Online Supplemental materials

Fig. S1. The redox response of Redoxfluor in vitro. Effect of pH upon the FRET ratio of Redoxfluor. Circles, reduced probes; squares, oxidized probes; red, C-probe; blue, A-probe.

Fig. S2. Visualization of the redox state in *P. pastoris*. The C-probe responds to various oxidants in *P. pastoris*. Bar, 2 μm.

Fig. S3. Redoxfluor response in the presence of cycloheximide. The wild-type CHO-K1 strain used in Fig. 3B was pre-treated with 20 μ g/ml cycloheximide for 1 h, incubated in medium containing 200 μ M H₂O₂ and the same concentration of cycloheximide for 20 min, and transferred to cycloheximide-containing medium without H₂O₂ (H₂O₂-washout) for the indicated periods. The cycloheximide treatment alone exerted an oxidizing effect upon the redox state, but the H₂O₂-washout increased the FRET ratio showing the reversibility of Redoxfluor response. Bar, 10 μ m. Fig. S4. Biochemical assessment of the redox state in *pex5* cells using mPEGmaleimide. Cell lysate from wild-type (CHO-K1) or *pex5* (ZP105) cells expressing cytosolic Redoxfluor (C-probe or A-probe) was incubated with mPEG-maleimide, and subjected to immunoblot analysis. The molecular-weight distributions of the probe proteins are slightly greater in the lysate from the *pex* cells. The arrow indicates non-modified probe proteins and the asterisks show the modified forms of the protein.

Fig. S5. Detection of accumulated ROS by 2', 7'-dichlorodihydrofluorescein diacetate (DCF). Wild-type CHO-K1 cells exhibited greater levels of intracellularly accumulated ROS at 37°C than ZP105 cells mutant for peroxisome assembly. The values represent the fluorescent intensities of DCF in arbitrary units.

Table S1. Primers used for qRT-PCR

Video 1. The H_2O_2 -induced FRET response in CHO-K1 cells expressing the C-probe. Time series speed was 1 frame per minute, and the images were taken for 20 minutes. Using our conventional FRET microscope, an increase in background fluorescence with both A- and C-probes was observed due to the increase of the medium volume of the object upon reagent addition. Video 2. The ATZ-induced FRET response in CHO-K1 cells expressing the C-probe. Time series speed was 1 frame per minute, and images were taken for 40 minutes. ATZ was added at 20 minutes.

Video 3. The H_2O_2 -induced FRET response in CHO-K1 cells expressing the Cprobe-PTS1. Time series speed was 1 frame per minute, and images were taken for 40 minutes. H_2O_2 was added at 20 minutes.

TABLE SI.Primers used in the qRT-PCR

Gene	Primers
GST	5'-TGGAAGGAGGAGGTGGTTACTGTAG-3'
	5'-CCCATCATTCACCATATCCACCAGG-3'
PpCTA1	5'-CGAGTATCCTTCATGGACTTGTTAC-3'
	5'-TCCTCAATGGGAAGTCTTTGTGTGG-3'
PpGPX1	5'-ACCAGTTTGGTCATCAGGAACCAGG-3'
	5'-ACCTTTGAATCCGAGGAGACCAGAC-3'
PpSOD2	5'-AACACCCTAAGGTGATCGAGCTAC-3'
	5'-ACCTGCCAACTTAGAGTTGGTAAGG-3'
PpTSA1	5'-CATTGTTGGCTGACACCAACCACAC-3'
	5'-TCCGACTGGCAGATCGTTGATAGTG-3'

Reagent	None	H ₂ O ₂ (100 μM)	АТZ (10 µМ)	BSO (100 μM)	FRET
	and the second			600	1.5
	1304	5.09	0		1.0

CHO-K1

TABLE SI.Primers used in the qRT-PCR

Gene	Primers
GST	5'-TGGAAGGAGGAGGTGGTTACTGTAG-3'
	5'-CCCATCATTCACCATATCCACCAGG-3'
PpCTA1	5'-CGAGTATCCTTCATGGACTTGTTAC-3'
	5'-TCCTCAATGGGAAGTCTTTGTGTGG-3'
PpGPX1	5'-ACCAGTTTGGTCATCAGGAACCAGG-3'
	5'-ACCTTTGAATCCGAGGAGACCAGAC-3'
PpSOD2	5'-AACACCCTAAGGTGATCGAGCTAC-3'
	5'-ACCTGCCAACTTAGAGTTGGTAAGG-3'
PpTSA1	5'-CATTGTTGGCTGACACCAACCACAC-3'
	5'-TCCGACTGGCAGATCGTTGATAGTG-3'