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ABSTRACT 

This thesis concerns with nonlinear behaviors of spin-related 

bistabl e and tr istabl e systems. 

In recent years there has been a substantial theoretical and 

experimental effort on optically bistable systems. An optically 

bistable system is a device which exhibits two distinct states of 

optical transmission. It has acquired much attention from the 

aspect of practical application as optical devices and also from 

the fundamental standpoint since it offers various nonlinear 

phenomena inherent in systems far from equilibrium. 

It is shown, in this thesis, that inclusion of light 

polarization leads to qualitatively new variations of the 

phenomena. Light polarization is connected to the atomic spins of 

the medium. So far no works on polarization effects in optical 

bistability have been made. Here two types of such spin-related 

optical system are proposed and studied. 

The first system is a Fabry-Perot cavity filled with atoms 

with degenerate Zeeman sublevels in the ground state. It is found 

that for linearly polarized incident light, the high transmission 

state is doubly degenerate with respect to the output light 

polarization; one is almost right-circularly polarized (a+ state) 

and the other is almost left-circularly polarized (a- state). In 

the low transmission state, the output remains linearly polarized 

(linear state). Therefore the three states coexist and we call the 

phenomenon optical tristability. In the a+ (0-1 state, the atomic 

spins are oriented parallel (antiparallel) to the propagation 

direction of the incident light, whereas in the linear state, they 
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are random. When we increase the intensity of the linearly 

polarized incident light, at a critical point, the linear state 

becomes unstable and a discontinuous transition to the a+ or a- 

state takes place with equal probabilities. The symmetry of the 

system with respect to the polarization is spontaneously broken. 

This is a result of a competitive interaction of the o+ (right- 

circularly polarized) and o- (left-circularly polarized) light 

beams through optical pumping. 

Bifurcations which appear when the input intensities of a+ and 

a- components are changed independently are also investigated. It 

is found that the bifurcation structure can well be understood in 

context of a butterfly catastrophe. 

Next the dynamical property of the system is studied. It is 

shown that when we apply a static magnetic field transversely to 

the optical axis, self-sustained precession of the spin 

polarization occurs. Correspondingly, the o+ and a- components of 

the transmitted light are modulated at about the Larmor frequency. 

It is also shown that a modified Bloch equation which describes the 

motion of the spin polarization in the cavity can be reduced to the 

van der Pol equation. 

The second system we propose uses the same medium as the first 

one but has no optical cavity. The optical system is composed of a 

cell containing the atoms, a h / 8  plate, and a mirror, The feedback 

is realized by the optically induced Faraday effect. The system 

exhibits a pitchfork bifurcation which breaks the symmetry as the 

input intensity is increased. Namely, the symmetry breaking is of 

a supercritical type, whereas in the first system it is of a 

subcritical type. This system has also two input parameters and a 

cusp catastrophe appears when they are changed independently. It 
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is also found that in the presence of a transverse magnetic field, 

self-sustained spin precession takes place. 

The static behavior of the second system is confirmed 

experimentally by using Na vapor and a multimode dye laser. 

Chaotic (or turbulent) phenomena in optical bistability is 

also investigated. Chaotic oscillation occurs when a delay time in 

the feedback loop is longer than the response time of the medium as 

predicted by Ikeda. The delay-induced chaos in a simple and 

familiar acoustic system is studied experimentally. It is an 

acoustic analogue of optically bistable systems. The system goes 

over into chaotic state after some cascades of period-doubling 

bifurcations as we increase the loop gain. 

The delay-induced chaos in the second optical system is 

investigated. Particular attention is paid on the symmetry of the 

solutions with respect to the polarizations, The output of the 

system bifurcates in the following way as the input light intensity 

increases: (1) symmetric steady state, ( 2 )  asymmetric steady state, 

( 3 )  asymmetric periodic oscillation, (4) asymmetric chaos, 

( 5 )  symmetric chaos. The first bifurcation is a well-known 

symmetry-breaking transition. It is shown that the last 

bifurcation through which the symmetry is recovered can be viewed 

as a crisis of chaos, which has been defined by Grebogi et ale as a 

sudden change of strange attractor. By changing system parameters, 

we find three distinct types of the crises in the experiment with 

an electronic circuit which simulates the differential-difference 

system equation. Before and after the crises, waveforms 

characteristic of each type is observed. In a simple two- 

dimensional-map model, we can find the three types of crises. It 

is also found that the types of crises are determined by the nature 



ABSTRACT vi i 

of unstable fixed (or periodic) points which cause the crises by 

colliding to the chaotic attractors. The symmetry-recovering 

crises seem to be general phenomena appearing in nonlinear systems 

with some symmetries. 
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CHAPTER 1 

GENERAL INTRODUCTION 

This thesis concerns with some of nonlinear phenomena in spin- 

related optically bistable and tristable systems. The present 

chapter contains an introduction to the topics which were 

investigated. A short review of theoretical and experimental 

studies on optical bistability is presented. A brief description 

on nonlinear effects caused by laser optical pumping is given 

because they plays an important role throughout this work. Finally 

the outline of this work is presented. 

1.1 Optical Bistability 

Recently a new class of optical systems which may have two (or 

more) distinct output states for a given input state has drawn 

intense interests. Such a system is called an optically bistable 

(or multistable) system, It will potentially be used as optical 

logic devices for ultra-high-speed signal processing and 

communications. In principle, very fast switching with low power 

consumption and two-dimensional parallel processing are possible. 

Generally an optically bistable system is realized when the 

transmitted light of a nonlinear medium is fed back to itself by 

some means. If the feedback is through some electronic circuits 

the system is called 'hybrid,' whereas an all-optical system is 

called 'intrinsic.' The most popular intrinsic system is an optical 

cavity filled with a nonlinear dispersive medium. Figure 1.1 shows 

the principles of operation (Smith and Tomlinson, 19811, Curves A i  
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. . 

OPTICAL PATH LENGTH - INPUT POWER - 
F i g  1 .  Principle of operation of an optically bistable device which 

utilizes a Fabry-Perot interferometer and a nonlinear dispersive medium. 

(a) Curves A;: interference patterns of Fabry-Perot cavity for input power 

I I < I < I Curves B: variation of the effective path length of the 

medium under the influence of the intracavity laser field. Crossing points 

a - b: equilibrium states of the system. (b) Plots of equilibrium points us 

input power. 

show fringe patterns of the optical cavity for the incident light 

of intensities Ii. The abscissa represents the effective optical 

length of the cavity and the coordinate represents the output 

optical power. The output power is proportional to the input 

power, if the optical path length is fixed. The optical power in 

the cavity is proportional to the output power. Curve B represents 

the variation of the optical length of the medium under the 

influence of intracavity light, which means the dispersion, or the 

refractive index is dependent on the intensity of light propagating 

through it. The crossings of Curves A and B correspond to i 
equilibrium points of the system. We plot the equilibrium output 

optical power for various values of Ii and obtain Fig. l.ltb). The 
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portion of negative slope is found to be unstable. The upper and 

lower stable branches correspond to the transparent and opaque 

states respectively. As the input light intensity is increased 

from zero, at I = Icl, a sudden jump from the lower branch to the 

upper one takes place. Inversely the input is decreased passing 

IC2' the output jumps back to the lower branch. Between Ic2 and 

Icl, two stable states coexist. By modifying the system 

parameters, we can obtain devices which have a differential gain or 

a switching characteristic. 

Optical bistability is firstly proposed by Szbke et al. 

(1969). Experimentally Gibbs et al. (1976) success full^ 

demonstrated the effect by using sodium vapor as a nonlinear 

dispersive medium. 

Under certain conditions a part of upper branches becomes 

unstable and the output of the system shows oscillatory behavior. 

The phenomenon is called 'self-pulsing.' Possibility of self- . 
pulsing in optical bistability was firstly discussed by Szoke et 

al. (1969). Theory and a hybrid optical bistable experiment, both 

by McCall (19781, showed that a bistable device can pulsate when 

the nonlinearity has two contributions of opposite sign and 

different time constants. The experimental evidence in an 

intrinsic device was given by Jewel1 et al. (1982) in a GaAs 

etalon, where the thermal and the electronic contributions to the 

refractive index was utilized. Even in simpler media without the 

above-mentioned character, self-pulsing is possible if we take the 

light-propagation effects into account. The stability analysis for 

the steady state solutions to the Maxwell-Bloch equation was 

performed by Bonifacio and Lugiato (1978b) and it was.shown that 

there is a part of the curve in Fig. l.l(b) with positive slope in 
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which some off-resonant cavity modes become unstable. 

More recently, Ikeda (1979) and Ikeda et al. (1980) investi- 

gated the dynamics of a ring cavity containing a nonlinear di- 

electric medium and predicted that the instability in such a system 

gives rise to a turbulent behavior, or so-called chaos. This 

instability comes from delayed feedback of the light transmitted 

through the medium. They showed that chaos appears only when the 

round-trip time tR of 1 ight is 1 onger than the response time 1-I of 

the medium. Subsequently Gibbs et al. (1981) succeeded in the 

first experimental observation of the phenomena in a hybrid optical 

device. Chaos in an intrinsic device was observed by Nakatsuka et 

al. (1983) where optical fiber was used as a nonlinear medium. 

Later on, Ikeda et al. (1982) pointed out even in the cases tR << 
1-l, chaotic pulsation is possible and interpreted it as a self- 

induced Rabi nutation of the electric field vector. 

Anyway their proposal has renewed interest in optical examples 

of chaotic dynamics. All of the above-mentioned phenomena in 

bistable systems, such as multiplicity of the state, a hysteresis 

loop, a sudden change of state for a continuous change of the 

parameters, self-pulsing, and chaos, are distinctive features of a 

nonlinear dynamical system. Thus optical bistability attracts much 

attentions from a fundamental point of view and is now a 

theoretical model to study nonlinear phenomena. Optical devices 

are rather simple by comparison to the other systems such as 

hydrodynamical and biophysical models. As such, comparison of 

theory with experiment is sometimes more straightforward than in 

other cases. 

It should be noted that one can add moderate complexities to 

optical systems by taking into account various effects and can find 
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qualitatively new phenomena. For example, Moloney et al. (1982) 

showed that the light beam of a bistable device, which is called 

'spatial ring,' may exhibit coherent spatial structure 

spontaneously. The inclusion of the transverse profile of the 

laser beam causes new phenomena which are similar to those in 

hydrodynamics, 

1.2 Optical Pumping and Spin Polarization 

Before describing optical pumping itself, we mention its 

relation to laser nonlinear spectroscopy, Nonlinear spectroscopy 

is now a very powerful tool to study atomic and molecular 

structures with high resolution and high sensitivity. The 

nonlinearity is brought about when the population distribution in 

the atomic states is changed appreciably from the thermal 

equilibrium by laser light with high intensity. The coherency or 

the monochromaticity of laser enables us to modify the population 

distribution selectively and to create atomic coherences. We can 

not only select the atomic internal state but also its velocity and 

coordinate. Intense laser light can populate highly excited states 

eff icientl y against the fast re1 axation to the ground state. 

Before the advent of a laser, a method to create the 

population changes by conventional light sources, such as atomic 

resonance lamps, was proposed and various techniques has been 

developed. The term 'optical pumpingm indicates these techniques 

in its narrower sense. One of the key concepts of optical pumping 

is the use of polarization of light. Irradiation of polarized 

light can create an orientation or an alignment of the atoms, , 

namely the population difference in the magnetic sublevels. We can 
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see a germ of nonlinear laser spectroscopy. Furthermore, the laser 

itself can be viewed as one of the resulting products from a 

development of optical pumping. 

In order to describe the optical pumping process, we shall use 

Fig. 1.2 Energy level diagram of atoms with J = 1/2 + J = 1/2 transition. 

Real lines: excitation by a+ (right-circularly polarized) and a- (left- 

circularly polarized) light. Wavy lines: spontaneous and collisional 

decay. Dashed lines: spin relaxation. 

a simplified atomic model shown in Fig. 1.2. The excited state 

with a total angular momentum Je = 1/2 is coupled to the ground 

state with J = 1/2 by optical transitions, Such a configuration 
9 

2 can be seen in the Dl line ( + 2~1/2) of an alkali metal, if 

we neglect the effects of the nuclear spin. The mJ = *1/2 levels 

of the ground state are represented as Is*>, For the excited 

state, le*> are defined similarly, The selection rule of an 

electric-dipole transition is AmJ = +1 for a+ (right-circularly 

polarized) light and AmJ = -1 for o- (left-circularly polarized) 

light. In the absence of light the levels Is+> and Is-> are 

equally populated. Suppose we irradiate an ensemble of such atoms 

with o+ light. Only the atoms in the Is-> level are excited to the 

le+> level by the presence of the selection rule. Some of which 

fluoresce and return to the level Is-> and the others to Ig+>. If 
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this process is repeated, a considerable part of atoms is 

transferred from the lg-> to the 1g+> level. The final relative 

population will be determined by such parameters as the pumping 

light intensity, relative transition probabilities, and spin- 

relaxation time of the ground state. Generally, the relaxation 

time is relatively long fa few milliseconds or longer) and a large 

population difference can be created by weak light, The population 

difference corresponds to the orientation of the angular momentum 

or the magnetic momentum of the atoms. 

The process described above is a typical example of optical 

pumping. It should be noted that owing to the light polarization, 

a kind of selection as in the nonlinear spectroscopy becomes 

possible. 

Use of lasers in the optical pumping experiments adds new 

features. For example, polarization spectroscopy (Wieman and 

Hinsch, 19761, which utilizes optical pumping to the full, is now a 

very useful method in analyzing complex atomic or molecular 

structures. Aside from spectroscopic use, laser optical pumping 

was found to exhibit various interesting phenomena in nonlinear 

optics, such as self-focusing of a weak light beam (Yabuzaki et 

al.? 19821, repulsion of two circularly-polarized beams of opposite 

polarizations, (Tam and Happer, 19771, break up of a linearly 

polarized beam into two coherent beams of opposite circular 

polarization (Tam and Happer, 19771, and propagating wave front 

generated by laser pumping (Bhaskar et al., 19791. Our studies are 

on these lines. 

To c!ose this section we discuss on the nonlinearities caused 

by optical pumping. Consider two extreme cases pictured in Fig. 

1.3. In the case fa), the atoms are not optically pumped and the 
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(a) NO PUMPING 

- - 
(b) a+ PUMPING 

A;- k 
19-> 19+> 

Fig. 1.3 Population distribution (a) in the absence of pumping light* and 

(b) under the irradiation of intense a+ light. In the case (a), the 

ensemble of atoms can be considered as an isotropic medium, whereas in (b), 

the circular dichroism and birefringence appear. 

Is+> and the Is-> levels are equally populated. The absorption 

coefficients a+ (a_) and the incremental refractive indices n+ - 1 
(n- - 1) for o+ (0-1 light are proportional to the populations of 

Is+> and lg->. So the relations 

- a + - a - = a ,  (l.la) 

- n + - n - = n ,  (l.lb) 

hold, where a and n are constants. In the case (b ) ,  all atoms are 

pumped to the Ig+> level by intense a+ light and the optical 

characteristics are changed as 

a+ = 0, a- = 2a , (1.2a) 
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We see the medium shows circular dichroism and circular 
- 3. ,,I; . 

birefringence. We should firstly note that the pumping by the o+ 

light changes the optical constants for itself via optical - . ,  

pumping. In other words, the atomic system acts as a nonlinear 

medium. Secondly, the pumping light also influences the 

propagation of a- light if it exists. Conversely, o- light will 

change the optical constants for o+ light. This interaction 

between the a+ and o- components of light and the nonlinearity play 

important roles in the phenomena treated in this work. 

The process of optical pumping can well be described by the 

-? 
Bloch equation for the ground-state spin m (Appendix A) :  

h 

where do, , P,, end z represent the magnetic field, the spin 

relaxation rate, the oi light intensities, and the unit vector 

along the light propagation direction, respectively. When these 

parameters are constant, Eq. (1.3) is an autonomous (time- 

independent) linear equation which has one equilibrium point. The 

equilibrium point is stable and all solutions are attracted to this 

point exponentially as time passes. Although the position of the 

equilibrium point can be changed by adjusting the parameters, no 

qualitative change does not occur. If, however, P+ and P- are 
-? 

functions of m, then Eq. (1.3) becomes nonlinear and qualitatively 

new phenomena can be expected. Such situation can be realized by 

detecting the spin polarization by some means and feeding it back 

to the light intensities Pi. Two types of feedback are used in 

this thesis; one utilizes the interference in a Fabry-Perot cavity 
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and the other uses the optically induced Faraday effect. In both 

cases, the dependence of dispersion (or refractive index) on the 

+ 
spin m plays an essential role. 

1.3 Outline of Present Work 

In this thesis we treat two optical systems both of which 

utilize the nonlinearity and the coupling between the o+ and o- 

light through optical pumping. The first system treated in 

Chapters 2 and 3 is composed of a Fabry-Perot cavity and an 

intracavity cell filled with atoms which have degenerate Zeeman 

sublevels in the ground state. The second system in Chapters 4 and 

6 is also of intrinsic type as the first one and uses the same 

atomic system, but has no optical cavity. The feedback is realized 

by the optically induced Faraday effect. Chapter 6 is devoted to 

the description of chaotic behaviors seen in the no-cavity system, 

Chaos appears when a delay in the feedback exists. Preparatory to 

it, in Chapter 5, some general aspects of the delay-induced chaos 

are presented. We also present experimental results on chaotic 

oscillation observed in a simple and familiar acoustic system. The 

system equation is essentially the same as that for the optically 

bistable system. 

Here we outline the content of each chapter. Chapter 2 is 

devoted to the description of the static behavior of the first 

system. At the beginning the mathematical model for the atomic 

system is set up. The model is used throughout this work, From 

the steady state solution the bifurcation structure is 

investigated. The marked phenomenon predicted to occur in this 

system is optical tristability. In the case of linearly polarized 
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incident light the three states can be characterized as follows: 

(1) The light in the cavity is linearly polarized, (2) it is 

essentially right-circularly polarized (o+ state), and ( 3 )  it is 

essentially left-circularly polarized (0- state). In the o+ (0-1 

state, the atomic spins are oriented parallel (anti-parallel) to 

the direction of the incident light beam. The symmetry-breaking 

bifurcation from the linear state to the o+ or o- states occurs 

when the incident light intensity increases. 

The bifurcations which appear in general cases where the o+ 

and 0- components of the input light are changed independently are 

also investigated. From the aspects of Thom's novel theory, it is 

interpreted as a butterfly catastrophe, Finally some extensions of 

the tristable system and new predictions made by other authors are 

reviewed. The experimental evidence of the optical tristability by 

Cecchi et al. is also reviewed. 

Chapter 3 is devoted to the dynamical behavior of the 

tristable system. It is predicted that a new type of self-pulsing 

is induced by a magnetic field applied perpendicularly to the 

optical axis. The mechanism underlying is the self-sustained spin 

precession about the magnetic field. The a+ and 0- components of 

the output light are modulated alternately. The oscillation 

frequency can be controlled by the strength of the magnetic field. 

It is shown that the system can be described by the van der Pol 

equation. An experimental evidence shown by Mitschke et al. is 

also represented. 

In Chapter 4, we propose a spin-related bistable system 

without cavity. The system utilizes the optically induced Faraday 

rotation as the feedback mechanism. Use of no cavities relaxes the 

condition for the light source that it should operate on a single 
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mode and the frequency should be tuned at a definite part of the 

cavity fringe. An incoherent light source may be enough if other 

conditions are satisfied. 

It is shown that in the case of linearly polarized incident 

light the system exhibits a pitchfork bifurcation which breaks the 

polarization symmetry and no hysteresis appears. In other words, 

the symmetry breaking bifurcation is of a supercritical type, while 

in the tristable system it is of a subcritical type (Joseph, 

1981). Considering the difference between o+ and 0- components of 

the incident light or an asymmetry of the system as a parameter in 

addition to the input intensity, we can see a cusp catastrophe. 

Self-pulsing as in Chapter 3 can be expected to exist in this 

system. The nonlinearity is simpler than before. So the 

conditions for the oscillation can be written down explicitly. 

The experiments were carried out to examine the static 

behavior of this,system. Sodium vapor in a heat-pipe oven was used 

as the nonlinear medium, to which the multimode dye laser tuned on 

a wing of the Dl line was applied. The operation of the proposed 

system was verified experimentally. 

Chapter 5 is devoted to some general aspects for chaotic 

phenomena. Our attention is focussed on the delay-induced chaos in 

optical bistability, The delay is caused by the propagation of 

feedback light. To get intuition, an experiment in a simple 

acoustic system was carried out. The system equation is 

essentially the same as that for the optical system. There we 

found that the system passes the period-doubling route to chaos as 

seen in various kind of systems. 

In Chapter 6, we investigate the delay-induced ,chaos in the 

optical system treated in Chapter 4. The most striking phenomena 
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is the bifurcation which recovers the polarization symmetry broken 

by the symmetry-breaking bifurcation. The new bifurcation lies 

between an asymmetric chaos and a symmetric chaos. We found some 

types of such bifurcations by changing the system parameters. An 

attempt to explain the under1 ying mechanism for each type is 

presented by using a mathematical model. 
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OPTICAL TRISTABILITY 

2.1 Introduction 

In this chapter we study on an optical system composed of a 

Fabry-Perot cavity and an intracavity cell which contains atoms 

with degenerate Zeeman sublevels in the ground state. The medium 

shows polarization anisotropy in the nonlinear regime as shown in 
1 ,  

Chapter 1, So we should treat the optical field as a vector and 

the dielectric susceptibility of the medium as a tensor. Although 

many studies have been made on optical bistability, none of them 

take into account the vectorial nature of the optical field nor the 

tensorial nature of the medium. We show here that inclusion of 

such natures brings qualitatively new phenomena. The most 

remarkable feature of the system is optical tristability which is 

the central subject of this chapter. For linearly polarized 

incident light the system shows a hysteresis as in the ordinary 

bistable system when we observe only the output light intensity. 

If, however, we also observe the polarization state, the high 

transmission branch appears to be degenerate with respect to the 

right- and left-circular polarizations. We have therefore three 

stable states; the linear (low transmission) state, the almost 

right circular (high transmission) state, and the almost left 

circular (high transmission) state, The three states are 

abbreviated to linear, o+, and o- states. As easily seen, the 

transition to the high transmission states, a+ or a_, is a symmetry 

breaking one, which is a very important notion in a non- 



OPTICAL TRISTABILITY 15 

equilibrium dynamical system. Generally, a non-equilibrium system 

acquires a spatial or temporal structure spontaneously through 
I, ' C / 

symmetry breaking bifurcations (Nicolis and Prigogine, 1977). 

The symmetry breaking can be connected to the atomic state. 

In the a+ state (a- state), the atomic spins are oriented parallel 

(anti-parallel) to the direction of the incident light beam and in 

the linear state, they are random. Above the critical point for 

the symmetry breaking, the medium behaves as if it were a gaseous 

ferromagnetic material. 

In Sec. 2.2, we present the state equation for the optical 

tristable system. The equation is obtained by coupling the steady 

solution of the rate equation for the atomic system and the input- 

output characteristics of the Fabry-Perot cavity. In Sec. 2.3 the 

conditions for the symmetry-breaking bifurcation are examined by 

the stability analysis of a trivial symmetric solution. The 

numerically obtained double hysteresis loop is also presented. 

It should be noted that this system has two independent input 

parameters; right- and left-circularly polarized components of the 

incident light. In Sec. 2.4 we investigate the bifurcations which 

appear in general cases where the two parameters are varied 

independently. The bifurcations occur in somewhat complicated 

manners. The parameter space is divided into mono-, bi-, and tri- 

stable regions. It is found the bifurcation scheme can well be 

understood in context of the catastrophe theory (Thom, ,1975). In 

Appendix B we describe the Thom's theory on the classification of 

elementary catastrophes. It is a deep result obtained from purely 

mathematical discussions. So all that we can do is to explain it 

intuitively from a physical point of view. In Sec. 2.4 it is shown 
A'u5. \s, , 

that our system is a good example of the butterfly catastrophe 
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which is one of the seven elementary catastrophes. 

In Sec. 2.5 we propose an experiment to observe optical 

tristability. According to the proposal, Cecchi et al. (1982) 

perform'ed the experiment and observed the phenomena by using sodium 

vapor as a nonlinear medium. A brief summary of their experiment 

is given. 

2.2 Theory 

Fig. 2.1 Simplified atomic level scheme. 

We consider atoms with energy levels indicated in Fig. 2.1. 

The spin-up level I + >  and spin-down level I-> in the ground state 

are degenerate and have equal number densities N+ = N- = N/2 in the 

absence of light beams, where N is the total atomic density. The 

optically excited levels are represented by a single level le>, 

which is possible when these levels are completely mixed by atomic 

collisions* In such a three-level system, the effect of optical 

pumping is described by the rate equations for N+ and N- (Appendix 

A): 
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where I- is the spin relaxation rate, and the pumping rate Pi have 

been assumed to be smaller than the decay rate re of the excited 

state, which therefore has negligible population. The rates P* are 

expressed in terms of the light intensities (photon flux) I, and 

the absorption cross-section o by P* = (1/2)oI*. For homogeneously 

broadened medium, the absorption cross-section o for monochromatic 

light of the frequency w is given by 

where p is the atomic dipole moment, rab is the relaxation rate for 

optical coherence, wo is the transition frequency, and A = Wo - 
is the atomic detuning. 

The steady-state solutions of Eq, (2.1) are 

With use of Eqs, (2.2) and (2.3) the absorption coefficients a* and 

the wavenumbers k* for the o+ and o- light are 

where kg is the wavenumber in a vacuum (see Sec. A.3). For 

simplicity we will neglect the absorption losses by taking 

relatively large values of 1A1. Inclusion of absorption losses 

will not change the essential features of our discussion. 

The transmission characteristics of a Fabry-Perot cavity which 

includes a dispersive medium are derived as follows. Two mirrors 
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Fig. 2 . 2  Cavity system. 

with a reflectivity R are separated by a length L. The field 

amplitudes EI, EF, and ET at positions indicated in Fig. 2.2 

satisfy the following boundary conditions: 

where k is the wavenumber, From Eqs. (2.6) and (2.7) we get 

The relation is easily extended to the case where circular 

birefrin-gence-, namely the difference between k+ and k-, exists: 
n-- 

where 11* are the incident light intensities, IT* are the trans- 

mitted light intensities, and T = 1 - R is the transrnissivity of 

the mirrors. The wavenumbers k* are assumed to be constant over 

the entire cavity length L because standing-wave structure of the 

spin-polarized atoms which have relatively long relaxation time is 

washed out by their thermal motion. The moving atoms are pumped by 
1 
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mean-field intensities I* in the cavity which are related to IT* by 

(see Sec. A.2) 

With use of Eqs. (2.3) and (2.10) the expressions (2.5) for k* 

become 

where K = (0/2)(A/rab)(N/2) is the linear dispersion and X* = 

(a/r)I* are the normalized transmitted intensities. Substitution 

of Eq. (2.11) into Eq. (2.9) gives the following coupled nonlinear 

equations which relate the transmitted light intensities to those 

of incident ones: 

where we introduced the normalized incident light intensities Y* = 

( d r ) ( i  + R)II*. 

The variables X+ and X-'are ndt independent because k+ and k- 

in Eq. (2.11) are connected by the relation k+ + k- = 2(k0 + "1. 

In fact, if we derive the equation for atomic uariables, it 

contains only m as will be seen later. In this chapter, however, z 

we will use Eq. (2.12) mainly. 

2.3 Symmetry-Breaking Bifurcation 

We consider, at first, the case where the incident light is 

linearly polarized, namely, Y+ = Y- = Y ,  Equation (2.12) gives 

trivial solutions: 
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where X = TY and 

is the transmissivity of the Fabry-Perot cavity for weak-field 

limit X+, X- << 1. As for the transmitted field amplitudes and 

phases of both circularly polarized components, the solutions 

(2.13) are symmetric, and the polarization of resultant transmitted 

light remains linear. The nonlinearity nor the coupling between 

the two circularly polarized light may seem to play no role in the 

solutions (2.131, but makes them unstable under some conditions. 

The stability of the solutions (2.13) can be examined by 

calculating the differential gain which diverges at critical points 

where stable solutions become unstable under a continuous change of 

parameters (Gibbs et a1.,1979). (The analysis can be done more 

straightforwardly by using the dynamical equation for the atomic 

variable. See Chapter 3,) Expanding the light intensities around 

the solutions (2.13) as Y* = Y + y*, X* = X + x*, and substituting 

into Eq. (2.121, we obtain linearized equations: 

where Cd = r/(l - 2 s ~ )  is the differential gain for the difference 
between both light intensities, and n is a parameter representing 

the strength of nonlinearity which is given by 
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At the critical point n = ncl = 1/(2~), cd diverges. In the region 

< ncl, which includes the linear case n = 0, the solutions (2.13) 

are stable; hence in the region 9 > ncl they are unstable, 
By using Eqs. (2.14) and (2.171, the unstable condition is 

written down expl icitly: - I 

X cosC2(ko+ IC)L~ + 2tcL ~ + 1  sinC2(ko+ tcIL3 > 1 + R~ 2R (2.18) 

Consider the case where the inequality (2.18) is satisfied in 

the limit X + by choosing adequate values of kg, IC, L, and R. 

When the incident light intensities are small enough, namely, X = 

rY " 0, the inequality (2.18) is not satisfied because the left- 

hand side is less than unity, whereas the right-hand side is 

greater than unity for 0 2 R 2 1. Below the critical value Xci (=  

7Ycl) which satisfies the equation corresponding to the inequality 

(2.181, the symmetric solutions (2.13) are stable. At the point 

Y = Ycl symmetry-breaking transition occurs and for Y > Ycl only 
unsymmetric solutions are stable. 

To obtain the unsymmetric solutions we solved Eq. (2.12) 

numerically. By expressing Eq, (2.12) as X* = f*(X+, X-1, the 

iterative procedure to get the stable solutions is written as 
+,+ . 

fol lows: 

where 8 represents the properly chosen convergence factor and 

satisfies 0 < 8 < 1. Starting from an initial value xi0), the 

procedure is repeated unti 1 xin) converge. In F i o  2.3 we have 

plotted X+ as a function of Y for 2kOL = -n/2 + 2nM ( M  is an 

integer), 2ICL = n, R = 0.7. With respect to X-, the same curves 

are obtained but the upper branch corresponds to the lower one for 
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Fis. 2.3 Hysteresis cycles of right-circularly polarized transmitted light 

(X+) in the case of linearly polarized incident light. The same curve is 

obtained for left-circularly polarized transmitted light (X-) but the upper 

(lower) branch corresponds to the lower (upper) branch for X+. At Y = YC1, 

if X+ jumps to the upper (lower) branch, then X- necessarily jumps to the 

lower (upper) one and the a+ (0-1 state is established. 

X+, and v i c e  uersa. Increasing the  inc iden t  l i g h t  i n t e n s i t y  one 
- 

f i n d s  t ha t ,  a t  the c r i t i c a l  p o i n t  Ycl, X+ jumps t o  the upper 

( lower)  branch and X- t o  the  lower (upper) one. Above the  p o i n t  

Ycl t he  two s tab le  s ta te ,  i.e., a+-dominant and a--dominant states,  

are possibl  e. 

If, conversely, one decreases Y s t a r t i n g  from values Y > Ycl, 

one sees t ha t ,  a t  the other c r i t i c a l  p o i n t  Yc2, both X+ and X- jump 

back t o  the  middle branch which represents the  symmetric so lu t ions  

(2.13). Thus i n  the reg ion Y < Y < Ycl there e x i s t  three s tab le  
c 2 

solu t ions.  

I n  F ig .  2.4 we show the  b i f u r c a t i o n  diagram w i t h  respect t o  
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Mz 4 

Fin. 2.4 Hysteresis cycles for the spin polarization MZ. Corresponding 

spin states are pictured schematically in.boxes. 

the atomic variable N+ - N- or MZr schematically. The z component 

M of the magnetization is proportional to N+ - N- (Appendix A), z 

In the linear state N+ = N- because no optical pumping takes 

place. In the a+ (0-1 state N+ - N- takes positive (negative) 

values as a consequence of optical pumping due to the imbalance- 

between the a+ and o- light components in the cell. As easily 

seen, in the a* state, the atomic spins are oriented parallel 

(antiparallel) to the optical axis, whereas in the linear state 

they are random. 

2.4 Butterfly Catastrophe 

We also calculated solutions to Eq. (2.12) for general cases 

Y+ # Y-, In Fig. 2.5 we have plotted critical points on the ( Y + ,  

Y -1  plane schematically. At the critical points, the number of 

stable solutions changes. The single-stable, bistable, and 
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Fia. 2.5 The plot of the critical points on the (Y+, Y-1 plane. The 

single-stable, bistable, and tristable regions are indicated by the letters 

S, B, and T, respectiuely. If, by changing the inputs Y+ and Y-, an 

operating point crosses the curve from the regions T to B or from B to S, 

one of the stable solutions becomes unstable and discontinuous change in the 

output occurs. The curve just corresponds to the bifurcation set of the 

butterfly catastrophe (see Fig. 2.6). 

tristable regions are indicated by the letters S, B, and TI 

respectively. The curve in Fig, 2.5 just corresponds to a section 

of the bifurcation set of the butterfly catastrophe cut by a 

hyperplane t = to < 0, u = 0 in the control space (t, u, v, w )  

(Thom, 1975; Zeeman, 1976; Appendix B) .  The system potential for 

the butterfly catastrophe is represented as 

where x is the behavior variable and corresponds to X+ - X-, or MZ 

in our case. In Fig. 2.6 we have sketched the steady-state surface 

in the (u, v, W )  space on which the derivative aV/ax becomes zero, 

and the projection of the critical points to the (u, w )  plane. The 
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Fig. 2.6 Steady-state surface and bifurcation set for butterfly 

catastrophe (t = to < 0, u = 0). The surface is doubly folded and is 

divided into three stable sheets. 

upper (lower) part of the surface corresponds to the a+- (a_-) 

dominant state and the intermediate part corresponds to the 

compromised state. 

For linearly polarized incident light, the control variables 

move along the line w = 0 in Fig. 2.5 as the incident light 

intensity is varied and meet the two critical points at Y = Ycl and 

Y = Yc2. In cases where incident light is circularly polarized, 

control line passes through the regions S, B+ (B-1, and S+ (S-1. 

This corresponds to the ordinary optical bistability, which has 

been studied in detail by Agrawal and Carmichael(l979) in the 

context of a cusp catastrophe. In that case, the potential V is 

represented by a quartic polynomial including two control 

parameters. 

In order to see how the butterfly appears in our system, we 
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investigate the system equation analytically. We use the Bloch 

equation, which will be introduced in Chapter 3* in stead of the 

system equilibrium equation (2.12). 

where mZ = (N+ - N-)/N and Q* = (1/2)0(1 + R)II* are the normalized 

incident light intensities. Representing Eq. (2.22) as P* 

= rf(m )Qf and expanding into Taylor series, we have z 

In the case of Q+ = Q- = Q* Eq. (2.21) becomes 

The critical condition for the symmetry breaking can be written in 

this context as 

When Q < QC1* mz = 0 is stable and when Q > QC1' m = 0 is 
Z 

unstable. In the unstable region we must consider the higher order 

terms, Numerical calculation shows the coefficient r3 - r2 is 
positive for the parameter values used previously. This means 

inclusion of the m term is insufficient. The coefficient rg - r4 z 

is negative and therefore we can eliminate the terms higher than 

m 6. The singularity mz5 leads the butterfly catastrophe. z 
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2.5 Experimental Evidence 

Finally, we will estimate parameters for the experiment to 

realize the optical tristability in which sodium vapor is used as a 

dispersive medium. By filling He gas at pressure higher than 200 

Torr as a buffer gas, yab for Dl line at 589.6 nm becomes larger 

than 2 GHz (McCartan and Farr, 19761, and we can neglect hole- 

burning effect and hyperfine pumping especially for off-resonant 

light. Furthermore, the buffer gas mixes the excited hyperfine and 

Zeeman structure completely. Thus the situation is very close to 

the model which we have used in this chapter. To satisfy the 

inequality (2.181, ~ K L  must be of order of unity or larger, which 

can be achieved by choosing N .., 1012 c~n-~, L = 10 cm, and l A l  = 

30uab. Then the absorption loss 2aL is about 0.1 and will be 

neglected. The required optical power density of a cw dye laser is 

2 the order of 10 mW/mm . 
To verify the prediction described in this chapter, Cecchi et 

al, (1982) performed an experiment. They used the temperature- 

stabilized Na-filled Fabry-Perot interferometer with effective 

finesse 6. Sodium vapor density is 10'~ c~n-~. The 1 ight 

source was a cw dye laser tuned on the high-frequency wing of the 

Dl line. The detuning was about 1.5 GHz* because they used the Na 

cell containing the Ar buffer gas of relatively low pressure (1 - 
23 Torr) which causes a small line broadening ( <  0.2 GHz). A weak 

magnetic field (few gauss) along the optical axis was applied to 

align the ground state spin. They analyzed the transmitted 

intensity with a quarter-wave plate followed by a Wollaston prism 

and recorded the a+ and o- components simultaneously. By 

modulating the input intensity (0 - 25 mW) with a triangular wave 
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at low frequency (12 H z ) ,  they observed the curve corresponds to 

Fig. 2.3. They also scanned the input polarization from almost 

circular polarization to the opposite circular polarization and 

observed a hysteresis curve. The behavior is expected from Fig. 

2.6, if we change parameters I+ and I- keeping I+ + I- constant. 

Modulating the cavity length, they observed the cavity transmission 

function both a+ and a- output components. The dependence of the 

system behavior on the cavity length of mistuning may be 

understood, if we put forward the analysis in Sec, 2.4. 

2.6 Conclusions and Discussion 

We have investigated the static behavior of a Fabry-Perot 

cavity containing atoms with degenerate Zeeman sublevels in the 

ground state. It has been shown that when the intensity of the 

linearly polarized incident light is increased, a symmetry breaking 

bifurcation occurs at a critical level. Above the threshold, the 

output light is circularly polarized in either direction. The 

symmetry breaking is of a subcritical type and therefore a double- 

loop hysteresis appears. The behavior of the system can be 

interpreted in terms of the butterfly catastrophe, when we vary the 

right and left circular components of the input light 

independent 1 y . 
The essential point of the phenomenon is a conflict of the two 

beams. We notice that the optical tristability can be realized by 

other methods; namely by replacing the a+ and the a- beams with a 

pair of conflicting light beams. In fact some examples are 

proposed. Walls et al. (19811, and Agrawal and Flytzanis (1981) 

showed that two beams with frequencies ol and w2 interacting 
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through a two-photon transition wo .., wl + w2 induce tristability 

(See also Hermann and Walls, 1982). Kaplan and Meystre (1981) 

utilized tuo counter-propagating beams in a ring cavity, which 

interact via the nonlinear refractive index grating generated by 

themselues. They also suggested that the effect can be used to 

enhance the Sagnac effect by several orders of magnitude. 

Different nonlinearities causes various bifurcations that have 

not been discussed in this chapter (Parigger et al., 1983; Poston 

et al., 1982; Savage et al., 1982; Areshev et al., 1983; Arecchi et 

a 1 . , 1983). Anyway, such two-parameter systems reveal the var i kty 

of bifurcations and may be applicable to functional devices. 
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SELF-SUSTAINED SPIN PRECESSION 

3.1 Introduction 

We have shown in Chapter 2 that a Fabry-Perot cavity 

containing atoms with degenerate Zeeman sublevels in the ground 

state exhibits optical tristability. The phenomena are due to spin 

polarization in the ground state by optical pumping in the region 

of anomalous dispersion. In the case of linearly polarized 

incident light, the three states are characterized as follows: (i )  

the transmitted light (ET) and the reflected light (ER) are both 

linearly polarized (linear state), ( i i )  ET is right-circularly 

polarized and ER is left-circularly polarized (a+ state), and ( i i i )  

a state with opposite polarizations to the o+ state (a- state). 

When the incident light intensity exceeds a threshold level, the 

linear state becomes unstable and a symmetry-breaking transition to 

the a+ or 0- states occurs. Above the threshold atomic spins are 

forced to orient parallel or antiparallel to the optical axis. 

This phenomenon can be considered as an example of self-circular- 

birefringence proposed by Tam and Happer (1977). 

When static magnetic field transverse to the optical axis is 

applied, the spontaneous magnetization begins to precess about it. 

In general a precession of macroscopic magnetization is faded out 

by thermal relaxations unless it is driven by periodic external 

forces such as a radio-frequency magnetic field or a modulated 

light beam (Kastler, 1961). In the present paper we show that 

self-sustained precession is possible in our system without any 
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periodic external forces. According to the precession the 

circularly polarized components of the transmitted light are 

modulated regeneratively. It is a new type of self-pulsing in 

optical bistability (or multistabilty) and we may call it 

'magnetically induced self-pulsing.' 

Self-pulsing phenomena in an optically bistable system was 

proposed and demonstrated experimentally by McCall (1978). It is 

explained as a relaxation oscillation due to a medium having two 

opposing contributions to the nonlinear refractive index, which 

have different time responses each other. A similar relaxation 

oscillation was proposed by Szhke et al, (19691, although its 

period is determined mainly by cavity holding time. Light 

propagation effects in a ring cavity with nonlinear medium also 

induce instabilities, where the pulsing frequency is related to the 

frequency difference of the cavity modes (Bonifacio et al., 1979). 

In our system the frequency is determined by the Larmor frequency, 

namely, by the strength of the static magnetic field. 

3.2 Modified Bloch Equation 

We consider the same atomic system as in Chapter 2 except for 

an application of a static magnetic field, The atoms are optically 

pumped by right-circularly polarized light (o+) and left- 

circularly polarized light (a_) simultaneously. We can neglect the 

population of the excited state assuming the spontaneous decay is 

fast enough compared to the pumping rates. The atomic state can be 
+ 

characterized by the magnetization,or the spin-polarization M in 
+ 

the ground state. The time evolution of M can be described by the 

Bloch equation (Appendix A; Dehmelt, 1957). 
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where r and T are the gyromagnetic ratio and the spin relaxation 

rate of the ground state respectively. The third (fourth) term of 

the right-hand side of Eq. (3.1) represents the effect of optical 

pumping by the a+ (0-1 component of the intracavity light. If the 

pumping rate P+ (P-1 is large enough, all atoms are pumped to the 
+ -3 

state mJ=1/2 (-1/21 and maximum polarization Mo (-Mo) along the 

optical axis is established. The pumping rates P* are expressed in 

terms of the a+ and a- light intensities (photon flux) I* and the 

absorption cross-section a by 

For a homogeneously broadened medium, the absorption cross-section 

a for monochromatic light of the frequency w is given by 

where p is the atomic dipole moment, rab is the relaxation rate for 

the optical coherence, wo is the optical transition frequency, and 

b = w -  wO is the atomic detuning. For simplicity we neglected 

effects of the static magnetic field Ho on a assuming the Zeeman 

frequency QO = rHo is small compared with the homogeneous width 

'ab 

Taking the light propagation direction along the z axis and 

+ 
the static magnetic field Ho along the y axis (Fig. 3.11, we obtain 

the equations for the normalized magnetization components mi 

= Mi/MO (i = x,y,z): 
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From Eq. 13.0b) we see that my decays sooner or later, so hereafter 

we concern ourselves only with Eqs. 13.4a) and (3.4~). 

Fia. 3.1 Fabry-Perot cavity with a nonlinear medium cell. Static magnetic 

field Ho is applied along the y axis. 

The susceptibilities of the medium for a+ and a- light are 

determined by the magnetization component along their propagation 

direction, namely, m (Dehmelt, 1957; Happer, 1972). We assume 
Z 

that mZ varies slowly with respect to the cavity damping time 

L/(cT), where L is the length of the cavity and T is the 

transmissivity of the mirrors. We can also adopt the quasi-static 

susceptibility approximation (Happer, 1972). The absorption 

coefficients a* and the wavenumbers k* are 
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where a. and kg + K is the absorption coefficient and the wave 

number for the unpolarized medium. To simplify the situation we 

neglect the absorption effect by taking relatively large detuning 

Ihl 

Thus the transmission characteristics of the Fabry-Perot 

cavity is given by the equation 

2 IT* = T I1*E1 + R~ - 2R cos2k*(mz)13-', (3.6) 

where 11* and IT* are the incident and transmitted light 

intensities respectively and R = 1 - T is the reflectivity of the 
mirrors. we also assumed that mZ has no z dependence due to the 

standing-wave structure of the pumping field, because the atoms 

move many wavelengths during the pumping time P* and the decay time 

. The effective pumping light intensity in the cavity is 

represented as a sum of the forward and backward wave intensities 

(Appendix A): 

By using Eqs. (3.21, (3.61, and (3.71, the pumping rates in Eqs. 

(3.4) are represented as follows: 

where Q*=(1/2)o(l+R)IIk are quantities which relate to the incident 

light intensities. Substituting Eq. (3.8) into Eqs. (3.4a) and 

(3.4~1, we obtain two-dimensional nonlinear differential equations 
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3 which describe the motion of the Bloch vector m = (mz,mx) in the 

caui ty. 

Let us consider, at first, the case where no external magnetic 

field is applied, namely, the case of QO = 0. We rewrite Eq. 

(3.3~) with QO = O as 

where I.A represents parameters such as r and Q* as a whole. The 

equilibrium points are found by solving the equation f ( m  )=O, 
I.A z 

which is equivalent to Eq. (2.91, although the latter is for the 

field variables and the former is for the atomic variable. We also 

find equivalence of f (mz) to aV/ax in Chapter 2, where V(x) is a 
I.A 

system potential introduced in context of the catastrophe theory. 

The stability of a equilibrium point is determined by the first 

derivative of f with respect to mZ at the point. If df,/dmz > 0, 
U 

the equilibrium point is unstable and if dfU/dmz < 0, then stable. 
Figure 3.2 shows some example of f,tmz) in the case of linearly 

polarized incident light. We choose the parameters I.A so as to give 

single-stable, tristable, and bistable cases. We also show, in 

Fig. 3.3, the motion of the Bloch vector on the (mZ, mx) plane for 
+ 

the bistable case. There the equilibrium point m = 0 is unstable 

and the atomic spins orient parallel or antiparallel to the z axis 

spontaneously. It is quite natural to expect that if Po # 0 ,  the 

spontaneous magnetization continues to precess about the static 
3 

magnetic field without decaying to m = 0. 

3.3 Self-sustained Spin Precession 

To see the effect qualitatively we introduce following 
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Fin. 3.2 Plot of the function f,,(mz) for single-stable, tristable, and 

bistable cases. Parameters are R = 0.7; 2kOL = -n + 2Mn (M: integer); ~ K L  

= 1 . 5 n ;  and Q+ = Q- = 0.1T (single stable), Q+ = Q- = 0.3r (tristable), Q+ 

= Q- = 1 .Or  (bistable). The equilibrium points satisfying f,,(mz) = 0 are 

stable (unstable) when df,,/dmz < 0 0 0). In the bistable case, for 

example, the point mZ = 0 is unstable and mZ = f0.44 are stable. 

equations: 

where 5 and TI are positive constants. . The first terms of the 

right-hand side represent the precession about the y axis and the 

.$ 

second terms simulate the motion of m governed by Eqs,. (3.4a) and 

(3.0~) in the absence of the magnetic field. Namely, in the case 

of Q0 = 0, Eqs. (3.10) have two stable equilibrium points (*ms, 0) 

and an unstable equilibrium point (0,O) and give qualitatively the 
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F is .  3.3 Some trajectories of on the (mZ, m x )  plane for the bistable 
-3 

case. The stable equilibrium point m = (ms, 0) corresponds t& the o+ state 
-3 

and m = (-ms, 0) corresponds to the a- state. 

same flow as shown in Fig. 3.3. Equations (3.10) are quite similar 

to van der Pol's equations which describes the operation of 

electron-tube oscillators. The difference is the presence of the 

term <mx in Eq. (3.10a) but it can easily be eliminated by a 

variable transformation. By choosing suitable parameters, Eqs. 

(3.10) give a stable limit cycle on the imzr mx) plane. To confirm 

the oscillation we solved Eqs. (3.4a) and (3.4~) numerically. 

Figure 3.4 gives an example of the trajectories, which starts from 

a point close to the origin, spirals out, and approaches to a limit 

cycle asymptotically. Two bends on the limit cycle are vestiges of 

the attractors which are located at the points (*ms, 0) when no 

magnetic field is applied. The velocity of the moving point 

becomes slower in the neighborhood of the bends, and therefore the 

period of rotation is longer than the Larmor period T = 2r/Q0. 0 

With an increase of Po, the period approaches to the Larmor period 
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+ 
Fia. 3.4 Self-sustained precession of Bloch vector m. Parameters are R 

= 0 . 7 ,  Q0 = 5 0 T ,  2kOL = -7 + 2Mn. 2icL = 1 . 5 n .  and Q+ = Q- = 10T .  

and the limit cycle becomes rounder. There is a critical value of 

Q0 below which the trajectories trapped to either of the attractors 

(for the parameters used in Fig. 3.4, the critical value is about 

4OT). We note that the limit cycle lies in the real space, whereas 

in cases of other self-pulsing phenomena, it lies in a 

mathematically constructed space, namely, in a phase space. 

We also calculated temporal behaviors of P* which are 

proportional to the intensities of the a+ and o- components of the 

transmitted light respectively (Fig. 3.5). The oscillation in P* 

are built up according to the growth of the trajectory in Fig, 

3.4.  In the steady state alternative pulsation in P* are 

observed. In the half cycle of mz > 0 ( <  01, P+ (P-1 is enhanced 

and ImZ/ is elongated through optical pumping. Thus the length of 

+ 
the Bloch vector m is maintained against the thermal relaxations, 

The two peaks in each pulse, one of which is sharp and the 

other broad, are explained as follows. For example, P+ which is a 
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Fia. 3.5 Sel f-pulsing in a+ and a- components of the transmitted 1 ight. 
+ 

Corresponding trajectory of m is shown in Fig. 3.4. 

function of mZ takes the maximum value on the dotted line in the 

half plane mZ > 0 of Fig. 3.4. The trajectory crosses the line 

twice in a cycle, first rapidly in the upper half-plane and 

secondly slowly in the lower half-plane, 

3.4 Exoerimental Evidence 

Here we propose an actual system which exhibits the phenomenon 

described above. The system is essentially the same as that shown 

in Chapter 1, where sodium vapor was used as a nonlinear medium. 

The Dl line (589.6 nm) is homogeneously broadened by filling a 

relatively high-pressure buffer gas (e.g. 'ab ,-, 2 GHz for 200 torr 

of helium), and the Doppler broadening can be neglected. The 

buffer gas also serves to prevent the hyperfine pumping in the 

2 ground state 3 S1,2. Thus the behavior of the atom can be 

described substantially by the model depicted in Fig. 3.1, Taking 
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12 -3 l f l l  - 30vab, vapor density N - 3x10 cm , and L - 10 cm, we obtain 
the maximum phase shift ~ K L  - 5 .  The spin relaxation rate is 

3 
estimated to be 10 s-' , and therefore the osc i 1 1 ati on wi 1 1 be 

4 -1 observed for the Larmor frequency Q0 > 40T , 4x10 s , which 
> 

corresponds to Ho - 10 mG. The required power density of a CW dye 

2 laser is of the order of 10 mW/mm . 
According to the proposal described above, Mitschke et al. 

(1983) performed the experiment successfully. They used a heated 

stainless-steal cell containing sodium atoms ( N  .., 1013 c ~ n - ~ )  in an. 

argon atmosphere t N  150 Torr); the length of the heated zone is 

about 20 mm. The cell was placed in the center of a 

~iezoelectricall~ controlled near confocal Fabry-Perot cavity 

(finesse = 17). The light source was a dye laser which was tuned 

by 10-20 GHz on either side of the Na-Dl line. The light with a 

power of 5-50 mW could be switched on to observe transient 

phenomena. The transverse magnetic field Ho was applied by 

Helmholtz coils. The right- and left-circular components were 

measured by a pair of photodiodes separately. Measurments were 

performed in either region Ho < Hcr or Ho > Her. The critical 

magnetic field Her, above which oscillation took place, was in the 
range 0.3 to 1.5 Gauss. 

(1) Ho < Her: When the input intensity was switched from zero 
to 1 > Icr ( -  10 mW), the system stayed in the linear state for a 

time T~ ( -  35 US)+ For t = T~ the sudden transition to the o+ or 

the 0- state took place. The delay was explained as a result of a 

critical slowing down (Haken, 19831. 

( 2 )  Ho > Hcr: When H was increased above a critical value H 0 c r 

with other parameters fixed, then a build-up of switching between 

the a+ and 0- states was seen. The pulse train in the o+ output 
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and a- output were complementary as in Fig. 3.5. They could easily 

observed the pulse train for minutes. Repetition rate could be 

varied between 200 kHz and 13 MHz. They showed that when the laser 

intensity was changed with other parameters kept fixed, there was a 

range where self-pulsing was observed, which is consistent with a 

theoretical resul t . 
They also observed the pulse-shape precisely and found two 

maxima exist in each pulse as in Fig. 3.5. They proposed to apply 

the apparatus as a current-controlled oscillator, and demonstrated 

the experiment of 'optical FM signal transmission,' 

3.5 Conclusions and Discussion 

We have predicted that the optical tristable system in Chapter 

2 exhibits self-pulsing induced and controlled by a static magnetic 

field. The self-sustained spin precession is responsible for the 

phenomenon and can be described by a modified Bloch equation which 

includes a nonlinearity. The conventional linear Bloch equation 

having oscillating-magnetic-fiald terms has been widely used to 

describe various kinds of resonance phenomena. It is also used as 

an analog model for an optical transition in two-level atoms. 

Therefore it is an interesting problem to investigate resonance 

phenomena in our nonlinear Bloch equation by including oscillating- 

magnetic-field terms. 

Another extension of our equation is possible. We have 

assumed that the field variables adiabatically follow the atomic 

variables. When the oscillating frequency is comparable to the 

cavity response cT/L ( -  100 MHz), the assumption is incorrect and a 

modification is needed. The interplay between the dynamics for the 
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f i e l d  and t h a t  f o r  t h e  medium m a y  c a u s e  new phenomena. 



CHAPTER 4 

OPTICALLY BISTABLE SYSTEM WITHOUT A CAVITY 

4.1 Introduction 

The optical bistability exhibited in all of the systems 

studied so far can be characterized by the presence of hysteresis, 

which appears in intensity changes of the output light (transmitted 

or reflected light) as the incident light intensity is varied. The 

optical bistability that we propose and study in this chapter is 

largely different from ordinary bistability. The most striking 

difference is that this optical bistability has no hysteresis but 

has symmetry breaking (or a pitchfork bifurcation), for the 

variation of intensity of the linearly polarized incident light. 

The optical system has a positive feedback loop for the intensity 

difference of circularly polarized components of light, not for the 

light intensity itself as in the ordinary optical bistable 

systems. When the incident light intensity exceeds a critical 

value and the differential gain overcomes the loss in the loop, the 

stable state bifurcates into two symmetrically lying branches 

called a+ and a- states. In the a+ (0-1 state the polarization of 

the light in the cell is almost right (left) circular. At the 

critical point the system gets into either of these states with 

equal probability, where no jump in the output occurs. So the 

bifurcation can be viewed as a second-order phase transition. The 

jump between two stable branches, which can be observed in ordinary 

optical bistability, does not occur in the present system, when its 

input intensity is varied, In the case of optical tristability 
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(Chapter 21, the symmetry breaking occurs simultaneously with a 

jump in a doubled hysteresis cycle, and can be viewed as a first- 

order phase transition. Another interesting feature of this system 

is that when the polarization plane of the incident light is 

rotated continuously, a sudden jump from one state to the other 

occurs. A hysteresis loop appears when we swing the polarization 

plane. 

The optical system to be studied theoretically and 

experimentally in this chapter is very simple, which has no optical 

cavity. So careful adjustments of laser frequency to the cavity 

fringe are not needed. Use of multimode laser is also allowed. It 

consists of a cell containing atoms with spin in the ground state, 

which is used as a nonlinear dispersive medium, a h/8  plate which 

converts an polarization state, and a mirror to feedback the 

transmitted light to the cell. The incident light is near- 

resonant to the atomic absorption line and linearly polarized. 

Competitive optical pumping by a* components is caused by the 

optical feedback through the phenomenon called optically rotatory 

power (Gozzini, 19621, or (optically induced) Faraday rotation. 

Two stable states of this system can be characterized by the 

polarization of output light or the direction of spin polarization 

of atoms. In Sec, 4.2 we describe about the setup of the optical 

system, and study its stable states using a simplified atomic 

model. The present optical bistability is discussed from the point 

of view of catastrophe theory (Thorn, 1975; Zeeman 19771, and we 

show that it can be explained in context with the cusp catastrophe, 

similarly to the ordinary bistability with hysteresis (Agrawal and 

Carmichael, 19791. In Sec, 4.3, we study theoretically on the 

phenomenon of self-sustained spin precession occurring in this 
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system when a static magnetic field is applied perpendicularly to 

the light beam. This results in the modulation of polarization of 

the output light at about the Larmor frequency. This phenomenon is 

similar to that in an optically tristable system, which has been 

theoretically studied in Chapter 3 and recently observed by 

Mitschke et al. (1983). In Sec. 4.4, we study experimentally about 

the new type of optical bistability, using sodium vapor and a laser 

beam tuned at the Dl line, and we show an evidence of symmetry 

breaking and pitchfork bifurcation. 

4.2 Optical System and Stable States 

E , CELL A18 M A18 
• ET - r i - I S  

I I - ----- 4-+ ------- 
I .  .c- : :  - 

ER i 
" OUTPUT 

Fig. 4.1 Optical system exhibiting bistabilit~ with symmetry breaking, 

together with the definition of coordinates. The A/8 plate shown by dashed 

lines is used to monitor the field ET or ER. 

The optical system consists of a cell containing atoms with 

Zeeman sublevels in the ground state, such as alkali-metal atoms, a 

A / 8  plate, and a mirror, as shown in Fig. 4.1. Incident light is 

linearly polarized and its frequency is near-resonant to the atomic 

absorption line, i.e. it is in a region of anomalous dispersion. 

After transmitted through the cell, the light is passed through a 
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h/8 and then reflected back to the cell by a mirror. Since the 

light beam passes twice the A/8 plate, it plays a role of a A/4 

plate for a single path. So, unless the optical axis of the A/8 

plate is oriented to the direction parallel or perpendicular to the 

polarization of the incident light, the backward light is 

elliptically polarized in general, i,e. the intensities of a* 

circularly polarized components become different. Because of this 

intensity difference, the atoms in the cell are optically pumped 

and atomic spins are oriented parallel or antiparallel to to the 

beam axis. When the spin-polarization is produced in this way, the 

incident light is subjected to the rotation of polarization because 

of the difference of refractive indices for the a* components. If 

the optical axis of the A18 plate is adequately oriented, the 

rotation of polarization for the incident light beam can increase 

the intensity difference of circularly polarized components in the 

backward light. As shown in Fig. 4.1, we take the x and z axes to 

the directi Ans of pol ar ization and propagation of the incident 

light, respectively, Let us write 8 as the rotation angle of 

polarization and e0 as the angle between the x axis and the 

direction of optical axis of the A/8 plate, which we shall call 

'offset angle. ' 

A small amount of the light passed though the mirror is 

applied to another h/8 plate shown by dashed lines in Fig. 4.1, 

which is used to monitor the changes of polarization and 

intensities of the forward and backward light beams. When the 

optical axes of two h/8 plates are oriented perpendicularly to each 

other, the phase-retardation is cancelled out, so that the 

polarization of the output light becomes the same as that of the 

forward light beam transmitted through the cell. On the other 
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hand, when they are oriented parallel, the polarization of the 

output light becomes the same as that of the backward light fed 

back to the cell. 

The atomic system we utilize is essentially the same that was 

used in Chapters 2 and 3. So we begin with the Bloch equation: 

dm 
Z =  

Q ~ m x  - ( T  + I, + 1-)mz + (I+ - I,), 
dt 

t where m = (mx, m mZ) is the normalized spin polarization in.the 
Y' 

ground state, r is the spin relaxation rate, and I* are the u* 

light intensities which are normalized so as to give the pumping 

rate, The optical axis is taken along the z axis. The Larmor 

frequency QO is given by the relation: 

where r and Ho is the gyromagnetic ratio and the strength of the 

magnetic field applied along the y axis. The absorption 

coefficients a* and the wavenumbers k* for U* light propagating in 

this medium are given as 

where a and K are the absorption coefficient and the incremental 

wavenumber for the unpolarized (mZ = 0) medium, respectively, and 
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k  i s  the wavenumber i n  a  vacuum. As i n  Chapters 2 and 3, we 0 

neglect the absorption e f f e c t  by tak ing the laser frequency on a  

f a r  wing of the absorption l ine .  When l i n e a r l y  polar ized l i g h t  i s  

propagated through the polar ized (inZ # 0) medium w i th  a  length L, 

the po la r iza t ion  plane i s  rotated by an angle 6 (Faraday 

ro ta t ion) .  Hereafter we represent a  s ta te  o f  l i g h t  po la r iza t ion  i n  

the fo l low ing  form: 

A A A 

where e* = ( x  * iy)/&. The l i nea r  components Ex, E and the 
Y 

c i r c u l a r  components E+, E- are re la ted  by the fo l lowing re la t ion :  

Now f o r  the l i n e a r l y  polar ized inc ident  l i g h t  

A 

E, = E ~ X ,  

the transmit ted 1 i g h t  ET i s  represented as 

= Eo[cOs", (4.7) 
s ine 

where 8 = (k- - k+)L/2. We have neglected a  common phase factor .  

The Faraday r o t a t i o n  angle 0 i s  represented i n  term o f  mZ as 

The f a s t  ax i s  o f  the A / 8  p la te  and the x  ax i s  form a  o f f s e t  
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angle go, We s e t  an x'  a x i s  along the f a s t  a x i s  and a y' a x i s  

a long the  slow axis.  I n  t h i s  frame o f  reference ET i s  represented 

as 

= EOL - Ji 

s ine  

where e = 8 + go and 

The p o l a r i z a t i o n  s t a t e  ER o f  1 ight r e f l e c t e d  back t o  the  c e l l  i s  

where R i s  the  r e f l e c t i v i t y  of the  m i r ro r  and the squared mat r i x  

represents t he  forward and backward passes through the A/8  p la te .  

The s t a t e  ER i n  the  c i r c u l a r  representat ion i s  

- s i n e  - i(cosG - s ine)  ~ e - ~ ~ 0  I (4.12) 
+ s i n e  -i(sos8 + sine)3eie0 
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Thus we have the a* intensities of the feedback light as 

where IO = 2 
Eo . The total intensities of a* light in the cell is 

Substitution of Eq. (4.14) into Eq. (4.1) gives the system 

equations. In the absence of a magnetic field, it is sufficient to 

consider only Eq. (4.1~). 

where we have assumed R = 1 for simplicity. Firstly we study on 

the steady state solution of this equation for the case of go = 0. 

Apparently mZ = 0 is a steady state solution in any cases. The 

stability of this solution is determined by estimating the 

derivative of the right-hand side at mZ = 0; when it is negative 

(positive), the solution is stable (unstable). The stability 

condition is 

Consider a case where ICL >> 1. When 0 ( IO < Icr = (T/~)(KL - 
I)-', the solution mz = 0 is stable and when IO > Icr, it is 

unstable. At IO = Icr, a symmetry breaking bifurcation occurs. To 

see how the bifurcation takes place we introduce new variables: 

Substitution of these variables into Eq. (4.15) yields 
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3 It is important to note that the coefficient of X term is 

negative. This means a solution starting near the'origin does not 

run away to the infinity and allows 'us to neglect the terms higher 

3 3 than X . If the X coefficient is positive, we must include the X 5 

term as in the case of optical tristability. 

It is easy to see the potential function Va(X) is identical to 

Eq, (B.9) with vg = 0: 

which is a normal fbrm to represent a pitchfork bifurcation. 

Furthermore we can assert, from the discussion in Appendix B, that 

inclusion of asymmetry gives the cusp catastrophe: 

In fact, if we repeat the same procedure as above for the case e0 f 

0, we have a Taylor expansion of Eq. (4.15)s 

where ai t i  = 0,...,3) are positive constants. By a variable 

2 transformation X = X' + a2e0/3, the X term can be eliminated; 

-1 dX' 3 a3 = (a 0 3 0  /a 16 - (a1/a3)aX' - X' . (4.21) 

The correspondence to the cusp catastrophe is clear. 

We performed the numerical calculations to obtain the solution 
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Fie. 4.2 Equilibrium rotation angle 8 as a function of incident light 

intensity IO in the case that (a) e0 = 0, and (b) e0 = 2O, 7O and 12O. In 

above cases kL is fixed at 3.5. Dashed lines show the unstable equilibrium 

values. 

quantitatiuely. Figure 4.2(a) shows the equilibrium values of 8 as 

a function of the incident light intensity IO in the case that 

= 0. The stable and unstable values are shown by solid and dotted 

lines, respectiuely. When IO is increased from zero and exceeds 

the critical value given by Eq. (4,161, a symmetry breaking takes 

place and the rotation of polarization occurs toward either of 

positive or negative direction with equal probability. The upper 
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and lower branches in Fig. 4.2(a) correspond to the atomic stable 

states in which spins in the ground state are oriented parallel and 

antiparallel to the light axis, respectively. It is important to 

note that a hysteresis cycle cannot be seen in the rotation angle 8 

as a function of IO. 

Figure 4.2(b) shows the cases that the offset angle e0 is 7O, 

12O and lsO. When e0 has non-zero val ue, 9 changes monotonous1 y as 

seen in Fig. 4.2(b), because the amplification of 8 becomes 

asymmetry for the directions of rotation of polarization. Even in 

these cases, there appears another stable state when IO exceeds a 

critical value, but the system does not get into this state unless 

it is subjected to additional perturbation to convert the direction 

of spin polarization. 

Fia. 4 .3  Rotation angle 8 as a function of the offset angle go. The 

incident l i ~ h t  intensity I. is varied as a parameter. 

The switching between stable states in the bistable region 

becomes possible when we vary go. Figure 4.3 shows the 

calculated rotation angle 8 as a function of eO, in which IO is 
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varied as a parameter. In Fig. 4.3, we see that the surface 

representing (B,IO,BO) has a close resemblance to the steady state 

surface of the cusp catastrophe (Thom, 1975; Poston and Stewart, 

19781, In this way, we see that the present optical bistability 

belongs to the same catastrophe as the ordinary one, and different 

features can be explained by orthogonal cross-sections of the 

steady-state surface. 

4.3 Self-Pulsing by Spin Precession 

+ 
Let us consider the case where a static magnetic field Ho is 

applied transversely to the laser beam in Fig. 4.1. In this case, 

Eqs. (4.la) and (4.1~) should be considered, It is unnecessary to 
+ 

consider the y component of m because it does not couple to mZ nor 

m and decays to zero, Substitution of Eq. (4.15) into Eqs, (4.1a) 
X 

and (4.1~) gives 

For simplicity, we have assumed B0 = 0. Eliminating mx from Eqs, 

(4.22) and (4.231, we obtain the equation of motion for inZ: 

with 
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I f  we expand the trigonometric functions with respect to mZ up to 

second order, Eq. (4.24) is reduced to the van der Pol equation. 
3 -? 

So we can expect that m precesses around Ho without any external 

driving forces. We can apply the theorem on the existence of a 

limit cycle to Eq. (4,241 (See Appendix C). Using the theorem we 

can assert that when 

and 

at least one limit cycle exists for Eq. (4.24). We show in Fig. 

4.4 the region in the (Io,QO) plane where the condition are 

satisfied. A more precise bifurcation structure is drawn in 

reference to Takens' normal form of vector field (Appendix C). 
4 

Figure 4.5 shows the trajectories of m calculated numerically 

by using Eqs. (4.22) and (4.231, in the cases that (a) kL = 3.5, 

IO = 1.0r, Po = 20, (b1 kL = 3.5, IO = 3.OT, Po = 45, and (c) 

kL = 3.5, IO = 3.OT and Q0 = 55. As seen in Fig. 4.5(c), the 

magnetization, starting from the nearly zero ualue, spirals out and 

approaches asymptotically a limit cycle. It must be noted that, 

when Po is not zero, the growth of mZ is much faster than aboue 

case of O0 0, and the limit cycle becomes asymmetry with respect 

4 
to the origin m = (0,O). The frequency of the spin precession is 

lower than the Larmor frequency Qol Figure 4.6 shows the 

precession frequency as a function of Po, in the cases that e0 = 0, 

kL = 3.5, and IO = 3.OT, 6.OT and 9.OT. In Fig. 4.6, we see that, 
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Fig. 4.4 Schematic bifurcation diagram on the (IO, Po) plane. Roughly 

speaking, it is divided into three regions: a monostable, bistable, and 

limit-cycle regions. Curves 1 and 2 correspond to the conditions (4.25a) 

and (4.25b) for the existence of a limit cycle. On the curves 1 and 2, a 

Hopf bifurcation and a   itch fork bifurcation (symmetric saddle-node 

connection) take place, respectively. On the curve 3, there appears a Hopf 

bifurcation of each bistable point. On the curve 4, a saddle connection 

MONOSTABLE 

occurs and two homoclinic orbits are created. On the curve 5, a stable and 

unstable limit cycles appear (dynamic saddle-node connection). Above the 

curve 5, a stable limit cycle exists but below the curve 3, two bistable 

points coexist. Above the curve 3, the limit cycle is a unique attractor. 

The condition given by the curve 2 is a little severe. 

LIMIT CYCLE 
2 

when Q0 is just above the critical value the precession cr * 
frequency is considerably lower than the Larmor frequency Q (the 0 
straight line from the origin), and it approaches asymptotically to 

Q0 with the increase of the applied field intensity, The self- 

sustained spin precession can be observed as the modulation of the 

rotation angle 8 for the forward light beam or as the alternative 

switching of o* components in the backward beam. 

3 
4 
5 

B I STABLE 
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fixed at 3.5. 

4.4 Experiment with Sodium Vapor 

Fig. 4.5 Trajectories of 

normalized magnetization 

on a plane perpendicular to 

the static magnetic field 

Ho, in the cases that 

(a) I O  = 1 .0T ,  Po = 20T, 

(b) S o  = 3 .0T ,  Po = 45T, 

0.03 

0.02 

0.01 

,. 0.00 
-0.01 

-0.02 

-0.03 

An experiment to realize the new type of optical bistability 

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 and (c) I O  = 3.OT, Q0 = 

mz 55T. In above cases, kL is 

has been carried out by using the optical system schematically 

- 

- 

- 

shown in Fig. 4.7, in which a h/4  plate is used instead of the h / 8  

- 

n 1 t 1 ~ t 1 1 1 1 8 " 1  " " " " ' 1 " " ~  
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+ 
Fie. 4.6 Frequency of steady state precession of m as a function of the 

strength of the applied magnetic field in terms of Po, for three values of 

IO. The straight line from the origin shows the frequency of free 

precession. 

plate. The light from a cw dye laser, tuned on a wing of the Na- 

Dl line, is applied to the sodium cell (heat-pipe oven) with 25 cm 

length and 3.5 cm i.d. The cell contains helium gas at about 500 

torr, at which the pressure broadening of the Dl line by the helium 

gas was measured to be about 8 GHz (HWHM). This value is much 

larger than the Doppler width ( -  1.7 GHz) and the hyperfine 

splitting in the ground state of sodium (1.7 GHz), So we can 

neglect the hyperfine optical pumping. In addition, the excited 

2 state 3 is completely mixed at this helium pressure, so that 

the three-level approximation used in Section 4.2 may be good under 

the present condition. After passed through the cell, the light 

beam is transmitted though a A/4 plate and then fed back to the 

cell. The A/4 plate for a single optical path is equivalent to the 

A/8 plate in the optical system shown in Fig. 4.1. The incident 
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SODIUM CELL 

LASER MODULATOR 

Fin. 4.7 Schematic illustration of experimental setup. Symbols have the 

following significance: M - mirror, LP - linear polarizer, and PD 
- photodetector. 

light intensity IO is varied in the range 0-120 mW by using an 

electro-optic modulator. The beam diameters of the incident and 

backward beams were 5 mm and 8 mm, respectively, at the position of 

the sodium cell. A beam splitter is inserted between the cell and 

the h/4 plate, and the rotation of polarization 0 is measured by 

detecting the intensity of the light passed through a linear 

polarizer whose optical axis is inclined by 45 degree from the 

polarization axis of the incident light. Thus, the detected light 

2 intensity Id is given by IOcos t8+r/4), when the absorption of the 

light can be neglected. The detuning hw of the laser frequency 

from the center of the Dl line was measured by applying a part of 

laser output to a Na cell without a buffer gas and to a Fabry- 

Perot interferometer. In the present experiment, the detuning hw 

was kept constant at 100 GHz, and the cell temperature at 463O~, 

which gives the sodium density of , 2 . 3 ~ 1 0 ~ ~  ~ m - ~ .  

Figure 4.8 shows the experimentally obtained change of the 

detected light intensity Id as a function of the incident light 

intensity 10, which is expressed in terms of power (mu). Figure 

4.8(a) shows the case that eO is set at the value close to zero 
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Fia. 4.8 Detected light intensity I d ,  which is approximately proportioanl 
2 

to IOcos (9 + ~ / 4 ) ,  as a function of the incident light intensity lo  for (a) 

go = -0.2~ and (b) go = -lo. Black circles shows the case that the backward 

light is blocked. 

(eO = -0.2~). As IO is increased, Id changes along the lower 

branch because the system is not exactly symmetric. At IO = 120 

mu, the switching from the lower branch to the upper one was made 

by changing go from the original value to a relatively large 

positive value and then back to the original value again. After 

such a procedure, the system can be put on the upper branch. As lo 

is decreased in this situation, IT changes along the upper branch 
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and a small jump back to the lower branch takes place at IO  = 26 

mW. The straight dash-dotted line from the origin shows the plots 

of Id in the case that the backward beam is blocked. When e0 is 
carefully adjusted to zero, we could observe the phenomenon of 

symmetry breaking in Id, i.e. the random choice of its change along 

the upper or lower branch in each scan of I o l  But it was difficult 

to keep such a condition for a minute. Figure 4.8(b) shows the 

similar plots of Id as a function of 10, in the case that e0 = 

-lo. The switching from the lower to upper branches at IO = 120 mW 

was made by changing e0 as mentioned above. 

In order to verify the theoretical prediction that the present 

system behaves with hysteresis when eO is varied, we have measured 

-5 - 4  -3 -2 -1 0 1 2 3 4 5 

OFFSET ANGLE O0 (deg) 

Fie. 4.9 Detected light intensity Id as a function o f  the offset angle 

for incident light intensities I. = 30, 60 and 105 mW. 

Id as a function of the offset angle eO, keeping IO  constant. The 

results are shown in Fig, 4.9, for the cases that IO = 30, 60 and 

105 mW. In Fig. 4.9, we see clearly a hysteresis cycle in I d ( 9  0 1, 

whose bistable region spreads out for larger values of IO. The 
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critical value of I0 to obtain a hysteresis cycle was about 20 mW. 

U.5 Conclusions and Discussion 

In this chapter we have studied on a simple optically bistable 

system with no optical cavity and found that the behavior of this 

system is largely different from ordinary optical bistability 

reported so far. As incident light intensity IO is varied, the 

present system behaves with pitchfork bifurcation (or symmetry- 

breaking), which is in contrast with the ordinary optical 

bistability with hysteresis. We have shown that the present 

optical bistability can well be explained in context with the cusp 

catastrophe similarly to the ordinary one, different features being 

attributable to the different (orthogonal) cross-sections of the 

steady state surface of the cusp catastrophe. In the present 

system, a hysteresis cycle can be obtained when one varies the 

offset angle go of the A/8 plate (or the A/4 plate in the system 

shown in Fig. 4.7). Namely, both of the first and second order 

phase transitions can be observed by varying respectively the 

quantities go and IO. In a ferromagnetic material, for example, 

hysteresis and pitchfork bifurcation in magnetization are observed 

when magnetic field intensity is varied and when the temperature is 

varied in the vicinity of the Curie point, respectively. 

Theoretical study has been made on the behavior of the present 

system under a static magnetic field applied perpendicularly to the 

beam axis, and we have found that the magnetization produced 

s~ontaneousl~ by symmetry breaking precesses around the field 

without any external periodic forces. 

In the theoretical analysis presented in this chapter, we have 
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neglected the loss of light intensity by the absorption. Such 

simplification may be valid when the laser frequency is tuned on 

the far wing of the absorption line, as in the present experiment. 

When the light absorption cannot be neglected, the incident light 

is subjected to the circular dichroism, in addition to the rotation 

of polarization, which makes the polarization elliptical as it is 

propagated in the optically pumped medium, Numerical calculations 

were made in such cases, and we found that the light absorption 

modifies quantitatively the rotation angle 8 or the magnetization 

m and critical incident light intensity I from those presented z c r 

in this chapter, but it does not cause important changes in physics 

involved. We found that, when the absorption loss is less than 

about 10 % for a single path, i.e. the circular dichroism is not 

important and the effect of light absorption can be well described 

by a homogeneous loss introduced in the feedback loop. 

We have carried out the experiments using sodium vapor, and we 

have been able to obtain the evidence that the system shown in Fig. 

4.7 behaves with symmetry breaking, or pitchfork bifurcation, when 

the offset angle is zero. Furthermore, a hysteresis cycle has 

been observed when is varied, as predicted by the theory. 

Experiments using the simpler system shown in Fig. 4.1 are now 

under way in our laboratory, and preliminary results show that the 

behavior is quite similar to that reported in this paper. 

It must be pointed out that the present optical bistability 

has some similarities to the optical tristability, the behavior of 

which was theoretically studied in Chapter 2 and recently observed 

by Cecchi et al. (1982) and Mitschke et al. (1983) in the 

experiments using sodium vapor. Similarly to the present case, the 

optically tristable system has a positive feedback loop for the 
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intensity differences of two circularly polarized components of 

light and it exhibits symmetry breaking and self-pulsing in a 

static magnetic field, In the case of optical tristability and 

also in the case of ordinary bistability, the optical feedback is 

achieved by using a Fabry-Perot cavity and differential gain is 

obtained by using the slope of the resonance of cavity. Three 

stable states observed at the same incident light intensity can be 

described in terms of atomic spin states: spin oriented parallel, 

antiparallel to the beam axis, and at random. The random spin 

state is unstable in the bistable region of the present case, as 

seen in Fig, 4.2ta). The important thing to note is that the 

symmetry breaking takes place simultaneously with a jump in a 

doubled hysteresis cycle in the optical tristability, and such 

features can be explained in context with the butterfly 

catastrophe, 

The requirement for the laser spectrum to obtain the present 

optical bistability is not so severe. We have to avoid the strong 

absorption at the central region of the resonance line, but it is 

enough to tune the laser frequency roughly in a relatively wide 

range on the far wing. In the case of optical tristability, the 

laser frequency must be tuned both on wings of atomic absorption 

line and to a foot of a sharp resonance of optical cavity. So, the 

single-mode and highly frequency-stabilized laser is required. 
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CHAOS IN AN ACOUSTIC SYSTEM 

5.1 Introduction 

The chaotic or turbulent behavior seen in a physical system 

which is governed by deterministic equations has attracted intense 

interest recently. Ikeda et ale (1980) have pointed out that 

chaotic behavior can occur in an optically bistable system which is 

described by a differential-difference equation. By the 

differential-difference equation we mean a differential equation 

with delayed argument; namely an equation in the following form 

where tR > 0 represents a delay time, The mathematical treatment 

of such equations is much more difficult than that of an ordinary 

differential equation because it is a kind of functional equation. 

But it often appears when we analyze a feedback control system 

because the existence of delay in the feedback loop is not rare. 

In physiological control system (homeostasis), such delay is 

unavoidable. The delay or lag time causes instabilities when one 

raises the feedback gain to improve the time response of the 

system. When a strong nonlinearity exists in the feedback loop, 

chaotic instabilities also occur. Some attempts have been made to 

ascribe some kinds of diseases to chaotic instabilities in 

physiological control systems (Mackey and Glass, 1977.1. 

According to Ikeda's proposal, Gibbs et al, (1981) have 
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observed such chaos in an optical hybrid device with a delay in the 

feedback. In the recent article they showed their system takes the 

period-doubling route to chaos (Hopf et al., 1982). It is 

surprising that the period-doubling scenario seems to be realized 

in many different physical systems. 

In this chapter we report the observation of Ikeda type 

instability and novel period-doubling bifurcations in a simple 

acoustic system composed of a microphone, a nonlinear circuit, an 

amplifier, and a loudspeaker. 

5.2 A Differential-Difference Equation 

Here we derive Ikeda's equation (Ikeda, 1979) for some 

simplified model; a ring cavity containing a very thin nonlinear 

I NONLINEAR MEDIUM 

Fie. 5.1 Ring cavity containing a thin dielectric medium. 

dielectric medium (Fig. 5.1). The position z is measured from 

mirror 1 along the optical path and the total length of the ring is 

L. Mirrors 1 and 2 have a reflectivity R and mirror 3 and 4 are 

perfectly reflecting. The slowly varying envelope of the electric 

field E(t,z) satisfies the boundary conditions: 



CHAOS IN AN ACOUSTIC SYSTEM 67 

where &(t, 1 0) is the electric field at the input (output) of 

the medium, EI is the amplitude of the incident light. Equation 

(5.2~) means the phase shift caused by the medium is B(t). From 

these equations we have 

As for the dielectric medium we assume the dynamical equation: 

where r is the relaxation rate of the medium. This equation means 

that the medium has a quadratic dependence of refractive index on 

the electric field amplitude. Introducing new variables E(t) = 

&&(t, 01, A = &(I - R)EI* B = R, tR = L/c, and *(t) = e(t - (L - 
l)/c), we have Ikeda's equation: 

where yo is the cavity mistuning parameter. 

In the case where B << 1 , A*B ,., O(1), Eqs. (5.5) are 

simp1 ified as 
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2 
and E(t) is given by IE(t) l 2  = A (1 + 28 corCv(t -tR) - e033 .  This 

equation is essentially the same as that for the acoustic system we 

study in this chapter. 

5.3 Experimental Setup 

L-" A M D  I K$~F 
FULL- WAVE RECTIFIER 

Fia. 5.2 Experimental setup. A microphone (MIC), a full-waue rectifier, 

an amplifier (AMP), and a loudspeaker (SP) form a feedback loop. An example 

of the chaotic-sound waveform is also shown. 

The experimental setup of our acoustic system is shown in Fig. 

5 . 2 .  The time delay tR which plays a key role in inducing 

instabilities corresponds to the propagation time of sound from the 

speaker to the microphone which are faced about 13 cm apart (tR 

- 0.37 ms). The other key element is a nonlinear circuit which has 

at least one peak in its input us output characteristic curve. The 

most popular and easily constructed circuit having such a peak is a 
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full-wave rectifier. 

We could hear chaotic oscillation when the amplifier gain was 

high enough, whereas without the rectifier only periodic 

oscillations could be observed. In the following experiment to 

observe the period-doubling bifurcations we used a rectifier with 

operational amplifiers (Graeme, 1973) which has more precise 

characteristics than the conventional two-diode rectifier in Fig. 

5.2. The output V and the input Vx are related by the equation V 
Y Y 

= - IVx + VxO l + V where VxO and VyO are the input and output 
YO ' 

offset voltages respectively. As described later, adjustments of 

the offsets are needed to observe the period-doubling 

bifurcations. 

By the analogy of our system to those in Refs. 1-3, we 

introduce the differential-difference equation 

with 

where x = V/2V0, V is the voltage fed to the speaker, Vo is the 

input offset of the rectifier reduced to the speaker voltage, and IJ 

is the 1 oop gain . The response time r-I of the amp1 i f ier was set 

at about 0.15 ms. 

In the experiment we set V = VxO so that the condition 
YO 

F1(0) = 0 is satisfied, which assures that x = 0 is an equilibrium 

point. The small-amplitude oscillation is expected to be almost 

symmetric with respect to the equilibrium point and to have a small 

dc component. Thus we can neglect the effect that the dc component 

cannot pass through the feedback loop in the actual system. 

Equation (5.7) has the nonlinearity F1 with a sharp peak 
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whereas Eq, (5.6) treated by Ikeda et al. (1980) and Gibbs et al. 

(1981) have round smooth peaks which are approximated by a 

quadratic function. In the theory of one-dimensional maps, these 

two types of function may be viewed as representatives (Ott, 

1981 1. 

5.4 Experimental Results 

Our system shows various modes of oscillation, such as 

periodic oscillation with period - 2(tR + - 1  (-1.04 ms), 

oscillations with much smaller period, oscillations modulated with 

long period (+, 10 ms), chaotic oscillation, or intermittent chaotic 

oscillation, some of which are not expected from Eq. (5.7). 

Perhaps this is because we have neglected in Eq. (5.7) the low- 

frequency response of the system, phase shifts of the loudspeaker 

and the microphone, and the room acoustics. The appearance of each 

mode depends complicatedly on parameters such as the amplifier gain 

or the position of the microphone. However near the threshold we 

could observe the period-doubling bifurcations to chaos with good 

reproducibility, 

We show an example of such bifurcations in Fig. 5.3. A s  the 

amplifier gain is increased, periodic oscillation (Fig. 5.3(a)) 

begins, which we may call 'period-two' oscillation, for its period 

is about 2( tR+r-' 1. Next the period doubl ing to period four (Fig. 

5.3(b)) occurs. The bifurcation to period-eight (Fig. 5.3(c)) 

follows, but careful adjustment is needed to observe it. Usually 

the period-four seems to bifurcate directly to the chaotic 

oscillation (Fig. 5.3(d)), 

Sometimes in the course of the bifurcations, low-frequency 
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Fia. 5.3 The output voltage of the microphone. As the amplifier gain 

increased, (a) period-two, (b)  period-four, (c) period-eight, and 

( d l  chaotic oscillation appear successively. 

oscillation ( -  100 Hz) begins to be superimposed and the 

bifurcation series is interrupted. Such a low-frequency 

instability can be removed by decreasing the low-frequency gain of 

the amp1 ifier. 

Figure 5.4 shows the bifurcation diagram obtained 

experimentally, The horizontal axis of a cathode-ray tube (CRT) is 

swept by the ramp voltage applied to the voltage-controlled 

amplifier (VCA) which is inserted in the feedback loop to vary the 

parameter LA slowly. The output of the microphone is applied to the 

vertical axis. 

The horizontal trace on the left means that no oscillation 

takes place for small values of LA* Next we see the period-two 

oscillation builds suddenly up to a level determined by the offset 

of the rectifier. The top peaks and the bottom peaks of the 

period-two waveform (Fig. 5+3(a)) are seen as bright edges, whose 
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Fig. 5.4 (a) Bifurcation diagram, i.e., output voltage vs loop gain U 

which is swept by VCA. (b )  Same as (a) except the beam intensity of the CRT 

is increased to see the chaotic region. 

separation corresponds t o  the  amplitude o f  the o s c i l l a t i o n .  The 

enhancement o f  the  edges takes place because the v e r t i c a l l y  

o s c i l l a t i n g  beam-spot o f  the  CRT moves s lowly  there, 

A s  u i s  increased one f i n d s  each edge sp l i t s  i n t o  two branches 

which correspond t o  the  four  p r i nc ipa l  peaks o f  the period-four 

waveform i n  Fig. 5.3tb). The inmost two excess branches due t o  the 

subpeaks are a lso  seen. The i n te r va l  o f  the  per iod-eight  i s  too  

narrow t o  observe. 

Next there comes the  chaot ic reg ion which can hard ly  be seen 

i n  Fig, 5.4(a) f o r  no enhancement on the  CRT occurs. Increasing 

the beam i n t e n s i t y  we can see the  chaot ic reg ion (Fig.  5.4(b)), 

5.5 Comparison w i t h  Theory 

L e t  us r e t u r n  t o  Eq. (5.7). I n  the l i m i t  t R v  << 1, namely 
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when the time response of the system is extremely fast, Eq. ( 5 . 8 )  

is reduced to a difference equation, or a one-dimensional map: 

It is well known that when F1 is replaced by a quadratic function 

such as F2 = -x(x - 11, the bifurcation diagram shows a series of 
k pitchfork bifurcations at u = vk with period doubling by 2 , k = 

1,2,... . There is an accumulation point U, to which Cvk3 

converges, above which the chaotic behavior appears. This is a 

route to chaos seen in various physical systems (Appendix D l .  

Another feature seen in the diagram is band merging or inverse 

bifurcation of the chaotic bands. As u is increased, the chaotic 

bands merge in pairs successively until fully developed chaos 

appears. Schematically the bifurcations can be summarized as 

follows: Po + P1 + ... + (onset of chaos) + ... + P(l) + P(o), 

where Pk and P( k) represent the region of period-lk and that of 

per iod-2k chaos respect ivel y . 
For the map F1, which contains the absolute value function, 

the bifurcation diagram is quite different, In Fig. 5.5(a), we 

plotted the iterative values of xn of Eq. (5.9) for each U. We can 

see the bifurcations: Po + (onset of chaos) + ... + Ptl) + P(o). 

Namely, the bifurcation points uk (k = 1, 2, . . . I  are degenerate to 

a point u = 1. Thus the period-doubling bifurcations can't be seen 

and chaotic oscillation begins suddenly. The period-doubling 

bifurcations are observed experimentally in our system in spite of 

the nonlinearity F1. Perhaps it is because the condition tRv >> 1 
to reduce Eq. (5.7) to Eq. ( 5 . 9 )  is not satisfied in our case. 

We solved Eq. (5.7) numerically to see the effect of finite 

response time v-l on the bifurcation diagram. The diagrams in Fie. 



Fig. 5.5 (a) Bifurcation diagram for the difference equation (5.9): 150 

successive plots of xn after preiteration for each u. Bifurcation diagrams 

for the differential-difference equation (5.7) with (b) tRy = 9.0, (c) tRy 

= 6.0, (d) tRy = 3.0. The figures are obtained by plotting the peak values 

of the stationary solution during 50tR for each V. 
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5*5<b)-(d) were obtained as follows. For each u, we calculated the 

stationary solution x(t) to Eq. (5.7) during 50tR. Then we picked 

up times t where dx/dt(t = 0 and plotted the values x(t ), 
P P P 

Although, as in the diagram obtained experimentally, there appear 

spurious branches due to subpeaks in x(t), we can see how the 

bifurcations proceed as u increased. 

In the case of tRr = 9.0, the diagram (Fig, 5.5tb)) is fairly 

close to Fig. 5.5(a) except for the portion just after the first 

bifurcation. There appears the period-two region (Pi)* The width 

of the upper branch comes from the subpeaks of the waveform not 

from the chaotic behavior. Above the second bifurcation we can see 

some band mersings of the chaotic oscillation as in Fig. 5,5(a). 

It is interesting to note that the chaotic regime is changed 

to the ordered regime by the effect of T. The newly appeared 

region may be Ptl) not P1. The discrimination between them by 

numerical methods is very difficult but there is a reason to 

believe that it is PI as described later. 

As increasing tRr, we can see the P1 region extends and the 

transition to chaos is delayed, We also see the bifurcation to Pi 

and that to P2 (Fig. 5,5(c)), We note Fig. 5.5(d) for tRr = 3 is 

qualitatively similar to the diagram obtained in our experiment 

where t r is estimated to be - 2.5, R 
The period-doubling bifurcations seen in Fig. 5*5(d) convince 

us that the newly appeared region is Pk (k = 1,2,3) rather than 

P(k) because the latter bifurcate inversely as u is increased. 

Another interesting feature in Fig. 5.5 is that as tRr is 

decreased the periodic regions (Pk) extend at the expense of the 

chaotic regions (P (k) . In Fig. 5.5ta) we see only Po as periodic 

region, whereas in Fig. 5,5(d) there seems only P(o) as chaotic 
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region, 

5.6 Concluding Remarks 

In summary, we have observed the Ikeda type instability in a 

simple acoustic system. The system bifurcates to chaos through 

some period doublings. The numerical analysis well explains the 

novel bifurcation diagram observed experimentally and shows that 

the bifurcation structure is sensible to the time response of the 

system. One of the matters to be clarified is the detailed 

structures near the onset of chaos, for example, whether the 

bifurcation series is truncated or not, and if not, what is the 

value of the Feigenbaum constant. 

Inclusion of the low-frequency response to Eq. ( 5 . 7 )  is 

expected to give a better description of our system. It should be 

generalized as (Schumacher, 1983) 

where y(t) is the voltage output of the microphone, F(y) is the 

nonlinear function, and G(t) is the overall impulse response from 

the amplifier input to the microphone output. The impulse response 

satisfies 

Schumacher (1981) used the same type of equation in the analysis of 

autonomously oscillating musical instruments such as a flute and a 

viol in, 
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SYMMETRY-RECOVERING CRISES IN OPTICAL BISTABILITY 

6.1 Introduction 

The phenomenon of chaos has been the subject of intense 

interest in the last few years, It is now recognized as a common 

phase of a nonlinear dynamical system in addition to the 

conventional phases of stationary equilibrium and periodic (or 

quasi-periodic) oscillation* Since Ikeda et al. (1980) have 

predicted chaotic behaviors in an optically bistable system, many 

theoretical and experimental studies have been made (Ikeda and 

Akimoto, 1982; Ikeda et al., 1982; Gibbs et al., 1981; Hopf et al., 

1982; Derstine et al., 1982; Derstine et al., 1983; Carmichael et 

al., 1983; Carmichael, 1983; Nakatsuka et al., 1983). Optical 

system is a suitable method with which to study nonlinear phenomena 

including chaos because it has tractable theoretical models and 

precise experiments are possible. If necessary, we can add 

moderate complexities to it (Poston et al., 1982; Moloney and 

Gibbs, 1982; McLaughlin, 1983). Along this line, we have proposed 

an optical system which utilizes interactions between right- and 

left-circularly polarized light beams through a J = 112 to J = 1/2 

transition (Kitano et al., 1981a: Chapte~ 2). We have shown that 

symmetry breaking and optical tristability are possible for this 

system. Since then, various kind of phenomena have been predicted 

(Carmichael et al., 1983; Carmichael, 1983; Savage et al,, 1982; 

Arecchi et al,, 1983) and some of them have been demonstrated 

experimentally (Cecchi et al., 1982; Mitschke et al., 1983; Sandle 
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et al., 1983). 

In Chapter 4, we proposed a new version of such polarization- 

related bistable system that utilizes optically induced Faraday 

effect and needs no optical cavity (Yabuzaki et al., 1983). We 

also performed the experiment by using a sodium cell and a multi- 

mode dye laser tuned to a wing of the Dl line (Yabuzaki et al., 

1984). An interesting feature of the system is that it exhibits 

the most typical pitchfork bifurcation which breaks the 

polarization symmetry. Namely the symmetry-breaking bifurcation is 

of a supercritical type, while in the tristable system discussed in 

Chapter 2, it is of a subcritical type. In this chapter we 

investigate the delay-induced chaos in this optical system. When 

we increase the input light intensity passing over the first 

bifurcation, a chaotic state having polarization asymmetry 

appears. If we increase the intensity still more, fully developed 

symmetric chaos is reached. Thus we are interested in the 

bifurcation which lies between those two states. As we will see 

later, the symmetry recovering occurs through a sudden change of 

the chaotic attractors. Recently Grebogi et al. (1982; 1983) have 

introduced a new class of bifurcation named 'crises of chaos,' 

where the size of chaotic attractor suddenly changes. We will show 

that in our case the symmetry is recovered through the crisis. 

In Sec, 6.2, we show the setup of the system and derive the 

system equation which is a one-dimensional differential-difference 

equation having symmetry with respect to the exchange of two 

circular polarizations. In Sec, 6.3, we discuss a one- 

dimensional-map model and show a simple example of symmetry- 

recovering crisis. In Sec. 6.4, we describe the experimental setup 

of an electronic circuit to simulate the optical system, In the 
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experiment we observe three distinct types of symmetry-recovering 

crises. In Sec. 6.5, we introduce a two-dimensional-map model to 

explain the experimental results. Although the model seems to be 

oversimplified to approximate our system in an infinite- 

dimensional space, it can reproduce all three types of crises. We 

present the strange attractors near crises for each type, and 

discuss how they recover the symmetry. As we will see, unstable 

fixed points play important roles in crises. So we show the 

classification of fixed points of two-dimensional map in Appendix 

E. Finally, we summarize our results and discuss the remaining 

questions. 

6.2 System Equation 

CELL A10 M h / 8  
r 1 

----- ++------- 
I I  -) 

:: OUTPUT 

i 

Fia. 6.1 Schematic illustration of the optically bistable system without 

an optical cavity. 

We consider an optically bistable system shown in Fig. 6.1. 

It is largely the same as the one in Chapter 4 except that a delay 

in the feedback is introduced by taking a large distance L between 

the cell and the mirror ( M I .  Following the model adopted for the 

previous chapters we consider spin-1/2 atoms which are optically 

pumped by the incident and the reflected light beams which are 
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tuned to the wing of the resonance line. The state of the ensemble 

of atoms can be characterized by the magnetization component MZ 

along the optical axis, which is proportional to the population 

difference between mJ = 1/2 and mJ = -1/2 sublevels in the ground 

state. The time evolution of MZ is described by the Bloch 

equation : 

where T is the relaxation rate of the magnetization and I* are the 

o* light intensities which are normalized so as to give pumping 

rates. If I+ (1-1 is large enough compared to I- (I+) and T, all 

atoms are oriented along the +z (-z) direction and the maximum 

polarization M = Mo (-Ma) is attained. 
Z 

The absorption coefficients a* and the wavenumber k* for a* 

light are determined by the normalized magnetization component mZ = 

MZ/MO as 

where a and K are the absorption coefficient and the incremental 

wavenumber for the unpolarized (m = 0) medium respectively, and ko z 

is the wavenumber in a vacuum. In the dispersion regime we can 

neglect the absorption losses. 

The polarization plane of the linearly polarized incident 

light is rotated by an angle 8 when the difference between k+ and 

k- exists (Faradar rotation). If we represent the incident light 
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field as = ./ibi, the transmitted field ET is given by 

A A 

ET = (iO(x cos 8 + y sin $1, (6.4) 

A h 

where 1 is the length of the cell and x and y are the unit 

vectors. 

The transmitted light is reflected by the mirror M set at a 

distance L and is fed back to the cell. Thus the feedback is 

delayed by the amount tR = 2L/c, In the feedback path, a h / 8  plate 

is inserted whose optic axis is oriented to the x axis. By its 

action, the polarization state of the light fed back to the cell 

becomes 

IR* = RJOC1 * sin 28(t - tR)3/2, ( 6 . 7 )  

A * h 

where e* = (x iy)/./Z and R is the reflectivity of the mirror. 

The components of the reflected light suffer complementary 

modulations according to sin 28(t - tR). Experimentally, the 

polarization state of ER can be observed by monitoring the output 
light transmitting through the mirror M and an auxiliary h / 8  

plate. We can also monitor the polarization state ZT by setting 
the fast axes of two h/8  plates to firm right angles. From Eqs. 

(6.7) and ( 6 . 5 )  we have the light intensities in the cell 
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I* = (10/2) C(1 + R) * R sin 2Klmz(t - tR)3* (6.8) 

Substitution Eqr (6.8) into Eq. (6.1) gives the system equation: 

where we set R = 1. Changing the time scale by t' = r-'(r + 210)t 

and introducing a new variable Xlt') = 2K1mZ(t), we have a 

normalized form: 

v a = - ~ ( t *  + U sin x(t.- tR# 1, 
dt' 

where u = 2alIo/tf + 210) and tR' = v-'(T' + 210)tR. In the case T 

>> 10, u is proportional to IO and tR' is independent of IO. In 

the experiment we can vary tR'r by changing the length L or the 

relaxation rate r. Hereafter we drop the primes in t' and tR'. 

When tRr = 0, Eq. (6.10) is an ordinary differential equation in 

one dimension, while in the limit tRr >> 1, the system can be 
described by a difference equation as described in the next 

section. Therefore the parameter tRr represents whether Eq, (6.10) 

is close to a difference equation or to a differential equation. 

Note that Eq. (6.10) is invariant under the transformation X + 

- X ,  which corresponds to the exchange of the roles of the spin-up 

and -down atoms, and the right- and left-circular polarized light. 

6.3 One-Dimensional-Map Model 

In the limiting case tRr >> 1, we can formally reduce Eq. 
(6.10) to the difference equation: 
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Xn+l = u sin Xn, (6.11) 

which defines an iteration of one dimensional map. As is well 

known (Ikeda, 1979; Hopf et al., 1982; Chapter 51, this equation 

give an adequate qualitative prediction for the bifurcation 

structure for Eq. (6.10) with tRy >> 1. 

Fia. 6.2 Bifurcation diagram for the map, Eq. (6.11). For a given value 

of u, an initial point is chosen and its orbit is plotted after preiteration 

to avoid transient phenomena. The same procedure is repeated for slightly 

increased value of u, where the last point is used as the initial value. At 

u = uO = 1, a symmetry-breaking bifurcation occurs. For v > uOt only the 
negative branch is pictured. The positive branch can be obtained by the 

transformation X + -X. A k  u = utO), a symmetry recovering is seen. 

Figure 6.2 shows the bifurcation diagram for Eq. (6.11). For 

u < uO = 1, there exists only one stable fixed point X = 0 .  At M = 

uO a pitchfork bifurcation occurs at which the solution X = 0 

becomes unstable and a symmetry-breaking transition takes place. 

This symmetry breaking can be seen also for the case tRr = 0 

(Chapter 4 ) .  We pictured in Fig, 6.2 only the negative branch 
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after the bifurcation. As u increases, each asymmetric branch 

undergoes period doublings followed by chaos, For u < v(~), the 
chaotic orbit is confined to the regions X > 0 or X < 0, namely, 
the output state is chaotic but still elliptically polarized to 

either direction. At u = the chaotic band suddenly doubles 

its width. There the two oppositely polarized bands collide to 

form a single band. Thus the symmetry broken at u = uO is 

recovered at u = M(~). 

The sudden change may be viewed as 'crisis' of chaos named by 

Grebogi et al. (1982; 1983). The crisis occurs when a strange 

attractor collides with a coexisting unstable fixed point or 

periodic orbit. In our case the situation is somewhat degenerate 

due to the symmetry, namely, a strange attractor collides with an 

unstable fixed point X = 0 and the other coexisting strange 

attractor simultaneously. We call the phenomenon 'symmetry 

recovering crisis.' 

Figures 6.3(a) and (b) show examples of chaotic orbits for 

< > cases before (u - u(o)) and after (u v(~)) the crisis. The short 

time behaviors are the same for both cases, but in the latter 

crossover to the other polarized state occurs sometimes. According 

to Grebogi et al. (1982; 19831, the average lifetime T~~ of each 

polarized state is estimated as 

We confirmed the estimation numerically. 

6.4 Simulation by Analog Circuit 

In order to see how the symmetry recovering crises for Eq. 
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(a) 3 1 Fig. 6.3 Waveforms of Eq. 

t (6.11) for (a) u = 3.11 - - 
0 $25 

(before the crisis) and (b) 
-3 

u = 3.17 (after the 

crisis). Bar graph of Xn 
Xn o 250 

-3 
as a function of n for 375 

3 F iteration after 

(6.10) appear we constructed an analog circuit which simulates Eq. 

(6.10). Figure 6.4 shows the experimental setup. The nonlinear 

3 function sin X in Eq, (6.10) is approximated by X - X and realized 

by two analog multipliers (Intersil ICL8013) and an operational 

amplifier. The delay tR is given by a digital delay line equipped 

with a 12-bit A-D, a D-A converter* and a 4096-word buffer. The 

cutoff frequency Y of the low-pass filter is set at 2 Hz when we 

record waveforms on a strip chart recorder. We can conveniently 

find bifurcation points or crises on a CRT instead of the recorder 

3 by 2etting * .., lo2 - 10 Hz and shortening tR correspondingly. 

By changing tR, we could find three distinct types of 
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AMPLIFIER DELAY LINE tR 

- ,  - A-D BUFFER D-A - 

xct-h, 
LOW- PASS FILTER NONLINEAR CIRCUIT 

RECORDER 

& 
Fig. 6.4 Experimental setup. The analog circuit simulates the 

differential-difference equation (6.10). 

symmetry-recovering crises. We named Type I, 11, and I11 according 

to the order of the values tR for which each type was observed, 

The critical value U(0) for crisis decreases as tRr increases. 

Type I: Before the crisis, rather regular pulsing is observed 

(Fig. 6+5(a)). We can see damped oscillations near X = O between 

the pulses, whose durations are different from pulse to pulse. 

Such oscillation is not observed when u is far below v ( ~ )  and 

appears as u approaches v(*). After the crisis (Fig. 6.5(b)), the 

crossover to the other polarized state necessarily occurs through 

the damped oscillation. Thus the oscillation may be viewed as a 

precursor for the crisis and also as a crossover transient. 

Type 11: The waveform before the crisis (Fig, 6,6(a)) is 

fairly random. The bursts of periodic oscillation are precursors 

for the crisis, They appear at random and their duration is also 

random. After the crisis (Fig. 6,6(b)), the crossover occurs 
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Fig. 6.5 Waveforms (a) before and (b) a f t e r  the symmetry-recovering c r i s i s  

of  Type I .  Parameters: tR = 0.41  s, r = 2.0 Hz, (a) P = 4.26; (b)  u = 

4.38. 

Fia. 6.6 Waveforms (a) before and (b )  a f t e r  Type I 1  cr is is .  Parameters: 

tR = 2.05 s, r = 2.0 Hz, (a )  u = 2.96; (b) P = 3.02. 
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Fia. 6.7 Waveforms ( a )  before and (b )  a f te r  Type I 1 1  c r i s i s .  Parameters: 

tR = 4.10 s, r = 2.0 Hz, (a )  u = 2.77; (b) M = 2.79. 

through the burst of oscillation. 

Type 111: At a glance there seems to be no differences between 

Figs. 6.7ta) and 6.7(b). However the waveform in Fig. 6.7(a) shows 

period-4 chaos which has an asymmetry with respect to X i  the upper 

boundary is flat while the lower is not. In the middle of Fig. 

6.7(b) we can see a crossover. No marked precursory phenomena nor 

crossover transients are seen for this type. 

6.5 Two-Dimensional-Map Model 

By the analog-circuit simulation we have confirmed symmetry- 

recovering crises exist for Eq. (6,10), as predicted by the one- 

dimensional-map model. However, the waveforms at the three 

types of crises were very different from that for the one- 
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dimensional map. In this section we introduce a two-dimensional 

difference equation and show the three types of crises occur for 

the equation with appropriate values of parameters. 

We formally discretize Eq. (6.10) as 

where N is an integer, At = tR/N, Xn = XtnAt), and F(X) = X(1 - 
x2). By introducing a parameter a = ~ d t ,  we obtain the following 

(N  + 1)-dimensional difference equation: 

'n+l = (1 - a)Xn + ULIF(X~-~), (6.14) 

In the limit a + 0, N and tR = constant, Eq, (6.14) approximates 

the differential equation (6.10) with tR = 0 .  For the case = 1, 

Eq, (6.14) reduces to the one-dimensional difference equation 

(6.11). So a is a parameter which connects a difference equation 

and a differential equation as tRr does in Eq. (6.10). 

Here we crudely set N = 1 in Eq. (6.14) and obtain a two 

dimensional difference equation (Kawakami, 1979): 

where Yn = Xn-l. The equation is invariant under the 

transformation (X, Y) + (-X, - Y ) .  

Surprisingly we could find the three types of crises in this . 
oversimplified equation. In Figs. 6.8, 6.9, and 6.10, we show the 

waveforms near the crises. The clear correspondences to Figs. 6.5, 
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Fia. 6.8 Calculated 
(a) 

waveforms (a) before and 

0 250 
(b) after Type I crisis. 

-I t Graph of X of Ea. (6.15) n 
1 

for 750 iteration after 

Xn O 
500 

preiteration. Parameters: 

6.6, and 6.7 are seen. Especially the same precursors and 

crossover transients appear for Types I and 11. Type I was found 

for smaller values of a (near differential-equation limit), Type 

< 1 1 1  was for a .., 1 (near difference-equation limit), and Type I 1  was 

in the middle, The order is consistent with the results in the 

previous section. 

A s  described in Sec. 6.3, for the one-dimensional map, the 

symmetry recovering crisis is undergone when a strange attractor 

collides with an unstable fixed point and the other strange 

attractor. Here we investigate the situation for the two- 

dimensional cases. Figure 6.11, 6.12, and 6.13 show the strange 
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(a) 1 1 Fia. 6.9 Calculated 

waveforms (a) before and 
0 250 

(b) after Type I1 crisis. 
-1 

1 C Parameters: a = 0.5, (a) 

a t t r a c t o r s  near the  c r i ses  o f  Type I, 11, and 111 respect ively.  

Type I: Figure 6.11(a) shows the  strange a t t r a c t o r  j u s t  before 

the c r i s i s .  The other coex is t ing  a t t r a c t o r  i s  obtained by the  

t ransformat ion (X ,  Y )  + (-X, -Y). The two l im i t - cyc le  l i k e  

a t t r a c t o r s  are about t o  touch each other near the o r i g i n .  A round 

t r i p  of the  cyc le  forms a pulse i n  Fig. 6.8. A t  u = u ( ~ ) ,  two 

< a t t r a c t o r s  are merged and f o r  u M ( ~ ) ,  an o r b i t  on an a t t r a c t o r  

can go over t o  the  other. 

F igure 6.11(b) i s  an enlargement o f  p a r t  o f  Fig. 6,11(a). The 

two a t t r a c t o r s  are c l e a r l y  separated. The regular  s t r uc tu re  o f  the 

a t t r a c t o r s  is a r e f l e c t i o n  o f  the  existence o f  a f i x e d  p o i n t  (0,O) 
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(a) Fig. 6.10 Calculated 

0 250 waveforms (a) before and 

-' t (b) after Type I 1 1  crisis. 

1 Parameters: a = 0.85, (a) 

500 u = 2.944; (b) u = 2.946. 

of Eq. (6.15). By the stability analysis, we can see that the 

eigenvalues pl, p2 of the linearized map at (0,O) satisfy the 

relations: -1 < pl = -0.66 < 0, 1 < p2 = 1.56. The corresponding 

+ A A + A A 

eigenvectors are u = -0.66~ + y, u2 = 1.56~ + y. According to the 
1 

classification of the fixed points in Appendix D, the point (0,0) 

is DR' for these parameter values. To simp1 ify the situation, we 

consider a composite map T ( ~ )  = TOT where T is a map defined by Eq. 

2 6 . 1 5 .  The point is a saddle ( D  1 for T ( ~ )  since 0 < pi2 < 1 < 
2 

p2 . We use schematic illustrations in Fig. 6.14 to give general 

discussions. The point S is a saddle, and Cs and Cu are the stable 
+ 

and unstable invariant curves respectively, The eigenvectors u 
1 



Fia. 6.11 (a) Chaotic attractor for Eq. (6.15) before Type I crisis. An 

initial point is chosen and its orbit is plotted after preiteration. The 

other coexisting attractor is obtained by the transformation ( X ,  Y )  + ( -X,  - 
Y ) .  Parameters: a = 0.1, LI = 10.24. 

(b) Blowup of the boxed region in (a). Both coexisting attractors are 

plotted. A cross represents an unstable fixed point at (0, 0). Parameters: 

a = 0.1, u = 10.240. 
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+ 
and u2 are tangent to Cs and CU at S. When u < u ( ~ )  (Fig* 

6.14(a) 1, CS is also the 'boundary separating the basins of 

attraction for the two attractors. The region R1, which is mapped 

from somewhere in the attractor, is mapped to R2, to R3, ... , 
successiuely, and at last repelled back along Cu, When the crisis 

is reached, R1 touches the boundary Cs, as a result, Ri (i = 

2,3,,..) touch Cs and R, touches to S. As seen in Fig. 6.14(b), 

> 
for u - utO), points in R1 over Cs are repelled over to the other 
attractors along Cu after some iterations of the map. 

Near the crisis, a point mapped close to Cs in R1 will need 

many iterations to be repelled away from S, namely, the orbit is 

trapped to S temporarily, If S is a period-n point (a fixed point 

for ~ ( ~ ' 1 ,  one will observe n-periodic oscillation with some 

duration. Such phenomena .will be seen as precursor of crisis when 

< > u - u(0) and as crossover transient when P - P(~). 
Type 11: A wide-spread attractor is seen in Fig. 6.12(a). The 

other coexisting attractor lies symmetrically. The touch occurs 

2 
near period-2 points (f0.39, T0.391, whose stability is D . Figure 

6.12<b) show a blowup, where we see the same structure as in Fig. 

6.14(a). We can hardly see the regular structure in Fig. 6.12(a) 

because u is not so close to u(~). The bursts of oscillation seen 

in Fig. 6.9 mean that the orbit is trapped to the period-2 points. 

The closer the point is dropped to the stable invariant curve, the 

longer the regular oscillation continues. 

Type 111: The situation is rather complicated than in Types I 

and 11. Before the crisis, two four-piece strange attractors are 

coexisting. In Fig. 6.13(a), only the attractor (A1, A2, A3, A4) 

is pictured. The other attractor (A1', A2', A3', Ad') is obtained 
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Fin. 6.12 (a) Chaotic attractor for Eq. (6.15) before Type I 1  crisis. The 

other coexisting attractor is obtained by the transformation (X, Y) + (-X, - 
Y). Parameters: a = 0.5, u = 3.51. 

(b) Blowup of the boxed region in (a). Both coexisting attractors are 

plotted. Parameter u is closer to u ( ~ )  than in ( a ) .  A cross represents one 

of unstable period-2 points at (f0.39, r0.39). 'Parameters: a = 0.5, u = 

3.541. 
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Fie. 6.10 Schematic 

illustration for crisis of 

chaotic attractor through a 

saddle point S.  (a) Before 

and (b) after the crisis, 

the regions Ri are mapped 

to Ri+l. Cs and Cu 

represent the stable and 

unstable invariant curves 

of S respectively. 

by the transformation (X, Y) + (-XI -Y). An orbit cycles as A1 

A2 + A3 + Ad * A1 or as A1' + A2' + A3' + A4' * Ale, and gives 
period-4 chaos as in Fig. 6.10(a), The flat boundary in the 

waveform comes from the fact that the attractor pieces Ad and A4' 

have narrower width in the X direction than the other pieces. 

After the crisis occurs, the two attractors are merged as seen 

in Fig. 6.13tb). To see how the merging occurs a further blowup is 

given in Fig. 6.15. Between A3 and A2'r there exists an invariant 

curve C, which forms a part of the basin boundary before the 

crisis, We can see that the regions Ri ( i  = 1, 2, . . . I  are mapped 

to Ri+l by T(~). In the course of iterations of the map, the 

regions are stretched in the direction across the curve C, and 

their tips are attracted to A2'. The regions R ( i  > 12) can't be i 

seen for the points are so dispersed by the stretching. 
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F i g .  6 .15 Blowup of p a r t  

between A3 and A2' of F i g .  

6 . 1 3 ( b ) .  Parameter v i s  

above v(,,). The r e g i o n s  R i  

a r e  mapped to R i + l  by 

T ( ~ ) .  C r e p r e s e n t s  an 

unstabl  e i n v a r i a n t  curve .  

Parameters: a = 0.85, 

u =2.2447 .  

The configuration of Ri along C can be understood as follows. 

Restriction T ' ~ )  to the invariant curve C gives a one-dimensional 

unimodal map which exhibits period-2 chaos. So the configuration 

of Ri is somewhat erratic, although we can group them into (R2n-l) 

and (RZn) (n = 1, 2, ... 1. 

It is seen, from the theory of unimodal map, that there exist 

4 8 infinite numbers of unstable fixed points on C; one UR , two UR , 
16 four UR , . .  Therefore we may say the crisis occurs through UR k 

(k = 2n, n = 0, 1, 2, , , . I ,  Here, however, we are tempted to 

modify,the Grebogi's definition of crises as "a collision of a 

chaotic attractor to the basin boundary.' 

6.6 Conclusions 

In summary we have investigated the symmetry-recovering crises 



SYMMETRY-RECOVERING CRISES IN OPTICAL BISTABILITY 

of chaos in a spin-related optically bistable system, Through the 

crises, chaotic states having the polarization asymmetry, which is 

inherited from the first bifurcation, jumps back to a symmetric 

state. We have found three distinct types of the crises by 

changing the parameter tRr. All of the waveforms near these crises 

are very different from that for the one-dimensional-map model 

which has been used to analyze differential-difference equations 

such as Eq. (6.10). Whereas a two-dimensional-map model we 

introduced gives good qualitative explanations to the three types 

of crises. 

As Grebogi et al. (1982; 1983) said, crises occurs when a 

chaotic attractor collides with an unstable fixed point or an 

unstable periodic orbit. In our cases of Types I, 11, and 111, 

col 1 isions to the unstable fixed points of types DR', D2, and 

(k = 2n) occur, For Types I and I1 unstable fixed point has a 

stable invariant curve in addition to an unstable invariant curve. 

The stable curve forms a part of the basin boundary which separate 

the paired chaotic attractors before the crisis. Along the stable 

invariant curve, regular structures are formed just before and 

after the crisis. For Type 111, a one-dimensional map on the 

invariant curve, which yields chaos, gives marked structure to the 

strange attractors near the crisis. 

Perhaps there exist other types of symmetry-recovering crises 

than those we treated here* (For example Fig* 3(c) in Arecchi and 

Lisi (1982) suggests another type which is close to Type 111.) 

Some of them may need models in higher dimensions. Even for such 

cases, types of the unstable fixed point will characterize the 

crises. Statistical behavior near each crisis such as Eq. (6.12) 

should be inuestigated. 
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Finally we estimate experimental parameters to observe the 

phenomena in an all-optical system. The Na system of Chapter 4 

with which we have observed the symmetry-breaking bifurcation 

should be modified. The delay tR can be provided by an optical 

fiber with sufficient length L. We see from Eq. (6.10) and the 

> requirement tRr - 1 that the required power density IO is inversely 

proportional to tR, or L. For L = 1 km (tR = 6 us), IO is 

estimated to be 1 - 10 w/mrn2, which is not unreal istic value 

considering the use of a multi-mode laser. 
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CONCLUSIONS 

In this thesis, theoretical and experimental studies have been 

made on the nonlinear phenomena which appear in the spin-related 

optically bistable and tristable systems. It has been shown that 

inclusion of polarization effects brings various new features which 

are not seen in the conventional bistable systems. In particular, 

the symmetry with respect to the light polarization plays an 

important role. 

In Chapter 1, we have presented a short review of the 

theoretical and experimental studies on optical bistability. We 

have mentioned some phenomena which attract attentions and pointed 

out that the optical bistability is acquiring importance as a model 

to study nonlinear dynamics. We have also described an optical 

pumping process by using a simple atomic model and showed that it 

brings about nonlinearity in optical characteristics of the 

medi um. 

In Chapter 2, we have investigated the static behavior of a 

Fabry-Perot cavity containing atoms with degenerate Zeeman 

sublevels in the ground state, It has been shown that when the 

intensity of the linearly polarized incident light is increased, a 

symmetry-breaking bifurcation occurs at a critical leuel. Above 

the threshold, the output light turns to be circularly polarized in 

either direction. The symmetry breaking is of a subcritical type 

and therefore a double-loop hystersis appears. The behavior of the 

system can be interpreted in terms of the butterfly catastrophe, 

when we vary the right- and left-circular components of the input 
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1 i ght i ndependentl y. 

In Chapter 3, we have predicted that the optically tristable 

system in Chapter 2 exhibits self-pulsing induced and controlled by 

a static magnetic field. The self-sustained spin precession is 

responsible for the phenomenon and can be described by a modified 

Bloch equation which includes a nonlinearity. 

In Chapter 4, we have studied on a simple optically bistable 

system with no optical cavity and found that the behavior of this 

system is largely different from ordinary optical bistability 

reported so far. As incident light intensity IO is varied, the 

present system behaves with pitchfork bifurcation (or symmetry- 

breaking), which is in contrast with the ordinary optical 

bistability with hysteresis. We have shown that the present 

optical bistability can well be explained in context with the cusp 

catastrophe similarly to the ordinary one, different features being 

attributable to the different (orthogonal) cross sections of the 

steady state surface of the cusp catastrophe. In the present 

system, a hysteresis cycle can be obtained when one varies the 

offset angle €Jot the angle between the optic axis of the h/8  plate 

and the polarization plane of the incident light, 

Theoretical study has been made on the behavior of the system 

under a static magnetic field applied perpendicularly to the beam 

axis, and we have found that the magnetization produced 

spontaneously by symmetry breaking precesses around the field 

without any external periodic forces. 

We have carried out the experiments using sodium vapor, and we 

have been able to obtain the evidence that the system shows 

symmetry breaking, or pitchfork bifurcation, when the offset angle 

O0 is zero. Furthermore, a hysteresis cycle has been observed when 
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e0 is varied, as predicted by the theory. 

In Chapter 5, we have observed the Ikeda type instability in a 

simple acoustic system which can be regarded as an acoustic 

analogue of optically bistable system. The system bifurcates to 

chaos through some period doublings. The numerical analysis well 

explains the novel bifurcation diagram observed experimentally and 

shows that the bifurcation structure is sensible to the time 

response of the system. 

In Chapter 6 ,  we have investigated the symmetry-recovering 

crises of chaos in the spin-related optically bistable system. 

Through the crises, chaotic states having the polarization 

asymmetry, which is inherited from the first bifurcation, jumps 

back to a symmetric state. We have found three distinct types of 

the crises by changing the parameter tRv. A11 of the waveforms 

near these crises are very different from that for the one- 

dimensional-map model which has been used to analyze difference- 

differential equations. A two-dimensional-map model introduced has 

been found to give good qualitative explanations to the three types 

of crises. 

Crises occurs when a chaotic attractor collides with an 

unstable fixed point or an unstable periodic orbit. In our cases 

of Types I, 11, and 111, collisions to the unstable fixed points of 

types DR' , D2, and uRAk (k  = 2" occur. For Types I and I1 

unstable fixed point has a stable invariant curve in addition to an 

unstable invariant curve. The stable curve forms a part of the 

basin boundary which separates the paired chaotic attractors before 

the crisis. Along the stable invariant curve, regular structures 

are formed just before and after the crisis. For Type 111, a one 

dimensional map on the invariant curve, which yields chaos, gives 
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marked structure to  the strange attractors near the cr is is .  
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OPTICAL PUMPING IN FOUR-LEVEL ATOMS 

In this appendix we set up the atomic model from the first 

principles to treat the optical pumping process rigorously. We 

begin with an equation of motion of the density matrix for atoms 

with a J = 1/2 3 1/2 transition (four-level model), which are 

irradiated by a+ and a- light simultaneously. The equation can be 

+ 
reduced to the Bloch equation for the ground-state spin m when the 

light intensities are not so strong. We also show that in the 

absence of magnetic fields it can be reduced to the rate equation 

for the ground state populations N+ and N-. 

When the atoms are pumped by two beams propagating in opposite 

directions, we must take the standing-wave structure i>to account. 

We show that a spatially averaged Bloch equation can be used in the 

cases where an atom moves many wavelengths before its spin evolves 

apprec iabl y, 

We also discuss on the propagation of light through the spin- 

polarized medium. We see that the circular dichroism and the 

circular birefringence are proportional to the spin component along 

the wave vector. 

A.1 Optical Pumping in Four-Level Atoms 

In order to formulate optical pumping process, we consider an 

ensemble of atoms with a J=1/2 J=1/2 transition, which is 

homogeneously broadened, namely all the atoms have a same 

transition frequency w o .  The state of each atom can be represented 
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by a  dens i ty  matr ix:  

a 

where the diagonal element pii represents the p r o b a b i l i t y  t h a t  we 

f i n d  an atom i n  t he  leve l  l i >  and the conservation low asserts 

The off-diagonal elements pij ( i  # j )  represent the coherence 

between the  l e v e l s  l i >  and l j>,  and s a t i s f y  f o l l ow ing  re la t ions :  

As w i l l  be seen l a t e r ,  the  coherence between Zeeman sublevels 

o f  the ground o r  exc i ted  s ta tes  i s  r e l a t e d  t o  the  transverse 

magnetic-dipole moment, whereas the coherence between the  ground - 

and exc i ted  states,  such as P ~ + , ~ + ,  P ~ + , ~ - ,  ... i s  r e l a t e d  t o  the 

e lec t r i c -d i po le  moment o s c i l l a t i n g  a t  the  op t i ca l  frequency. 

The t ime evo lu t ion o f  P can be described by the  equation o f  

motion: 

where X i s  the  Hamiltonian and (dp/dtIrelax represents the 

re l axa t i on  due t o  the  spontaneous decay o r  atomic c o l l i s i o n s r  The 

Hamiltonian i s  decomposed as fo l lows: 

where No i s  the  unperturbed Hamiltonian, The terms Xm and XoPt 
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represent the perturbations due to external magnetic fields and 

light fields respectively. The unperturbed Hamiltonian Ho is , 

represented as 

-* 
The magnetic Hamiltonian Hm under a static magnetic field Ho is 

-* 
where r is the gyromagnetic ratio and J is the angular momentum 

+ 
operator. The vector a is composed of three 2x2 matrices ax, 

Y *  

and aZ which are Pauli's spin matrices: 

-* 
For simplicity, we assume that the magnetic field Ho is applied 

-* 
along the y axis, i.e. Ho = t(O, Ho, 0). 

Under the electric-dipole-interaction approximation, H can opt 

be written as 

-* 
where p is the dipole moment operator and i! is the electric field 

of the laser beam, which is propagated along the z axis. With use 

of the circular basis vector, I! is represented as 

where &+(t) and &-(t) are the complex amplitudes of a+ and a- 

components of light respectively, and w is the frequency of the 
A 

laser. The circular basis vectors e* are defined as follows: 
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+ 
The dipole moment p for a J=1/2 + 112 transition is (Condon 

and Shortley, 1970) 

n A 

where p is the modulus of the dipole moment and z' = z/&. 

From Eqs. (A.10) and (A.121, Hopt becomes 

Here we have used a 'rotating-wave approximation,' namely neglected 

the influence of the o+ light to Am = -1 transition and o- to Am = 

+1* 

The relaxation term (dp/dtIrelax in Eq. (A.4) is introduced 

phenomenologically. Each component is given as follows: 



OPTICAL PUMPING IN FOUR-LEVEL ATOMS 

where ve  and r are the rate for the spontaneous and collisional 
eg 

decay of the population and that of the optical coherence* 

respectively. We have assumed the relaxation processes are 

isotropic. We have also assumed the relaxation in the Zeeman 

multiplets of the ground state and the excited state are isotropic 

(Manabe, 1979; Omont, 1977) and their rates are r and re, 
g 

respectively. 

Now ue can write down the equation of motion (A.4) explicitly 

by using Eqs. (A.5) and (A.14); 
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where g = plk, ' = d/dt, and Po = rHg Alternation between + and - 
in subscripts gives three more independent equations. (For Eqs. 

(A115a) and (A115b), Po should be replaced by -Po additionally.), 

Hereafter such alternation is assumed implicitly. If we introduce 
" " - - i wt 
'giej as 'giej 'gieje , (i,j = +,-), Eqs. (A.15e) and (A.15f) 

become 

where 6 = wo In the rate-equation limit T >>  (l/€i)(aEi/at), 
N 

eg 

( i  = +,-), we can set dp /dt = 0, (i,j = +,-I and obtain 
gie j 
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We have also assumed r >> QO. Substitution Eqs. (A.17) into Eqs. 
eg 

(A.15a)-(A.15~) yields 

2 We have 
where Ltx,y) = y/tx2 + y 1, D(x,y) = x/(x2 + Y 1. 

neglected some terms including P ~ + ~ +  and Pe-e- assuming re >> 

.-l(d/dt)Peie j, Furthermore if we assume re >> peieJ <i,j = 

+,-I then we can write P ~ + ~ +  and Pe-e- in terms of P 9+Q+ and Pg-g- 

as follows: 
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Substituting of Eq. (A.191 into Eq, (A,18a), we have 

where 

is pumping efficiency which we shall set 1/2 assuming re/re >> 1, 
hereafter . 

Equations (A.18b) and (A.20) are the equations of motion 

reduced to the ground state. The first and second terms of each 

equation represent the Zeeman relaxation and the spin precession 

due to the external magnetic field, respectively. The first and 

second terms in the brackets of Eq. (A.18b) represent the spin re- 

laxation due to optical excitation and the light shift, 

respectiuely. The third term of Eq. (A.20) represents the optical 

pumping . 
+ 

Here we introduce new variables by m = t(mx, my, inZ) 
+ 

= TrCp 0 3 ,  where 
9 
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where p i s  the densi ty matr ix reduced t o  the ground state. 
9 

Equations (A.18b) and (A.20) become the well-known Bloch equation: 

m = - + P+ + P-)mZ + Qomx + (P+ - P-1, 
Q 

(A.23~)  

where 

Using vector notation, we obtain 

+ 
3 -? 3 "  -3 * =  m xG0 - P rn - ~ + ( m  - z )  - P-(m + z), (A,  26 

d t  Q 

t where do = (0, Po, QLS). I n  the cases whish we concern i n  t h i s  

thesis, the l i g h t - s h i f t  term can be neglected. 

I n  the absence o f  a magnetic f i e l d ,  from Eq. tA.20) we have a 

r a t e  equation f o r  the ground-state populations N*: 

w i th  

where M i s  the atomic density. 
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+ 
The macroscopic magnetization M per unit volume can be 

+ 
expressed in terms of m 

and the z component can be represented as 

A.2 Spatially Averaged Bloch Equation 

When the atoms are pumped simultaneously by a forwardly 

propagating beam E,-* and a backwardly propagating beam EB** we must 

consider the standing-wave effect. Namely the pumping rates P* in 

Eq. (A.26) becomes to depend on z; 

where f* are rapidly oscillating functions of z and vanish when 
r 
they are averaged over an interval much longer than the 

wavelength. 

We must spatially average Eq, (A.26) having z dependence 

because the atoms in vapor moves rapidly. The average is taken 

over many wavelengths, 

where < - >  represents a spatially averaged quantity, The terms 
+ + 

< P p >  can be decomposed as <P*><m>, because the atoms move many 

+ 
wavelengths before m changes appreciably. (Typically thermal 

velocity v - 500 m/s and the wavelength - 0.5 um. So an atom takes 
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1 ns to traverse a wavelength, whereas it takes at least 1 us for 
+ 

<m> to shift appreciably under the conditions we concern.) The 

spatially averaged pumping rate is 

So we may consider that the atoms are pumped, on the average, by 

the sum of the forward and the backward light intensities, 

A . 3  Light Propagation in a Spin-Polarized Medium 

In this section we shall study on the optical characteristics 

of a spin-polarized medium. At first we calculate the induced 

electric-dipole moment 

by an external electric field 

-* 
in the case where m or P (i,j = +,-I  is given, and the gigj ' 
excited-state population is negligibly small. The dielectric 

susceptibility tensor x is given by the relation: 

In terms of p,  is given as an expectation value of the electric- 

9 
dipole operator P. 
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Repeating the same procedure from Eq. (A.1) to Eq. ( A . 1 7 ) ,  we can 
." 

express pgiej in terms of P 
gks 1 

(i, j,k,l = + , - I ;  

+ 
where C = iNpg(-reg + i6)-I. In terms of m, we can have an 

equivalent relation: 

where 6ij and E~~~ are Kronecker's 6 and Eddington's €9 

respective1 Y. 

When we consider a wave propagating in the z direction, we can 

neglect the components xiZ and xZi ( i  = x,y,z or +,-,z). It is 

because the z components of the susceptibility cannot affect the 

propagation of light in first order, since the z component of the 

induced polarization does not reradiate light in the z direction 

(Happer, 1972; Landau and Lifshitz, 1960). So we have 

where X* = x**. 

From Maxwell's equation we have the dispersion relation: 



OPTICAL PUMPING IN FOUR-LEVEL ATOMS 

with 

where k* and a* are the wavenumbers and the absorption coefficients 

for light. When Ix* I  << 1, namely when the field envelope does 
not change appreciably over a wavelength, we have from Eqs. (A.4O-1 

and (A.41); 

where 

It should be noted that if we choose o on the wing region of 

the absorption line (i.e. 6 >> ~ ~ 1 ,  then 

and we can neglect the absorption and can consider the atoms as a 

dispersive medium. 
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CATASTROPHE 

B.1 Thom's Theorem 

In this appendix we describe Thom's theorem on the 

classification of elementary catastrophes in physical context. We 

set up a model called a 'static model,' The system equation is 

given by 

where x = t (xi, .... x 6 M C Rn, u = t 
n 

(ul, ... .U 1 6 C c Rr and F: n 

M x C + R is a smooth (infinitely differentiable) function. The 

variable x is usually called behavior (or state) and u is called 

control (or parameter). A static model can be viewed as an r- 

parameter family of smooth functions. As easily seen a stable 

steady state of the system (B.1) corresponds to a minimal point of 

F with respect to x for a fixed u. Generally two or more stable 

states coexist for given parameter values. As the parameter u is 

changed slowly, at some point, the number of minimal points 

decreases or increases. The set of such points in C is called the 

bifurcation set which is denoted by B. A sudden change of steady 

state (catastrophe) may occur when parameters are changed 

continuously through 6 (See Fig. B.1). It should be noted that 

only the qualitative shape of the function F(x, u) governs the 

behavior of the system. (In fact, Fig, B.l was drawn with a free 

hand.) If models F and G are qualitatively the same, the study on 
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F iq .  B.l Example of a static model. 

either of them is sufficient. The equivalence between F and G are 

stated mathematically as follows; 

Definition: There exist a diffeomorphism (smooth and 

reversible map) h: C + C, a diffeomorphism HU: M + M parametrized 

by ueC, and a smooth map a: C + R, such that 

F(x, U) = G(Hu(x), h(u)) + a(u), (B. 2 

and H(x, u) = Hu(x) defines a smooth map H: M x C + MI 

If a model F is changed qualitatively by a small perturbation 

p, then such model is inappropriate to describe the phenomena in 

the real world where unpredictable perturbations are unavoidable. 

So we can restrict our attentions to models which do not have such 

property. The restriction is described as 

Definition: If a model F: M x C + R is equivalent to any model 

F + p: M x C + R,  then F is structurally stable model. 
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Now we can state Thorn's theorem as follows; 

Theorem: A structurally stable static model F: M x C + R (M 

c Rn, C c Rr) for any n and for all r F 4, is equivalent to one of 

the following models with normal forms: 

(2) Mondegenerate critical, or Morse 

Q(xl,. . . ,X 1, n 

(3) The fold 

x3 + ux + Q(x2, ..., x 1, n 

(4) The cusp 

*x4 + ux2 + ux + Q(x2, ..., x 1, n 

(5) The swallowtail 

5 x + ux3 + vx2 + wx + Q(x 2,..., x 1,  n 

( 6 )  The butterfly 

(7) The hyperbolic umbilic 

x3 + y3 + wxy + U X  + uy + Q(x3, ..., X 1, 
n (B.3~1 

( 8 )  The elliptic umbilic 

(9) The parabolic umbilic 
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where t(xl,...,x ) M, x = xl, y = x2, and t n (ul, ...,u r 1 E C, u 

- - ul, v = u2, w = u3, and t = u4. The function Q(xi, ..., x 1 is of n 

a form: 

In the cases (1) and (21, the catastrophe does not occur. In 

the former, F does not have an equilibrium point. In the latter, x 

2 = 0 is a stable equilibrium point if Q takes the form 
xi . 

The other seven cases represent the elementary catastrophes. 

It should be noted that if Q = x .*, the stable equil ibrium 
J 

- points lie in the subspace xi = ... - xn = 0, where the catastrophe 

occurs. We can, therefore, neglect the term Q. This greatly 

reduces the degrees of freedom of the system. Even if we have a 

large system on M = R'~*', C = R, for example, what we have to 

investigate is a one-parameter family x3 + ux (the fold). 

B . 2  Examples 

Here we take up two examples, fold and cusp, and describe how 

the catastrophe takes place there. 

F A :  when u < 0, the function x3 + ux has tuo extrema xc 

= m, and -m; one is stable and the other unstable. When u 

> 0, it has no extrema. So the catastrophe occurs at u = 0. We 

plot the extrema as functions of u in Fig. B.2(a). The upper and 

the lower half of the parabola correspond to the stable and the 

unstable equilibrium point, respectively. The parabola is the 

catastrophe manifold, which is defined as a subset of M x C on 
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Fia. B.2 Catastrophe manifolds and bifurcation sets of (a) fold, and 

(b) cusp catastrophes. The numbers of stable equilibrium points are also 

shown. 

which gradxF(x, u) = 0 is satisfied. The set B = CO3 is the 

bifurcation set where the catastrophe takes place. 

Cusp: In this case, C is two-dimensional ( r  = 2). The 

catastrophe manifold and the bifurcation set are pictured in Fig. 

Now we discuss the implications of the theorem using the two 

examples above mentioned. Consider a one-parameter family: 

which is reduced from the normal form of the cusp by setting u = uo 

= const. The equilibrium point xc satisfies the relation for a 

given value of v = v : 
C 

To investigate the local structure o f  the equilibrium point, we 

introduce new variables X and V by 
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Equation (B.4) becomes 

Consider the following three cases: 

(1) uO > 0: The coefficient of x2 is positive and therefore 
the local behavior of Gv(X) is equivalent to +x2; which means x is 

C 

nondegenerate critical point. In fact, the higher-order terms X 3 

and X' can be el iminated by a transformation given in the theorem, 

when the second-order term is not zero. The first-order term can 

be eliminated by X + X - V/2(6xC2 + uo). SO the parameter V is a 

dummy parameter in this case. ' 

(2) u < 0: We must consider three cases where the coefficient 0 

of x2 is positive, negative, and zero. In the first and second 

2 
cases, Gv(X) is equivalent to +x2 and -X respectively. In the 

third case, we must take x3 term into account. Apparently the 

equation: 

3 0 GV(X) = 4xcX + VX + (X term), (B.7) 

gives the fold. 

(3) uO = 0: Two cases where the coefficient of x2 is positive 
and zero are possible. In the former case GV(X) is equivalent to 

2 3 +x2 as described above. In the latter, the X and X terms vanish; 

4 0 
Gv(X) = X + VX + ( X  term). .(B.8) 
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This one-parameter family is structurally unstable. The family 

corresponds to the line on the (u,v)-plane passing the point of the 

cusp. It is easy to make the line not to pass there by a small 

perturbation. 

a Fia. 8.3 One-parameter 

families reduced from the 

cusp x4 + ux2 + YX by 

setting u = uo = const. 

(a) uO > 0, ( b )  u,, = 0, 

(c) UO < 0. 
b 

structurally 

unstable 

We summarize the three cases (1)-(3) in Fig. B.3, where 

catastrophe manifolds are pictured. 

We consider the other one-parameter families buried in the 

cusp : 

Fu(x) = x4 + ux2 + v0x, (B .9 )  

where uo is a fixed constant. The above analysis can be applied to 

this case and the result is shown in Fig. B.4. Again the one- 

parameter family which passes the cusp point (vO = 0) is 

structurally unstable. 
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structurally 

unstable 

Fig. 8 . 4  One-parameter 

f a m i l i e s  reduced  from t h e  

c u s p  x4 + ux2 + ux by 

s e t t i n g  v = vo = c o n s t .  

(a) vO = 0 ,  (b) uo # 0. 

From these examples, we can ge t  the f e e l i n g  t h a t  catastrophe 

t y p i c a l l y  encountered i n  a one-parameter fami ly  i s  the fo ld ;  a 

sudden disappearance ( o r  appearance) o f  a s tab le  s t a t e  and an 

unstable s t a t e  i n  pa i r .  I f  the  other type o f  catastrophe appears 

i n  a one-parameter fami ly,  the fami ly  i s  s t r u c t u r a l l y  unstable; i n  

other words, i t i s  no t  t y p i c a l .  More general ly, Thom's theorem 

assures t h a t  i n  r-parameter f am i l i es  ( r  < 4) we cannot see any 

types o f  catastrophe other than the seven elementary catastrophes. 

B.3 Remarks 

Here we make some remarks which should be considered when we 

apply the  theorem t o  our systems. 

(1) Localness: The boxes i n  Figs. 8.3  and B.4 represent the 
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set M x C. If we extend the height of the box of the fold in Fig. 

B.3(c) to contain the other branch, the figure in the box cannot be 

corresponded to the fold structure in Fig. B.2(a). This means the 

localness of the theorem. Similarly when we extend the parameter 

range C to contain the other fold, the correspondence also breaks. 

It should be noted, however, the whole structure in Fig. B13(c) is 

not a patch-work of the one-parameter families but a cross-section 

of the catastrophe manifold of the cusp. The cusp point (x = u = v 

= 0) determines the configuration of critical points in Fig. B.3. 

So even when we treat an r-parameter family, consideration of an 

r'-parameter family (r' > r) is sometimes needed, namely, we must 
include some hidden parameters. 

(2) Symmetry: Although a one-parameter family: 

is structurally unstable (Fig. B14(a)), it frequently appears in 

text books and is referred as a pitchfork bifurcation. It appears 

when the system has a symmetry with respect to the transformation x 

+ -x. Strictly speaking, such system may have some imperfections 

and behaves as in Fig, B,4(b); namely a symmetric system is 

structuarlly unstable or not generic. Even so, the pitchfork 

bifurcation is meaningful because it approximates the situation. A 

more positive attitude is possible. Haken (1981) said, 

'At the risk of provoking mathematicians I should nevertheless 

mention that in my opinion conclusions based on generic properties 

may be different for mathematicians and physicists. The reason for 

this lies in the fact that in mathematical sense generic refers to 

a typical property for solutions of a large class of different 

equations, On the other hand in physics we deal with specific 
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equations bringing out specific laws and hauing, more or less 

obvious, symmetry properties. Thus in my opinion the laws of 

nature are highly non-generic and it is just the aim of physics to 

explain why such laws have such and such specific properties.' 

Finally we present the bifurcation set for the butterfly: 

x6 + tx4 + ux3 + ux2 + wx, (6.11) 

for cases t > 0 (Fig. B.5(a)) and t < 0 (Fig. B.5(b)). It is used 

in Chapter 2. 
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BIFURCATION IN MODIFIED BLOCH EQUATION 

In this appendix we investigate bifurcation phenomena seen in 

the modified Bloch equation (4.24). 

C.1 Liehard's Method 

At first, we present a sufficient condition for the existence 

of a limit cycle in a certain class of differential equation called 

Libnard's equation (Nemytskii and Stepanov, 1960). Li6nard's 

equation has the following form: 

Introducing a new variable y = (dx/dt) + F(x) where 

we obtain the equations 

For this system we have a theorem on the existence of a limit 

CYCI e r 

Theorem: Suppose that 

1. g(x) satisfies 
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xg(x) > 0 for x # 0, g(x)dx = J; 
2. F(x) is single valued for -m < x < + m ,  satisfies a Lipschitz 

condition in every finite intervals and xF(x) 4 0 for x # 0 and Ixl 

sufficient1 y small . 
3, There exist constants N y  k, k' (k' < k) such that F(x) 2 k for 

x > N, F(x) 2 k' for x < -N. 
Then the system (C.1) admit at least one limit cycle. 

C.2 Takens' Normal Form 

Fig.  C.1 Bifurcat ion se t  o f  Takens' normal form (from Abraham and Marsden, 

1978). 

The qualitative bifurcations of Eq. (4.24) can be analyzed 

more precisely. Takens (1973) has classified certain generic or 

stable bifurcations of two-parameter families of vector fields on 

the plane. Our system can be reduced to one of the normal forms: 
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d x i d t  = r ,  

At the point hl = X2 = 0, the linear part has degenerate 

singularities. The point corresponds to the crossing of the 

critical lines 1 and 2 in Fig. 4.4, The bifurcation diagram for 

Eq, (C.4) is given in Fig. C.1. Phase portrait in each region is 

also shown. The correspondence to Fig, 4.4 is clear. 
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CHAOS 

D.l Introduction 

In this appendix, we give a short review on chaos and 

introduce some terms used in Chapters 5 and 6. By the term 

'chaos,' we mean an irregular motion of a dynamical system which 

is, however, governed by deterministic equations. The seeming 

contradiction prevents people from studying chaos substantially for 

a long time, although it was known to some people te.g. Poincare). 

In 1963, Lorenz showed that a simple equation system: 

% =  xy - bz, 
exhibits an irregular (non-periodic) motion for some values of 

parameters 0 ,  b, and r. The torenz equation was reduced from a 

fluid-convection problem and the irregular motion is connected to 

the turbulence. In Fig. D.l we show an example of the trajectory 

in the (x,y,z) space. Any solutions originating from different 

initial points, eventually attracted to the two-leaf structure. 

The cross-section of the attractor is very complicated, namely, no 

matter how much we magnify a part, we can see some structures 

(Mandelbrot, 1982). So it is called a "strange attractor.' 

We have correspondences between the attractors and the steady- 
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Fin. D . l  A trajectory of the Lorenz equation with a = 10, b = 8/3, r 

= 28. 

state solutions listed below: 

fixed point stationary equilibrium 

1 imit cycle periodic motion 

torus multiply periodic motion 

strange attractor - aperiodic motion (turbulence) 
Ruelle and Takens (1971) offered a possible mechanism by which 

turbulent solutions to the Nauier-Stokes equations could appear. 

They showed that, as the system parameter is varied, the 

bifurcations progress as follows: fixed point + limit cycle + torus 

+ strange attractor. They also showed on the basis of quite 

general argument that such bifurcation scheme is not so rare, in 

other words, the occurrence of strange attractor is not special 

affairs, 

Here we introduce the Poincari map which is a useful tool to 
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Fig. D.2 Poincarb map. 

investigate the bifurcations of a periodic orbit. Consider a 

differential equation in a three-dimensional space and a surface S 

transverse to the orbits (Fig. 0.2). An orbit starting from xn on 

S hits S again at x ~ + ~ .  Such a correspondence defines a map from S 

to S: 

We can draw many informations from the Poincar6 map instead of the 

original differential equation. For example, if x is a fixed point 

of the map F then we know the orbit through x is a closed orbit. 

Aside from above point of view, Eq. (D.2) with discrete time n 

(difference equation) has its importances. The dynamics of 

biological populations can be described by Eq. (D.2) where n 

represents the generation (May, 1976). Mathematically, a one- 

dimensional map is rather simple and many rigorous results on chaos 

are obtained (Collet and Eckmann, 1980). 

To get an insight into the mechanism which generates chaos, we 
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consider a one-dimensional map: 

where x E C0,11. We can easily see that if the initial condition 
n 

has an uncertainty *E, then after m 1og2(1/~) iteration of the 

map, we will have essentially no clue as to where x lies in the 

interval C0,13. For example, for E 10-12, m = 40 (Ott, 1981). 

This sensitive dependence on the initial condition is one of the 

criteria for chaos. We show another way to see how erratically a 

sequence <xO, xl, x2, .... 3 is generated by Eqr (0.3). From the 

sequence we make a binary sequence <b O y  bly b2, .... 3 where bn is 

defined as 

In Fig. 0.3, we show the sequences as functions of initial value 

x0. 
When x0 = 0.3, for instance, we have a sequence (0, 1, 0 ,  0, 

1, 1, .... 3. In Fig. D.3 we can find any binary sequence (even if 

it is given from coin tosses). 

D.2 Roads to Chaos 

In Appendix B y  we have seen the bifurcations of fixed points, 

such as a saddle-node connection and a pitchfork bifurcation, and, 

in Appendix C, the bifurcations lying between periodic motion and a 

stationary state such as a Hopf bifurcation (Marsden and McCracken, 

19761, a coalescence of stable and unstable limit cycles, and a 

saddle connection. In the course of nature, a bifurcation (or a 

sequence of bifurcations) which lies between a non-chaotic state 

and a chaotic state should be investigated. Such bifurcation is 
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F i a .  D . 3  Binary sequence generated by t h e  i t e r a t i o n  of map (0.3). For 

i n i t i a l  v a l u e  x,, = 0.3, f o r  example, t h e  sequence (0, 1, 0, 0, 1, 1, .... > 
i s  generated .  

important because it corresponds to the onset of turbulence. There 

are many possibilities but some of them are more likely. They are 

called 'scenarios' by Eckmann (1981). He picked up three prominent 

scenarios: 

Ruelle-Takens-Newhouse scenario 

Feigenbaum scenario (period doubling) 

Pomeau-Manuille scenario (intermittency) 

Each scenario has a representative mathematical model and has been 

found experimentally to be played in real physical systems. 

Here we describe each scenario briefly. 

Ruelle-Takens-Newhouse: As the parameter u is increased, a 

system undergoes a Hopf bifurcation at u1 and begins to oscillate 

at a frequency fl. At u2, the second Hopf bifurcation leads to 
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doubly periodic motion Iin fl and f2). Then it is likely that 

through the third bifurcation the system possesses a strange 

attractor. 

Feigenbaum: An infinite sequence of subharmonic bifurcations 

appear at ul, 1.5, ..... The ratio (ui+l - ui)/<ui - ui-l) 
approaches a constant 6 = 4.66920... (Feigenbaum constant) as i 

tends to infinity. Above the accumulation point u,* one will see 

aperiodic behavior, 

Pomeau-Manville: As the parameter u is varied over a critical 

value uc, one sees intermittently turbulent behavior of random 

duration with laminar phases of mean duration (lu - uCI -112) in 

between. 

D.3 Bifurcations in One-Dimensional Maps 

To see the examples of the scenarios, we consider a family of 

one-dimensional maps: 

X n+l = uxn(l - xn). (0 4 

We show the bifurcation diagram in Fig. 0.4 which is obtained as 

follows. For a given value of u, we choose an initial value xo and 

iterate the mapping (0.4) until the transient behavior settles 

down. Then we plot successive values xn. The procedure is 

repeated for each u. In Fig. D.4, typical period-doubling 

bifurcations to chaos are seen. At M = uOt a bifurcation takes 

place from a stationary state ( x ~ + ~  = x ) to a period-2 oscillation n 

' Xn+2 = xn), and at u = ulr a bifurcation from the period-2 to a 

period-4 ( x ~ + ~  = xn). Generally* at u = vk, a bifurcation from a 
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Fig. D.4 Bifurcation diagram of Eq. (D.4). 

per i od-Zk to a per i od-Zk+' osc i 1 1 at i on occurs. Above the 

accumulation point u,, the system oscillates aperiodically. Using 

a method of renormalization group in statistical mechanics, 

Feigenbaum (1978) showed that a ratio ( u ~ + ~  - un)/(un - un-l) 
approaches a constant 6 = 4.66920... asymptotically. The 

remarkable point is that the constant does not depend on the choice 

of the family of mapping. 

Above u,, a series of reverse bifurcations at u = u(k) 

appears. A state between u ( ~ )  and u(k-l) is called a period-2 k 

chaos, where the orbit drops in the 2k bands in cycl ic and 

therefore a kind of order remains. A series has the same 

universal property as <unl. 

Another marked feature of the bifurcation diagram is the 

existence of windows in the chaotic region, where the periodic 

motion reappears. In Fig. 0.5 we show a blowup of a window. At 
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UNSTABLE FIXED POINT 

Fis. D.5 Magnified view of window. 

the left edge, a stable periodic orbit appears through a tangent 

bifurcation (a saddle-node connection) with an unstable periodic 

orbit. The bifurcation is proceeded by the intermittency, namely 

when we decrease u across the left boundary, chaotic oscillation 

intermitted by periodic motion with random duration appears. The 

window is closed by a crisis (Grebogi et a]., 1982; 1983) as IA is 

increased, The crisis is a bifurcation of a chaotic attractor, 

which appears when an unstable fixed point (or an unstable periodic 

orbit) collides to the attractor, In the case of Fig. D.5, the 

unstable periodic orbit created at the left edge of the window 

collides with the chaotic attractor which is bifurcated from the 

stable periodic orbit. 
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CLASSIFICATION OF A FIXED POINT OF 20 MAP 

The stability of a fixed point of a two-dimensional map T can 

be characterized by the eigenvalues pl and p2 of the linearized map 

(Kawakami and Kobayashi, 1979; Kawakami, 1979; Guckenheimer and 

Holmes, 1982). If lpll # 1 and Ip21 # 1, the fixed point is called 

simple, or hyperbolic. A fixed point is called orientation 

preserving when plp2 > 0 and orientation reversing when plp2 < 0. 
An orientation preserving simple fixed point is classified as 

Completely stable ( S ) :  lpll < 1, Ip21 < 1 
Completely unstable (U): lpll > 1, lp21 > 1 
Directly unstable (Dl: 0 < P 1 < 1 < P 2  

Inversely unstable (I): p1 < -1 < p2 < 0 
and an orientation reversing fixed point is classified as 

Completely stab1 e (SR) : lpll < 1, Ip21 < 1 
Completely unstable (UR): p1 < -1, p2 > 1 
Directly unstable (DR): 

Inversely unstable (IR): p1 < -1, 0 < p 2 <  1. 
We can extend the above notation to n-periodic points, namely, if 

an n-periodic point P is a fixed point DR of the map T'") ,  for 

example, then we denote P as D R ~ .  
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