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Abstract 

 

We calculate the spatial distribution of the entropic potential between a big sphere and an 

even bigger vessel with cylindrical shape, which are immersed in small spheres, using the 

three-dimensional integral equation theory. The distribution is strongly dependent on relative 

magnitudes of the big-sphere diameter and the inner diameter of the vessel unless the latter is 

much larger than the former. For a fixed value of the inner diameter, a big sphere whose diameter 

lies in a specific range is spontaneously inserted into the vessel and strongly confined within a 

small space almost in the center of the vessel cavity. 
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1. Introduction 

 

The entropic excluded-volume effect plays crucially important roles not only in colloidal 

suspensions but also in biological systems [1-3]. Many biological processes are controlled by the 

interactions between macromolecules and by those of macromolecules with cell membranes. The 

macromolecules and membranes generate excluded volumes for smaller particles forming the 

solvent (i.e., volumes of the spaces which the centers of solvent particles cannot enter). When the 

macromolecules approach each other, for instance, the excluded volumes overlap, leading to an 

increase in the total volume available to the translational displacement of solvent particles. That is, 

the number of accessible configurations of the solvent increases and a corresponding entropy gain 

occurs. Thus, an attractive force is induced between macromolecules at small separations [4,5]. 

The entropic forces are largely influenced by the overall shape of macromolecules and membranes 

as well as their detailed polyatomic structures. The entropic effect is omnipresent and substantially 

large. In statistical mechanics, the force and the interaction are described by the mean force and by 

the potential of mean force, respectively. 

To elucidate the entropic effect, theoretical studies dealing with big bodies with simple 

geometries immersed in small particles have been performed rather extensively. In these studies, 

the hard-body models are employed for the big bodies and small particles. In the hard-body 

models, all the accessible system configurations share the same energy, and the system behavior is 

purely entropic in origin: They allow us to investigate the entropic effect exclusively. In biological 

systems, the solvent is water characterized by hydrogen bonds. However, in the entropic gain 

upon the solute contact and related processes, the translational entropy predominates over the 

rotational entropy. The entropic effect considered here can be analyzed by modeling water as hard 

spheres in many cases, as long as the diameter and number density are set at the values of water 

[2,3]. A more detailed argument is given as the last paragraph in Sec. 3.2. 

The most fundamental subject first considered is the entropic force or interaction induced 

between big spheres or between a big sphere and a flat wall immersed in small spheres [6-11]. It 

has been extended to more advanced subjects, and a significant amount of interesting information 

is now available. For example, the entropic interaction between a big sphere and a concave surface 

is stronger than that between the same big sphere and a flat surface [12]. For a big sphere on a 

wall, the geometric features of the wall induce entropic force acting on the big sphere in a specific 

direction along the wall [13-15]: The big sphere is locally repelled from a step edge, attracted to a 

corner, and moved from a convex surface to a concave one. The entropic torque induces the 

rotation of a big body with asphericity [16], the entropic interaction between big aspherical bodies 

leads to their ordered aggregation [17,18], and the lock-key interaction is entropically provided 
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with high size selectivity [13,14,19]. Recently, the interaction between big spheres in a 

multi-component mixture of small spheres has been analyzed [20]. 

Elaborate statistical-mechanical methods such as the density functional theory [12] and the 

integral equation theory [6,11,13,14] are employed in the studies on the entropic effect described 

above. An important feature revealed is the following. The effect of the density structure of small 

spheres near the big bodies is essential, making the entropic interaction rather complicated: It 

exhibits a great variation with the period which is close to the diameter of small spheres dS, and 

attractive and repulsive regions appear alternately. For the interaction between big spheres or 

between a big sphere and a flat wall, for instance, a strong repulsive peak appears at h0.5dS 

where h is the surface separation [1,2,6-11]. The details of the entropic effect are strongly 

dependent on the geometric characteristics of the system considered. These properties cannot be 

reproduced by the simple Asakura-Oosawa theory [4,5] which gives only a much shorter-ranged, 

monotonically changing attractive force. It is challenging to investigate the entropic effect for a 

new system using an elaborate statistical-mechanical theory. 

Here we consider the insertion of a big body into an even bigger vessel in small spheres 

forming the solvent. Such an insertion is a basic process in biological systems. Typical examples 

are the introduction of a polypeptide into the chaperonin GroEL [21,22] and that of an antibiotic 

molecule or a toxic protein into a cell-membrane protein [23,24]. They form elementary steps in 

the facilitation of protein folding and in the export of unfavorable molecules to the outside, 

respectively. In the present study, a simplified model system is treated to explore the roles of the 

entropic effect as an important first step. We calculate the spatial distribution of the entropic 

potential between a big sphere and an even bigger vessel with cylindrical shape (see Fig. 1), which 

are immersed in small spheres. As in the earlier works, the hard-body models are employed for the 

big sphere, vessel, and small spheres. The vessel has length L, inner diameter dI, and outer 

diameter dO. The big sphere has diameter dB (dBdI). The vessel and the big sphere are immersed 

in small spheres with diameter dS. L, (dOdI)/2, and dB are fixed at 7dS, 6dS, and 5dS, respectively, 

and dI is varied as an essential parameter. The three-dimensional (3D) integral equation theory 

[13,14,17,25-29] is employed in the calculation. 

It is shown that the spatial distribution of the entropic potential is remarkably dependent on dI 

unless dI is much larger than dB. The behavior exhibited when dB is varied with dI kept constant 

can also be conjectured: For a fixed value of dI, a big sphere whose diameter lies in a specific 

range is not only spontaneously inserted into the vessel but also strongly confined within a small 

space almost in the center of the vessel cavity (i.e., separated from the inner surface). Moreover, 

the specific range becomes wider as dB increases. 
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2. Theory 

 

It is assumed that solute i of arbitrary geometry is immersed at infinite dilution in small 

spheres with diameter dS forming the solvent. The Ornstein-Zernike (OZ) equation in the Fourier 

space [13,14] is expressed by 

 

WiS(kx, ky, kz)=ρSCiS(kx, ky, kz)HSS(k)                                             (1) 

 

and the hypernetted-chain (HNC) closure equation [13,14] is written as 

 

ciS(x, y, z)=exp{−uiS(x, y, z)/(kBT)}exp{wiS(x, y, z)}−wiS(x, y, z)−1.                      (2) 

 

Here, the subscript “S” denotes the solvent, w=h−c, c is the direct correlation function, h the total 

correlation function, u the potential, ρ the bulk density, kB Boltzmann’s constant, T the absolute 

temperature. The values of dS and ρSdS
3 are set at those of water at 298 K and 1 atm, 0.28 nm and 

0.7317, respectively. The capital letters (C, H, and W) represent the Fourier transforms. HSS(k) 

(k2=kx
2+ky

2+kz
2) calculated using the radial-symmetric HNC theory for spherical particles is part of 

the input data. We emphasize that the OZ equation is exact [6] (its approximate aspect has been 

pointed out in a literature [15], but this is incorrect). On the other hand, the bridge function is 

neglected in the HNC closure equation. However, it has been verified that the 3D-OZ-HNC theory 

gives quantitatively reliable results [13,14]. 

The numerical procedure is briefly summarized as follows: (1) uiS(x, y, z) is calculated at each 

3D grid point, (2) wiS(x, y, z) is initialized to zero, (3) ciS(x, y, z) is calculated from Eq. (2), and 

ciS(x, y, z) is transformed to CiS(kx, ky, kz) using the 3D fast Fourier transform (3D-FFT), (4) WiS(kx, 

ky, kz) is calculated from Eq. (1), and WiS(kx, ky, kz) is inverted to wiS(x, y, z) using the 3D-FFT, and 

(5) steps (3) and (4) are repeated until the input and output functions for wiS(x, y, z) become 

identical within convergence tolerance. On grid points where a solvent particle and the solute 

overlap, exp{−uiS(x, y, z)/(kBT)} is zero. On those where a solvent particle is in contact with the 

solute, it is set at 0.5, and otherwise it is unity. The grid spacing (∆x, ∆y, and ∆z) is set at 0.1dS, 

and the grid resolution (Nx×Ny×Nz) is 512×512×512. It has been verified that the spacing is 

sufficiently small and the box size (Nx∆x, Ny∆y, Nz∆z) is large enough for the correlation functions 

at the box surfaces to be essentially zero. 

We consider solutes 1 and 2. Solute 1 is a big vessel with cylindrical shape illustrated in Fig. 

1. Solute 2 is a big sphere with diameter dB. First, the solute 1-solvent correlation functions (the 

Fourier transform of the direct correlation function is denoted by C1S(kx, ky, kz)) are calculated by 
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following the procedure described above (i=1). Second, the solute 2-solvent correlation functions 

(the Fourier transform of the total correlation function is denoted by H2S(k)) are calculated using 

the radial symmetric HNC theory for spherical particles. The entropic potential between solutes 1 

and 2 is described by the potential of mean force by assuming that the solvent particles are always 

in equilibrium with each configuration of the two solutes. 

The potential of mean force between the two solutes Φ12(x, y, z) are then obtained from 

 

Φ12(x, y, z)/(kBT)=u12(x, y, z)/(kBT)−w12(x, y, z),                                     (3) 

 

where w12(x, y, z) is calculated by inverting W12(kx, ky, kz) given by 

 

W12(kx, ky, kz)=ρSC1S(kx, ky, kz)H2S(k).                                             (4) 

 

The physical meaning of Φ12(x, y, z) can be understood from 

 

Φ12(x, y, z)=F(x, y, z)−F(, , )                                               (5) 

 

and 

 

g12(x, y, z)=exp{−Φ12(x, y, z)/(kBT)}, g12(, , )=1.                                (6) 

 

Here, the origin of the coordinate system is chosen as illustrated in Fig. 1, F(x, y, z) is the free 

energy of small spheres in the case where the big sphere is at the position (x, y, z), and g12(x, y, z) 

the pair distribution function. Due to the hard-body models, the behavior of Φ12(x, y, z) is purely 

entropic in origin. Hereafter, Φ12(x, y, z) is referred to as the entropic potential. A great advantage 

of the 3D integral equation theory is that the values of Φ12 on all the grid points are obtained from 

only a single calculation, which is in marked contrast with the usual computer simulation. 

 

 

3. Results and Discussion 

 

3.1. Effect of inner diameter of vessel 

 

The spatial distribution of the entropic potential (on the cross section (z=0)) scaled by kBT 

between the big sphere and the vessel are shown in Figs. 2−4 for several different values of dI. In 
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the case of dI=dB (Fig. 2 (a)), a significant lowering of the free energy of small spheres occurs 

when the big sphere is inside the vessel. However, there is high free-energy barrier (3kBT: the 

case of the lowest barrier is indicated by the thin solid arrow) for the big sphere to overcome, 

which hinders the big-sphere insertion into the vessel. It has been shown in an experimental study 

for the entropic interaction between large spheres immersed in small spheres [30] that a barrier 

which is significantly higher than kBT can hardly be overcome. 

When dI is increased to dB+dS (Fig. 2 (b)), the spatial distribution of the entropic potential 

exhibits a drastic change. The big sphere is largely destabilized (i.e., the free energy of small 

spheres becomes much higher) inside the vessel except at the positions in contact with the inner 

surface of the vessel: It is largely destabilized around the x-axis. Since there is high barrier (3kBT: 

the case of the lowest barrier is indicated by the thin solid arrow) for the big sphere to overcome, 

the big sphere can reach the contact positions only with low probability. 

For dI=dB+2dS (Fig. 3 (a)), a domain within which the big sphere is highly stabilized (i.e., the 

free energy of small spheres becomes much lower) appears around the x-axis. The lowest barrier 

indicated by the thin broken arrow is kBT, and it is not difficult for the big sphere to reach the 

domain. Along the x-axis inside the vessel, the potential is oscillatory with large amplitude as 

shown in Fig. 5 (a). Due to sufficiently high barriers along the x-axis, the big sphere is confined 

within the small space around the position indicated by the thick solid arrow where the local 

potential minimum is −14kBT. As observed in Fig. 3 (a), the big sphere can contact the inner 

surface of the vessel only with low probability due to high barriers (3kBT: the case of the lowest 

barrier is indicated by the thin solid arrow). 

When dI is increased to dB+3dS (Fig. 3 (b)), there appear two domains within which the big 

sphere is stabilized between the inner surface and the x-axis. The lowest barrier indicated by the 

thin broken arrow is kBT, and it is not difficult for the big sphere to reach the domains. The big 

sphere is confined within the small space around the position indicated by the thick solid arrow 

where the local potential minimum is −6kBT. The big sphere can contact the inner surface of the 

vessel only with low probability due to high barriers (3kBT: the case of the lowest barrier is 

indicated by the thin solid arrow). 

When dI is further increased to dB+4dS (Fig. 4 (a)), a domain within which the big sphere is 

stabilized appears additionally around the x-axis. The lowest barrier indicated by the thin broken 

arrow is kBT. The lowest barrier indicated by the thin dotted arrow is considerably lower than 

kBT: The big sphere readily reaches the domain around the x-axis. The big sphere is confined 

within the small spaces around the positions indicated by the thick broken and solid arrows where 

the local potential minima are −3.5kBT and −8kBT (the potential along the x-axis is shown in 

Fig. 5 (b)), respectively. The small space around the position indicated by the thick solid arrow in 
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Fig. 4 (a) is deeper inside the vessel cavity than that in Fig. 3 (a). The big sphere can contact the 

inner surface of the vessel only with low probability due to high barriers (3kBT: the case of the 

lowest barrier is indicated by the thin solid arrow). 

For dI=dB+5dS (Fig. 4 (b)), there are four domains within which the big sphere is stabilized 

between the inner surface and the x-axis. The lowest barrier indicated by the thin broken arrow is 

kBT. The lowest barrier indicated by the thin dotted arrow is considerably lower than kBT. The 

big sphere can be confined within the small spaces around the positions indicated by the thick 

broken and solid arrows where the local potential minima are −3kBT and −4kBT, respectively. 

The big sphere can contact the inner surface of the vessel only with low probability due to high 

barriers (3kBT: the case of the lowest barrier is indicated by the thin solid arrow). For dI=dB+6dS 

(not shown), the small space around the x-axis within which the big sphere is confined possesses 

the local potential minimum −4kBT. 

 

3.2. Further discussion 

 

For dI=dB+ndS (n=0, 1), the big-sphere insertion can rarely occur. For dI=dB+ndS (n2), the 

big sphere is spontaneously inserted into the vessel. There are (n−1) domains within which the big 

sphere can be stabilized inside the vessel without contacting the inner surface. For n=even, there is 

one such domain around the x-axis and the big sphere is stabilized the most within it. For n=odd, 

such domains appear only between the inner surface and the x-axis. In general, the stabilization 

becomes progressively weaker as n increases. The big sphere is confined within a small space. 

The small space is considerably deep inside for n3. The powers of the insertion and the 

confinement become progressively weaker as n increases. We find that as n increases further the 

basic pattern of the entropic potential converges rather rapidly: There are (n−1) small spaces 

within which the big sphere can be confined around x/dS−1 and their local potential minima are 

in the range from −4kBT to −3kBT. This is due to the bottom wall of the vessel. When the 

bottom wall is removed, the potential minima originating from it disappears. 

The big sphere is strongly confined (in the sense that the local potential minimum is lower 

than −6kBT corresponding to g12400) within a small space almost in the center of the vessel 

cavity only for n=2, 3, and 4. In the present analysis, dI is varied with dB kept constant. However, 

the behavior exhibited when dB is varied with dI kept constant can be conjectured as follows: The 

strong confinement occurs only when dB lies in a specific range. Interestingly enough, the big 

sphere is strongly confined almost in the center, which is in accord with the experimental 

observation that a protein is in the center of the GroEL-GroES cavity and separated from the inner 

surface [22]. 
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We remark that the quantitative aspects of the results are dependent on the value of dB 

adopted. If dB is set at a larger value (e.g., dB=mdS (m6) and dI=dB+ndS (n=2, 3, 4, …)), the 

amplitudes of the oscillatory potentials become larger. That is, the big sphere has to overcome 

higher free-energy barriers for reaching a domain within which it is stabilized. The small space 

within which the big sphere is confined possesses a lower local potential minimum: The local 

potential minimum can be lower than −6kBT even for n5 when m is sufficiently large. Thus, the 

range of the big-sphere diameter leading to the strong confinement mentioned in the last 

paragraph becomes wider as dB increases. 

    We discuss Figs. 2 (a), 2 (b), and 3(a). The physical origin of the barriers indicated by the thin 

arrows is the same as that of the repulsive peak appearing at h0.5dS (h is the surface separation) 

in the interaction between big spheres or between a big sphere and a flat wall [1,2,6-11]. The 

appearance of the red domain in Fig. 2 (b) and that of the blue domain around the x-axis inside the 

vessel in Fig. 3 (a) can be understood in the following way. For the case where the big sphere is at 

a position on the x-axis, the packing of small spheres is illustrated in Fig. 6. Figure 6 (a) and (b) 

are prepared for Fig. 2 (b) and Fig. 3 (a), respectively. In Fig. 6 (a), there are two vacant spaces 

which the small spheres cannot enter and the packing efficiency is considerably low, causing a 

large entropic loss. By contrast, the small spheres are efficiently packed in Fig. 6 (b). Thus, the 

entropic effect is remarkably influenced by the packing efficiency of small spheres within a 

narrow space confined by the big sphere and the inner surface of the vessel. The appearance of the 

red and blue domains in Figs. 3 (b), 4 (a), and 4 (b) can be understood in a similar way. 

For the big sphere to be inserted into the cylindrical vessel, some small spheres have to be 

removed from the inside of the vessel. When the inner diameter is quite small as in Fig. 2, the 

small spheres would have a difficult time in going out to the outside while the big sphere is 

entering. However, in the real system the big sphere and the vessel with polyatomic structures are 

not rigid but deformable. It is probable that the big sphere and the vessel are deformed so that the 

small spheres can leave the inside of the vessel. 

The water inside a cylindrical vessel could evaporate if the vessel surface is highly 

hydrophobic. For the evaporation to occur, however, the inner diameter of the vessel must be 

considerably small. For example, in a molecular dynamics simulation study in which a purely 

repulsive potential is considered for the surface-water interaction [31], it has been shown that the 

evaporation occurs only when the surface separation becomes smaller than twice of the molecular 

diameter of water. Further, the surface-water van der Waals attraction has large effects on the 

properties of the confined water. When the attraction is taken into account, it is indefinite whether 

the evaporation actually occurs or not. On the other hand, if the vessel surface is hydrophilic, it is 

difficult for the big sphere to expel the water from the inside. In the real system, the vessel surface 
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possesses both of hydrophobic and hydrophilic patches. As a consequence, the confined water 

behaves somewhat like the hard-sphere fluid as far as the entropic effect is concerned [2]. Thus, in 

our opinion the basic physics can be captured by our hard-body model even for the confined 

system considered in the present study. 

 

 

4. Concluding Remarks 

 

We have calculated the spatial distribution of the entropic potential between a big sphere and 

an even bigger vessel with cylindrical shape shown in Fig. 1, which are immersed in small spheres 

forming the solvent, using the three-dimensional integral equation theory. The hard-body models 

are employed to exclusively investigate the effect of the translational entropy of the solvent. The 

distribution is strongly dependent on relative magnitudes of the big-sphere diameter dB and the 

inner diameter of the vessel dI unless dI is much larger than dB. In the present analysis, dI is varied 

with dB kept constant. However, the behavior exhibited when dB is varied with dI kept constant 

can also be conjectured: A big sphere whose diameter lies in a specific range is not only 

spontaneously inserted into the vessel but also strongly confined within a small space almost in 

the center of the vessel cavity. Moreover, the specific range becomes wider as dB increases. 

The insertion of a big body into a big vessel is an important process in biological systems. 

Typical examples are the introduction of a polypeptide into the chaperonin GroEL [21,22] and that 

of an antibiotic molecule or a toxic protein into a cell-membrane protein [23,24]. In these 

processes, the entropic effect arising from the translational displacement of solvent molecules 

should play crucially important roles. In the case of the chaperonin GroEL, dB/dS is considerably 

larger than 5, the value considered in the present calculations. We note that the entropic effect 

becomes stronger with increasing dB/dS [2]. The electrostatic interaction, which would be quite 

strong in pure water, is largely screened by the counter ions in aqueous solution under the 

physiological condition containing 0.15M NaCl. As a consequence, the entropic effect is 

expected to be dominantly large in comparison with the other effects. 

Effects of the tapering of dI along x or +x direction for the vessel and the asphericity of the 

big body are to be investigated in the next step. The exclusion of the big body, which was already 

inserted into the vessel, to the outside could also be elucidated by the entropic effect: It could be 

achieved by changing the geometric features of the vessel and/or the big body after the insertion of 

the big body is completed. The details of the polyatomic structures of the vessel and/or the big 

body are important factors. As for the dynamical aspects of the system behavior, a rigorous 

method is to simulate a biased Brownian motion of a big sphere in an entropic force field 
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calculated in the present study. These are interesting subjects to be pursued as future works. 
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Figure Captions 

 

 

Fig. 1. (a) Big vessel considered. It is colored for three-dimensional visualization. (b) Its cross 

section magnified (z=0). The thick solid lines represent the x-axis and y-axis. L, dO, dI, and D are 

the length, outer and inner diameters, and thickness of the bottom wall, respectively. L, (dOdI)/2, 

and D are fixed at 7dS, 6dS, and dS, respectively, and dI is varied as an important parameter. The 

numbers given are scaled by dS. When the big-sphere diameter dB is set at 5dS, the center of the 

big sphere in contact with the bottom wall is at (x, y)=(0, 0). 

 

Fig. 2. Spatial distribution of entropic potential scaled by kBT between the big sphere and the 

vessel for different values of dI: (a) dI=dB and (b) dI=dB+dS. As the color approaches thick blue, the 

potential becomes lower, and as the color approaches thick red, the potential becomes higher. The 

center of the big sphere cannot enter the domain drawn in white. The numbers given are scaled by 

kBT. The maximum and minimum values of the potential scaled by kBT are also given. 

 

Fig. 3. Spatial distribution of entropic potential scaled by kBT between the big sphere and the 

vessel for different values of dI: (a) dI=dB+2dS and (b) dI=dB+3dS. As the color approaches thick 

blue, the potential becomes lower, and as the color approaches thick red, the potential becomes 

higher. The center of the big sphere cannot enter the domain drawn in white. The numbers given 

are scaled by kBT. The maximum and minimum values of the potential scaled by kBT are also 

given. 

 

Fig. 4. Spatial distribution of entropic potential scaled by kBT between the big sphere and the 

vessel for different values of dI: (a) dI=dB+4dS and (b) dI=dB+5dS. As the color approaches thick 

blue, the potential becomes lower, and as the color approaches thick red, the potential becomes 

higher. The center of the big sphere cannot enter the domain drawn in white. The numbers given 

are scaled by kBT. The maximum and minimum values of the potential scaled by kBT are also 

given. 

 

Fig. 5. Entropic potential along the x-axis scaled by kBT between the big sphere and the vessel for 

different values of dI: (a) dI=dB+2dS and (b) dI=dB+4dS. 

 

Fig. 6. Packing of small spheres within the narrow space confined by the big sphere and the inner 

surface of the vessel for different values of dI: (a) dI=dB+dS and (b) dI=dB+2dS. 
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