (un).

Another marked feature of the bifurcation diagram is the

existence of windows in the chaotic region, where the periodic

motion reappears. In Fig. D.5S we show a blowup of a window. At
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INTERMITTENCY

TANGENT BIFURCATION CRISIS

Fig. B.5 Magnified view of window.

the left edge, a stable periodic orbit appears through a tangent
bifurcation (a saddle-node connection) with an unstable periodic
orbit. The bifurcation is proceeded by the intermittency, namely
when we decrease W across the left boundary, chaotic oscillation
intermitted by periodic motion with random duration appears. The
window is closed by a crisis (Grebogi et al., 1982; 1983) as u is

increased., The crisis is a bifurcation of a chaotic attractor,

which appears when an unstable fixed point (or an unstable periodic

orbit) collides to the attractor. In the case of Fig. D.5, the
unstable periodic orbit created at the left edge of the window
collides with the chaotic attractor which is bifurcated from the

stable periodic orbit.
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CLASSIFICATION OF A FIXED POINT OF 2D MAP

The stability of a Fixéd point of a two—dimensional map T can
be characterized by the eigenvalues Py and Py of the linearized map
{Kawakami and Kobayashi, 1979; Kawakami, 1979; Guckenheimer and
Holmes, 1982). 1If |P1| # 1 and lpzl # 1, the fixed §Oint is called
simple, or hyperbolic., A fixed point is called orientation
preserving when Py Pn > 0 and orientation reversing when P1Pp < 0.

An orientation preserving simple fixed point is classified as

Completely stable (S): lpil <1, Ip2I <1

Comp]etely unstable (U): lpll > 1, Ip2l > 1
| Direct]y unstable (D): 0 < Py <1<« Py

Inversely unétab]e (I): Py < =1L Py <0

and an orientation reversing fixed point is classified as

Completely stable (SR):  Ip,1 < 1, Ipyl < 1
Completely unstable (UR):' Py < -1, Py > 1
Directly unstable (DR): =1 < py < 0, 1< b,
Inversely unstable (IR): Py < =1, 0 < p, < 1.

We can extend the above notation to n-periodic points, namely, if
an n-periodic point P is a fixed point DR of the map T(n), for

example, then we denote P as DR".
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