<table>
<thead>
<tr>
<th>Title</th>
<th>Studying New Synthetic Reactions of Unsaturated Alcohols and Amines with Aryl Halides under Palladium Catalysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hayashi, Sayuri</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-03-23</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.14989/doctor.k15326</td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>
Studies on New Synthetic Reactions of Unsaturated Alcohols and Amines with Aryl Halides under Palladium Catalysis

Sayuri Hayashi
2010
Contents

General Introduction 1

Chapter 1
Palladium-Catalyzed Regio- and Stereospecific Allylation Reaction of Aryl Halides with Homoallyl Alcohols via Retro-Allylation 39

Chapter 2
Synthesis of (Arylalkenyl)silanes by Palladium-Catalyzed Regiospecific and Stereoselective Allyl Transfer from Silyl-Substituted Homoallyl Alcohols to Aryl Halides 63

Chapter 3
Synthesis of Arylallenenes by Palladium-Catalyzed Retro-Propargylation of Homopropargyl Alcohols 91

Chapter 4
Synthesis of Epoxides by Palladium-Catalyzed Reaction of Tertiary Allyl Alcohols with Aryl and Alkenyl Halides 117

Chapter 5
Synthesis of Aziridines by Palladium-Catalyzed Reaction of Allylamines with Aryl and Alkenyl Halides: Evidence of a syn-Carboamination Pathway 141

Publication List 175

Acknowledgment 179
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>acac</td>
<td>acetylacetonate</td>
</tr>
<tr>
<td>aq.</td>
<td>aqueous</td>
</tr>
<tr>
<td>Ar</td>
<td>aryl</td>
</tr>
<tr>
<td>BINAP</td>
<td>2,2’-bis(diphenylphosphino)-1,1’-binaphthyl</td>
</tr>
<tr>
<td>brs</td>
<td>broad singlet (spectral)</td>
</tr>
<tr>
<td>Bu</td>
<td>butyl</td>
</tr>
<tr>
<td>c</td>
<td>cyclo</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>calcld</td>
<td>calculated</td>
</tr>
<tr>
<td>cat.</td>
<td>catalytic</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter(s)</td>
</tr>
<tr>
<td>Co.</td>
<td>company</td>
</tr>
<tr>
<td>COD (cod)</td>
<td>1,5-cyclooctadiene</td>
</tr>
<tr>
<td>conc.</td>
<td>concentrated</td>
</tr>
<tr>
<td>δ</td>
<td>chemical shift in parts per million downfield from tetramethylsilane</td>
</tr>
<tr>
<td>d</td>
<td>doublet (spectral)</td>
</tr>
<tr>
<td>dba</td>
<td>dibenzylideneacetone</td>
</tr>
<tr>
<td>DIBAL-H</td>
<td>diisobutylaluminum hydride</td>
</tr>
<tr>
<td>DMA</td>
<td>N,N-dimethylacetamide</td>
</tr>
<tr>
<td>DME</td>
<td>dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DPPE (dpppe)</td>
<td>1,2-bis(diphenylphosphino)ethane</td>
</tr>
<tr>
<td>DPPP (dppp)</td>
<td>1,3-bis(diphenylphosphino)propane</td>
</tr>
<tr>
<td>DPPB (dppb)</td>
<td>1,4-bis(diphenylphosphino)butane</td>
</tr>
<tr>
<td>DPPF</td>
<td>1,1’-bis(diphenylphosphino)ferrocene</td>
</tr>
<tr>
<td>de</td>
<td>diastereomeric excess</td>
</tr>
<tr>
<td>Ed(s)</td>
<td>editor(s)</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>eq</td>
<td>equation</td>
</tr>
<tr>
<td>equiv</td>
<td>equivalent(s)</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>Hex</td>
<td>hexyl</td>
</tr>
<tr>
<td>HMPA</td>
<td>hexamethylphosphoramid</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz (s^−1)</td>
</tr>
<tr>
<td>i</td>
<td>iso</td>
</tr>
<tr>
<td>i.e.</td>
<td>that is</td>
</tr>
<tr>
<td>IR</td>
<td>infrared (spectrum)</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant (in NMR)</td>
</tr>
<tr>
<td>m</td>
<td>multiplet (spectral), meter(s), milli</td>
</tr>
<tr>
<td>M</td>
<td>molar (1 M = 1 mol dm^−3)</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>Mes</td>
<td>mesityl</td>
</tr>
<tr>
<td>mg</td>
<td>milligram(s)</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter(s)</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter(s)</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole</td>
</tr>
<tr>
<td>n</td>
<td>normal</td>
</tr>
<tr>
<td>nd</td>
<td>not determined</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>Np</td>
<td>naphthyl</td>
</tr>
<tr>
<td>Oct</td>
<td>octyl</td>
</tr>
<tr>
<td>p.</td>
<td>page(s)</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million (in NMR)</td>
</tr>
<tr>
<td>Pr</td>
<td>propyl</td>
</tr>
<tr>
<td>q</td>
<td>quartet (spectral)</td>
</tr>
<tr>
<td>quant.</td>
<td>quantitative</td>
</tr>
<tr>
<td>quint</td>
<td>quintet (spectral)</td>
</tr>
<tr>
<td>ref(s)</td>
<td>reference(s)</td>
</tr>
<tr>
<td>RI</td>
<td>index of refraction</td>
</tr>
<tr>
<td>Rf</td>
<td>retention factor (in TLC)</td>
</tr>
<tr>
<td>R^L</td>
<td>larger group</td>
</tr>
<tr>
<td>R^S</td>
<td>smaller group</td>
</tr>
<tr>
<td>s (sec)</td>
<td>secondary</td>
</tr>
<tr>
<td>s</td>
<td>singlet (spectral)</td>
</tr>
<tr>
<td>sept</td>
<td>septet (spectral)</td>
</tr>
<tr>
<td>t</td>
<td>triplet (spectral)</td>
</tr>
<tr>
<td>t (tert)</td>
<td>tertiary</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin-layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>Tol</td>
<td>tolyl</td>
</tr>
<tr>
<td>Torr</td>
<td>1 mmHg, 1/760 atm, 133.322 Pa</td>
</tr>
<tr>
<td>Ts</td>
<td>p-toluenesulfonyl</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>vide infra</td>
<td>see below</td>
</tr>
</tbody>
</table>
General Introduction

1. Palladium-Catalyzed Cross-Coupling Reaction

1.1 Carbon-Carbon Bond Forming Cross-Coupling Reaction of Organic Halides or Pseudohalides with Organometallic Reagents

Cross-coupling reaction of organic halides with organometallic reagents is one of the most straightforward and reliable synthetic strategies for carbon-carbon bond formation (Scheme 1). In 1972, Kumada and Tamao\(^1\) and Corriu\(^2\) independently reported the first discovery of the cross-coupling reaction of aryl or alkenyl halides with Grignard reagents in the presence of a catalytic amount of a nickel-phosphine complex. Since the palladium-catalyzed cross-coupling reaction of alkenyl halides with Grignard reagents was presented by Murahashi,\(^3\) a variety of organometallic reagents such as organolithium,\(^4\) -aluminum,\(^5\) -zinc,\(^6\) -zirconium,\(^7\) -tin,\(^8\) -copper,\(^9\) -boron,\(^10\) and -silicon\(^11\) proved to participate in the cross-coupling reaction.

\[
\text{Scheme 1.} \quad \text{Pd or Ni catalyst} \quad \text{organometallic reagent} \quad \text{organic halide} \quad R\text{--}X + R'\text{--}M \rightarrow R\text{--}R'
\]

Unlike magnesium and zinc reagents which undergo transmetalation without any difficulty, organoborons and organosilicons lack enough nucleophilicity for transfer of organic groups from boron and silicon to palladium center. In 1979, Suzuki and Miyaura revealed the fact that an additional base coordinates to boron to activate the organoboron reagent and allows efficient transmetalation between organoboron and palladium.\(^10\) Subsequently, the method for the utilization of organosilicons in the cross-coupling methodology was developed by Hiyama and Hatanaka.\(^11\) Thus, the cross-coupling reaction made progress at an accelerated rate during the three decades since 1972 and brought significant innovation in the field of carbon-carbon bond formation. Among them, the cross-coupling reaction using organoborons, so called Suzuki-Miyaura cross-coupling reaction, has emerged as the most practical synthetic method.\(^12\)
particularly for the preparation of biaryls found not only in natural or biologically active compounds but also in industrial materials. The advantages of the use of organoborons in the cross-coupling reaction are their inertness toward water and oxygen, thermal stability, and functional group compatibility. It is also noteworthy that the organoborons and their byproducts generated after the reaction have low toxicity. The recent progress of the cross-coupling reactions is described below mainly with a focus on Suzuki-Miyaura cross-coupling reaction.

Recognizing the limitation of substrates for the conventional cross-coupling reaction, many researchers began to turn their attention to the development of a new ligand, which coordinates to palladium center and enhances catalytic activity toward generally unreactive substrates.

The first example of palladium-catalyzed Suzuki-Miyaura reaction of aryl chlorides was reported by Fu in 1998 (Scheme 2). The sterically demanding and strongly \(\sigma \)-donating nature of the ligand was found to be effective for the reaction of unreactive aryl chlorides under mild conditions. Subsequently, several groups developed a series of ligands bearing similar characteristics and enabled the use of aryl tosylate and heteroaryl halides. The latest studies demonstrated by Hartwig provided satisfactory explanation for the efficiency of bulky and strongly \(\sigma \)-donating ligands in oxidative addition step of aryl halides to zelovalent palladium.

Scheme 2.

\[
\begin{align*}
\text{Me-} \quad \text{Cl} + (\text{HO})_2 \text{B-} \quad \text{Me} \\
\text{1.5 mol\% Pd}_2(\text{dba})_3 \\
\text{3.6 mol\% Phosphine} \\
\text{2 equiv Cs}_2\text{CO}_3 \\
\text{dioxane, 80 °C, 5 h} \\
\rightarrow \\
\text{Me-} \quad \text{Me} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Phosphine</th>
<th>1.5%</th>
<th>3.6%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPh(_3)</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>P((\alpha)-tol)_3</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>binap</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>dppf</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>P((\alpha)-Hex)_3</td>
<td>75%</td>
<td>75%</td>
</tr>
<tr>
<td>P((t)-Bu)_3</td>
<td>86%</td>
<td>86%</td>
</tr>
</tbody>
</table>

As mentioned above, the successful results were obtained in palladium-catalyzed \(sp^2\text{C}--sp^2\text{C} \) cross-coupling reactions as represented by the synthesis of biaryls. On the other hand,
cross-coupling of unactivated alkyl halides/sulfonates containing β-hydrogens were presented by the pioneering work of Suzuki in 1992 and Knochel in 1995, which focused on the reaction with organoboron reagents under palladium catalysis17,18 and organozincs under nickel catalysis,19 respectively. There was a significant progress for the cross-coupling reaction of primary alkyl halides with various organometallic reagents,20 while the reaction of secondary alkyl halides often resulted in failure because of the faster β-hydride elimination of the corresponding alkylpalladium intermediate prior to transmetalation with organometallic reagents. In 2003, Fu discovered the breakthrough for such problematic cross-coupling reaction of secondary alkyl halides with alkylzinc reagents,21 and then he succeeded in the reaction with arylboronic acid by using a Ni(cod)$_2$/bathophenanthroline catalyst (Scheme 3).22 Unfortunately, the use of palladium precursors such as Pd$_2$(dba)$_3$ and Pd(OAc)$_2$ instead of Ni(cod)$_2$ was entirely ineffective for the formation of the desired coupling product. It is apparent that nickel catalysis is much superior to palladium one in the cross-coupling reaction of alkyl electrophiles with organometallic reagents, especially in the reaction of secondary alkyl halides. Different from palladium catalysis, the reaction catalyzed by a nickel complex would proceed through a radical pathway, which begins with a single electron transfer from electron-rich metal complex to alkyl halides.23

\textbf{Scheme 3.}

\begin{center}
\begin{tikzpicture}
\node[shape=rectangle,draw,fill=white,minimum width=1.5cm,minimum height=1.5cm] (A) at (0,0) {\textbf{Ph--B(OH)$_2$}};
\node[shape=rectangle,draw,fill=white,minimum width=1.5cm,minimum height=1.5cm] (B) at (1.5,0) {4 mol% Ni(cod)$_2$};
\node[shape=rectangle,draw,fill=white,minimum width=1.5cm,minimum height=1.5cm] (C) at (3,0) {8 mol% bathophenanthroline};
\node[shape=rectangle,draw,fill=white,minimum width=1.5cm,minimum height=1.5cm] (D) at (4.5,0) {1.6 equiv KOt-Bu};
\node[shape=rectangle,draw,fill=white,minimum width=1.5cm,minimum height=1.5cm] (E) at (6,0) {s-BuOH, 60 °C, 5 h};
\node[shape=rectangle,draw,fill=white,minimum width=1.5cm,minimum height=1.5cm] (F) at (7.5,0) {91%};
\node[shape=rectangle,draw,fill=white,minimum width=1.5cm,minimum height=1.5cm] (G) at (9,0) {Ph};
\node[shape=rectangle,draw,fill=white,minimum width=1.5cm,minimum height=1.5cm] (H) at (10.5,0) {Ph--Br};
\node[shape=rectangle,draw,fill=white,minimum width=1.5cm,minimum height=1.5cm] (I) at (12,0) {91%; bathophenanthroline};
\end{tikzpicture}
\end{center}

Meanwhile, its complementary process, that is, the cross-coupling reaction of aryl halides with secondary alkyl metals was accomplished with the aid of well-defined palladium catalysts. There are two problems to solve for the success of this type of transformation (Scheme 4). The first problematic step is the slow transmetalation due to their bulkiness of secondary alkyl groups.
The second one is the reductive elimination which inevitably competes β-hydride elimination to yield dehalogenated arenes. Another possibility is the initial β-hydride elimination followed by re-insertion of palladium hydride intermediate to alkenes in anti-Markovnikov fashion, finally affording undesirable primary linear product.

Some special substrates were known to readily couple with secondary Grignard reagents in the presence of NiCl₂(dppp)²⁴ᵃ or PdCl₂(dppf)²⁴ᵇ. Although there were some reports for the reactions using secondary alkyl-substituted organometallic reagents, most of them suffered from low yield, undesirable β-hydride elimination, and production of the regioisomer.²⁵ Recent progress was made by Molander in the field of Suzuki-Miyaura coupling reaction of secondary organoboron reagents.²⁶ Although the coupling with secondary alkylborons was strongly desired because of their broad range of functional group compatibility, it was regarded as one of the most challenging coupling patterns due to its lower reactivity for transmetalation. Molander conducted the reaction of aryl chlorides with secondary alkyltrifluoroborates under various conditions and clearly demonstrated the efficiency of the sterically demanding phosphine ligand having at least two t-butyl groups on phosphorus, albeit in moderate isomeric purity in some cases (Scheme 5). In the Negishi cross-coupling reaction, Buchwald developed the most practical ligand, CPhos, and succeeded in cross-coupling of a wide range of aryl halides and secondary alkylzinc reagents without erosion of regiochemical information of the starting
materials (Scheme 6).27

\textbf{Scheme 5.}

\[
\begin{align*}
\begin{array}{c}
\text{Me} \\ \\
\text{Me} \\
\text{Me}
\end{array}
\end{align*} + \begin{align*}
\begin{array}{c}
\text{BF}_3K
\end{array}
\end{align*}
\xrightarrow{5 \text{ mol\% Pd(OAc)}_2, 7.5 \text{ mol\% P(t-Bu)}_2\text{Ph}, 3 \text{ equiv Cs}_2\text{CO}_3,
\text{toluene/H}_2\text{O (10:1)}}
\begin{align*}
\begin{array}{c}
\text{Me} \\ \\
\text{Me} \\
\text{Me}
\end{array}
\end{align*} + \begin{align*}
\begin{array}{c}
\text{Me}
\end{array}
\end{align*}
\]

100 °C

\[
\begin{align*}
R &= 4-\text{MeO} \quad 79\% \text{ branched/linear} = 8.2:1 \\
2-\text{MeO} \quad 57\% \text{ branched/linear} = 1.4:1
\end{align*}
\]

\textbf{Scheme 6.}

\[
\begin{align*}
\begin{array}{c}
\text{Me} \\ \\
\text{Me}
\end{array}
\end{align*} + \begin{align*}
\begin{array}{c}
\text{ZnBr}
\end{array}
\end{align*}
\xrightarrow{1 \text{ mol\% Pd(OAc)}_2, 2 \text{ mol\% CPhos}}
\begin{align*}
\begin{array}{c}
\text{Me} \\ \\
\text{Me} \\
\text{Me}
\end{array}
\end{align*} + \begin{align*}
\begin{array}{c}
\text{Me}
\end{array}
\end{align*}
\]

\text{THF, r.t.}

\[
\begin{align*}
R &= 4-\text{MeO} \quad 92\% \text{ branched/linear} = 37:1 \\
2-\text{MeO} \quad 97\% \text{ branched/linear} = 27:1
\end{align*}
\]

Needless to say, the traditional cross-coupling reaction requires organometallic reagents as coupling partners, some of which are so reactive that they should be handled carefully, and sometimes need tedious steps for preparation. Recently, stable and easy-to-handle tertiary alcohols and carboxylic acids were found to participate as alternatives to organometallic reagents in the cross-coupling reaction. For instance, synthesis of biaryls via palladium-catalyzed reaction of tertiary benzyl alcohols with aryl halides was reported by Miura in 2001 (Scheme 7).28

The key step of the reaction is β-carbon elimination from palladium alkoxide generated from ligand exchange between the arylpalladium halide intermediate and the tertiary alcohol in the presence of cesium carbonate, producing diarylpalladium intermediate in situ. The reaction indicated that aryl-substituted tertiary alcohol served as arylmetal equivalent. Uemura29 and Chow30 reported similar transformations, using other tertiary alcohols such as cyclobutanols and propargyl alcohols, respectively.
Goossen disclosed a new synthetic strategy for the construction of biaryls by palladium/copper-co-catalyzed decarboxylative coupling of aromatic carboxylic acids with aryl halides and triflates (Scheme 8). The copper phenanthroline complex facilitated extrusion of carbon dioxide from copper carboxylate to provide arylcopper intermediate. The resulting arylcopper underwent transmetalation with arylpalladium halide to furnish biaryl palladium, en route to unsymmetrical biaryl.
1.2 Palladium-Catalyzed Cross-Coupling Reaction Forming Carbon-Nitrogen and Carbon-Oxygen Bond

Palladium-catalyzed cross-coupling amination which provides a rapid access to substituted amines has been developed in the past twenty years. The first amination reaction of aryl bromides was stimulated by Kosugi and Migita using tin amides in the presence of a catalytic amount of \([\text{P(o-tol)}_3\]_2\text{PdCl}_2\). In 1995, practical methods for the amination reaction using amines as coupling partners were independently reported by Buchwald and Hartwig. They indicated that aromatic bisphosphines such as BINAP and DPPF served as suitable ligands for the amination reaction of aryl halides (Scheme 9).

Scheme 9.

Buchwald

\[
\begin{align*}
\text{Br} & \quad 0.25 \text{ mol}\% \text{Pd}_2(\text{dba})_3 \\
& \quad 0.75 \text{ mol}\% \text{ rac-BINAP} \\
& \quad \text{NaO}t-\text{Bu} \\
& \quad \text{toluene, 80 °C, 2 h} \\
\text{Br} & \quad \text{N-n-Hex} \\
& \quad 88\%
\end{align*}
\]

Hartwig

\[
\begin{align*}
\text{I} & \quad 5 \text{ mol}\% \text{PdCl}_2(\text{dpff}) \\
& \quad 5 \text{ mol}\% \text{ DPPF} \\
& \quad \text{NaO}t-\text{Bu} \\
& \quad \text{THF, 100 °C, 3 h} \\
\text{I} & \quad \text{NPh} \\
& \quad 92\%
\end{align*}
\]

Nowadays, it is known that a wide range of nitrogen nucleophiles such as primary amines, secondary amines, imines, hydrazones, amides, and sulfonamides coupled with aryl halides efficiently. The use of bulky and electron-rich phosphine ligands allowed unreactive aryl chlorides to participate in the cross-coupling amination reaction. In addition, preparation of palladium(0) precatalyst ligated by only one phosphine ligand which is believed to be active species has been studied during recent years. Buchwald demonstrated that a new class of easily activated and air-stable palladium precatalysts bearing one biarylphosphine ligand catalyzed the amination reaction of aryl chloride with low catalyst loading in very short reaction times (Scheme 10). He also described a simple and practical method for the preparation of remarkably active...
palladium(0) complex by mixing Pd(OAc)$_2$, phosphine ligand, and water.39b

Scheme 10.

It is no wonder that ammonia is the most simple and abundant nitrogen source and the least expensive bulk chemical. However, successful examples of its use in the transition-metal-catalyzed reactions are rare due to its high coordination ability to metal center derived from the strong basicity and small size to cause deactivation of the catalyst. During the course of the development of reliable and robust catalysts for palladium-catalyzed amination reaction described above, Hartwig disclosed that ammonia underwent coupling smoothly with aryl halides to afford the corresponding anilines by the use of PdCl$_2$/CyPF-t-Bu catalytic system (Scheme 11).40a Tight coordination ability of the ligand would contribute to stabilization of the catalyst, suppressing the undesirable deactivation pathway even under high pressure of ammonia. Moreover, he devised a palladium precursor to generate highly active catalyst more easily and broadened the scope of aryl halides.40b Later, Buchwald41 and Beller42 independently reported the same reaction by the use of bulky monophosphine ligand.
Together with the studies on the carbon-nitrogen bond forming cross-coupling reaction of aryl halides, researches for carbon-oxygen bond formation to synthesize aryl ethers have been subsequently carried out. Unfortunately, etherification reaction is inferior to amination in scope and generality. The initial report for the etherification reaction was an intramolecular version to form oxygen heterocycles (Scheme 12).43 Subsequently, the intermolecular etherification reaction using tertiary alcohols and phenols was accomplished.44 However, the reaction of primary or secondary alcohols with unactivated aryl halides was troublesome due to the competitive β-hydride elimination from the palladium alkoxide intermediate. It is essential to use the tunable ligand for each substrate in the present catalytic system.45 The cross-coupling etherification reaction was also applied to the reaction with hydroxide base, which provided a new method for the synthesis of phenols.46

Scheme 12.

2. Palladium-Catalyzed Reactions Involving Oxy- or Aminopalladation

Among various modes of the reaction catalyzed by palladium complexes, oxypalladation of carbon-carbon unsaturated bond is one of the most useful and powerful methods for formation of carbon-oxygen bond. In particular, Wacker oxidation is a fundamental and important transformation involving the oxypalladation process, where terminal alkene is converted into
methyl ketones by addition of water (Scheme 13).

Scheme 13.

\[
\begin{align*}
\text{oxypalladation} & \quad \text{and insertion} \\
\text{Pd} & \quad \text{HX} \\
& \quad \text{H} \\
\text{H} & \quad \text{O} \\
\text{H} & \quad \text{PdX} \\
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{PdX} \\
\text{H} & \quad \text{O} \\
\text{H} & \quad \text{PdX} \\
\text{O} & \quad \text{CH}_3
\end{align*}
\]

The initial stoichiometric reaction using palladium(II) salt was first reported by Phillips in 1894, and Smidt then rendered the process catalytic in palladium by using copper(II) chloride under oxygen atmosphere. It is noteworthy that a catalytic amount of copper is sufficient to operate the palladium-catalyzed process, since the resulting copper(I) chloride is oxidized by oxygen under air. The whole catalytic cycle is described in Scheme 14. Nowadays, the Wacker oxidation has been used extensively in not only laboratory but also industrial scale synthesis.

Scheme 14.

\[
\begin{align*}
\text{[PdCl}_4]^{2-} + \text{C}_2\text{H}_4 + \text{H}_2\text{O} & \quad \text{CH}_3\text{CHO} + \text{Pd}(0) + 2\text{HCl} + 2\text{Cl}^- \\
\text{Pd}(0) + 2\text{CuCl}_2 + 2\text{Cl}^- & \quad \text{[PdCl}_4]^{2-} + 2\text{CuCl} \\
2\text{CuCl} + \frac{1}{2}\text{O}_2 + 2\text{HCl} & \quad 2\text{CuCl}_2 + \text{H}_2\text{O}
\end{align*}
\]

Very recently, Sigman demonstrated that a novel carbene-ligated palladium complex catalyzed facile oxypalladation to afford a variety of methyl ketones under copper-free conditions using oxygen as the sole oxidant. Moreover, he devised reaction conditions where hydrogen peroxide served as an oxidant with cationic palladium/quinox complex and succeeded in the synthesis of methyl ketones from conventionally challenging substrates.

It is well known that oxypalladation also occurs by using other oxygen nucleophiles such as
alcohols and carboxylic acids to yield ethers and esters, respectively. Especially, reactions promoted by intramolecular oxypalladation provide convenient ways to construct oxygen-containing heterocycles. In 1973, Hosokawa reported stoichiometric intramolecular oxypalladation reaction, in which sodium 2-allylphenoxide was transformed to 2-methylbenzofuran, and subsequently disclosed its catalytic version (Scheme 15). Thus, the reaction including intramolecular oxypalladation and subsequent β-hydride elimination is widely applicable to substrates bearing hydroxy, carboxy, and aminohydroxy groups. The use of asymmetric ligand such as bisoxazoline ligand, boxax (also see Scheme 18), made the reaction asymmetric.

Scheme 15.

![Scheme 15](image)

As one can easily expect, further functionalization of alkenes is also possible by trapping alkylpalladium intermediate generated from oxypalladation of alkene, leading to prepare complex heterocycles from relatively simple starting materials. In 1992, Luo developed a novel reaction of cis-2-propargylcyclopentanol with aryl iodides, where both C–O and C–C bond were formed in a single operation (Scheme 16). Unlike the reactions conducted under oxidative conditions as shown in Scheme 14 and 15, the present transformation was accomplished under basic conditions in the absence of an oxidant. Based on the stereochemistry of the product, Luo assumed the reaction mechanism as follows: i) the oxidative addition of aryl iodide to zerovalent palladium to generate arylpalladium iodide, ii) coordination of the alkyne moiety of alkoxide to arylpalladium intermediate, iii) the intramolecular attack of alkoxide to alkyne activated by palladium(II), that is, *anti*-oxypalladation to give β-alkoxyalkyl(aryl)palladium, iv) reductive elimination from the palladium intermediate. Since then, there have been many reports for arylative cyclization reaction of alkenes having various pendant oxygen nucleophiles.
other hand, the arylative cyclization reaction of alkenol was regarded to be difficult because it would suffer from a competitive Mizoroki-Heck reaction.57 However, Wolfe overcame such a problem and succeeded in the arylative cyclization reaction of bishomoallyl alcohols with aryl halides to form multisubstituted tetrahydrofurans (Scheme 17).58

Scheme 16.

Scheme 17.

Along with the development of many transformations using oxypalladation, the stereochemistry of oxypalladation has been well investigated for a long time. In early studies by Bäckvall, Stille, and Kurosawa, the oxypalladation step was considered to proceed via an \textit{anti} fashion, that is, alkene would coordinate to electrophilic palladium followed by the attack of oxygen atom to alkene from the backside of the alkene.59 Thus, the stereochemistry of oxypalladation was generally believed to be \textit{anti}. On the other hand, in 1990s, Henry and others reported that the stereochemistry of oxypalladation would be affected by the concentration of the chloride ion.60 Although Henry et al. devised several reaction systems including oxypalladation reaction, the stereochemistry of these reactions was still ambiguous.
In 2004, Hayashi eventually confirmed the stereochemistry in the Wacker-type cyclization by conducting experiments with deuterium-labeled allylphenols.61 The complete consumption of starting material was observed in the reaction, and all of the products were likely produced through oxypalladation/β-hydride elimination, or further reinsertion-elimination sequence of palladium hydride species, which gave olefin isomerization products. Hayashi elucidated that the oxypalladation proceeded through a syn fashion in the absence of chloride ion, while the stereochemistry became mainly anti in the presence of chloride ion (Scheme 18 and 19).

Scheme 18.

\[
\begin{align*}
\text{cis-A} & \quad 5 \text{ mol\% Pd(MeCN)}_4(\text{BF}_4)_2 \\
& + 10 \text{ mol\% (S,S)-ip-boxax} \\
& + 4 \text{ equiv benzoquinone} \\
& \text{MeOH, 40 °C, 4 h} \\
\end{align*}
\]

\[
\begin{align*}
\text{B} & + \text{C} + \text{D} + \text{E} \\
\text{78\%, B/C/D/E} & = 16/46/29/9 \\
\text{derived from syn-oxypalladation}
\end{align*}
\]

Scheme 19.

\[
\begin{align*}
\text{cis-A} & \quad 10 \text{ mol\% PdCl}_2(\text{MeCN})_2 \\
& + 2 \text{ equiv Na}_2\text{CO}_3 \\
& + 2 \text{ equiv LiCl} \\
& + 1 \text{ equiv benzoquinone} \\
& \text{THF, reflux, 24 h} \\
\end{align*}
\]

\[
\begin{align*}
\text{B} + \text{C} + \text{D} + \text{F} \\
\text{59\%, B/C/D/F} & = 6/5/7/82 \\
\text{derived from syn} & \quad \text{derived from anti}
\end{align*}
\]
Around the same time, Stoltz reported that the cyclization reaction of primary alkenol under oxidative conditions proceeded via a syn fashion, except for the substrate bearing a carboxy group, which would undergo oxypalladation via an anti fashion albeit in low yield. In the case of the arylative cyclization reaction of δ-alkenol reported by Wolfe, a syn-oxypalladation pathway was strongly supported by the stereochemical analysis of the product prepared from the reaction with an internal cyclic alkenol (Scheme 20).

Most recently, Hartwig gave deep mechanistic insights of the insertion step by using a rhodium alkoxide complex bearing a tethered olefin moiety. He observed that the prepared rhodium alkoxide complex was converted to a tetrahydrofuran derivative and a rhodium hydride complex by addition of excess of ligands (Scheme 21). This is the first observation of olefin-ligated late transition metal alkoxo complex and the olefin insertion into metal-alkoxide bond. The result of the deuterium-labeling experiment is strongly suggestive of syn-insertion pathway, which is similar to that of Wolfe’s palladium-catalyzed cyclization reaction of δ-alkenol.
Similar development has been made in aminopalladation chemistry, especially for intramolecular versions. In the reaction involving aminopalladation and dehydropalladation steps, nitrogen nucleophiles such as anilines,65 amides,66 sulfonamides,67 and carbamates68 are mainly used. However, aliphatic amines are not suitable substrates for the aminopalladation reaction, since their high coordination ability to palladium center is prone to deactivate the palladium catalyst. On the other hand, aminopalladation/cross-coupling reaction of aryl halides with alkynylamines69 or alkenylamines70 was well investigated mainly by Cacchi or Wolfe, respectively.

The stereochemistry of aminopalladation was also probed. Stahl found that alkenes bearing a sulfonamide moiety readily cyclized through a syn fashion in the presence of various palladium catalysts under oxygen atmosphere (Scheme 22).71 Although an anti adduct was observed
simultaneously when Pd(IMes)(O$_2$CCF$_3$)$_2$ was used as a catalyst, the addition of a base such as Na$_2$CO$_3$ completely suppressed the formation of the anti adduct. He also noted that anti-aminopalladation was favorable when the substrate has an acidic proton on nitrogen. Thus, the stereochemistry of aminopalladation reaction would be strongly affected by starting materials and reaction conditions.

Scheme 22.

<table>
<thead>
<tr>
<th>X</th>
<th>Pd catalysts</th>
<th>product ratio cis : trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_2$</td>
<td>Pd(OAc)$_2$/DMSO (cat. A)</td>
<td>100 : 0</td>
</tr>
<tr>
<td>CH$_2$</td>
<td>Pd(IMes)(O$_2$CCF$_3$)$_2$/PhCOOH (cat. B)</td>
<td>51 : 49</td>
</tr>
<tr>
<td>CH$_2$</td>
<td>Pd(IMes)(O$_2$CCF$_3$)$_2$/Na$_2$CO$_3$ (cat. C)</td>
<td>100 : 0</td>
</tr>
<tr>
<td>C=O</td>
<td>cat. A</td>
<td>0 : 100</td>
</tr>
<tr>
<td>C=O</td>
<td>cat. B</td>
<td>54 : 46</td>
</tr>
<tr>
<td>C=O</td>
<td>cat. C</td>
<td>67 : 33</td>
</tr>
</tbody>
</table>

In the case of intramolecular aminopalladation/arylation reaction of alkynes and alkenes described above, the stereochemistry of aminopalladation of alkynes was exclusively anti,69 whereas that of alkenes was found to be syn,70,72

As mentioned above, the alkylpalladium(II) intermediate generated from oxypalladation or aminopalladation is prone to undergo β-hydride elimination under oxidative conditions. Recently, further transformations of the alkylpalladium(II) intermediate were accomplished by oxidizing a palladium(II) intermediate to palladium(IV) species, from which reductive elimination or substitution reaction took place much faster than β-hydride elimination to yield
alkene difunctionalization product. Sorensen reported palladium-catalyzed ring forming aminoacetoxylation reaction of alkenes in the presence of PhI(OAc)$_2$ as a oxidant (Scheme 23). He mentioned that the use of Cu(OAc)$_2$, a standard oxidant for Pd(0)/Pd(II) redox cycle, instead of PhI(OAc)$_2$ was ineffective for the transformation.

Scheme 23.

3. Overview of This Thesis

The author focused on the potential ability of palladium complexes in organic synthesis. She found some new reactions of sterically demanding unsaturated alcohols with aryl and alkenyl halides under palladium catalysis. In Chapters 1 and 2, palladium-catalyzed regio- and stereospecific allylation of aryl halides with bulky homoallyl alcohols via retro-allylation is described. In Chapter 3, synthesis of arylallenes by palladium-catalyzed reactions of aryl halides with tertiary homopropargyl alcohols via retro-propargylation which is analogous to retro-allylation is presented. In Chapters 4 and 5, unexpected cyclization reaction to form three-membered heterocycles by palladium-catalyzed reactions of tertiary allyl alcohols or amines with aryl or alkenyl halides is disclosed. The overview of this thesis is described below.

3.1. Palladium-Catalyzed Regio- and Stereospecific Allylation Reactions via Retro-Allylation (Chapters 1, 2, and 3)

Palladium- or nickel-catalyzed cross-coupling reactions of organic halides with organometallic reagents are among the most important discoveries in the late twentieth century and have been significantly advancing the strength and sophistication of organic synthesis as described in Section 1.1. Nowadays, the cross-coupling strategy seems to be able to construct any
carbon-carbon bonds as one likes. However, despite their seeming simplicity and apparent usefulness, the cross-coupling reactions of aryl halides with allylmetals are rarely reported and difficult to achieve.75–79 The combination often suffers from low reaction efficiency and unsatisfactory chemo-, regio-, and stereoselectivities. The importance of allylation reaction in organic synthesis clearly demands further studies on rare cross-coupling reactions to establish the universality of cross-coupling reactions.

To this end, the most important issue is the regio- and stereochemical control of the allylation when substituted allylmetals such as crotylmetals are employed.76b,76e–i,77,78e–g,79 As exemplified in Scheme 24, a bond-forming event in the cross-coupling reaction with a crotylmetal reagent can take place competitively at the \(\alpha \)- and \(\gamma \)-positions of the crotyl group. Furthermore, the \(\alpha \)-product is usually comprised of \(E \) and \(Z \) isomers. Hence, high degrees of regio- and stereochemical control must be established to utilize such reactions in modern organic synthesis.

Scheme 24.

Hatanaka and Hiyama developed regioselective cross-coupling reactions of aryl halides with substituted allylfluorosilanes.77 They used monodentate triphenylphosphine and bidentate 1,3-bis(diphenylphosphino)propane for the synthesis of \(\gamma \)-77a and \(\alpha \)-products,77c respectively. However, the reactions required heating in sealed tubes and the use of difficult-to-handle allylfluorosilanes and failed to universally control the stereoselectivity of the \(\alpha \)-products. Tributylcrotylstannane reacted with 1-iodonaphthalene regioselectively to yield the corresponding \((E)\)-\(\alpha \)- and \(\gamma \)-products by using triphenylarsine and triphenylphosphine,
respectively. Unfortunately, the generality and efficiency of the tin-based reaction are unsatisfactory, and one cannot obtain \((Z)\)-\(\alpha\)-product. Very recently, perfectly \(\gamma\)-selective cross-coupling reactions with potassium \((E)\)-crotyltrifluoroborate, including enantioselective ones, were reported, wherein no \(\alpha\)-selectivity was attained.

The exclusive \(\gamma\)-selectivity observed in the reactions of crotyltrifluoroborate was explained as follows (Scheme 25). The transmetalation between the crotylboron and arylpalladium halide proceeds in an \(S_{E2}'\) mode. Aryl(1-methyl-2-propenyl)palladium, a \(\sigma\)-allylpalladium formed by the transmetalation, then undergoes rapid reductive elimination of 1-methyl-2-propenylarene prior to \(\sigma\)-\(\pi\) interconversion. However, the ideal path is not general. Preparation of allylmetals having an arbitrary substitution pattern is usually difficult. Moreover, there remains a moderate possibility that an \(S_{E2}\) transmetalation may operate. Slow reductive elimination from \(\sigma\)-allyl(aryl)palladium intermediates gives rise to \(\sigma\)-\(\pi\) interconversion with the loss of the initial regio- and stereochemical information of \(\sigma\)-allylmetals. Thus, the innovative and reliable method for the cross-coupling reactions of aryl halides with allylmetals is strongly desired.

In 2005, the author found gallium-mediated stereospecific allyl transfer from bulky homoallyl alcohols to aldehydes. By the action of gallium trichloride, homoallyl alcohols \textit{threo- and
erythro-2, bearing bulky mesityl and small methyl groups at the oxygenated carbon, transferred the allyl moiety stereospecifically to benzaldehyde to afford threo- and erythro-3, respectively (Scheme 26). The stereospecificity of the reaction would be explained as follows: First, retro-allylation would proceed via configurationally regulated six-membered cyclic transition state, which is the exactly reverse reaction of the allylation reaction of ketones with crotylmetals such as crotylboron and crotyltitanium. The resulting crotylgallium reagents should immediately react with benzaldehyde to furnish the corresponding secondary alcohols with perfect diastereoselectivity. These results clearly suggest that the stereoselective generation of crotylgallium reagents, which is very difficult via the conventional routes such as transmetalation and Barvier/Grignard methods, would be possible by taking advantage of the retro-allylation strategy.

Scheme 26.

On the other hand, several precedent reports for palladium-catalyzed cross-coupling reaction where tertiary alcohols served as organometallic reagents encouraged the author to develop a new method for palladium-catalyzed allylation of aryl halides by using homoallyl alcohols as allylmetal equivalents.28–30
3.1.1. Palladium-Catalyzed Regio- and Stereospecific Allylation Reaction of Aryl Halides with Homoallyl Alcohols via Retro-Allylation (Chapter 1)

In Chapter 1, the author describes the palladium-catalyzed cross-coupling allylation reactions of aryl halides with tertiary homoallyl alcohols based on the concept of ‘selective preparation of \(\sigma\)-allylmetals via retro-allylation’. The working hypothesis is depicted in Scheme 27: After oxidative addition of aryl halide to zelova lent palladium (step A), ligand exchange between arylpalladium halide and homoallyl alcohol in the presence of a base would occur to generate arylpalladium alkoxide (step B). A retro-allylation then takes place via a six-membered cyclic transition state to afford \(\sigma\)-allylpalladium intermediate along with extrusion of a ketone (step C). Given that subsequent reductive elimination (step D) is much faster than isomerization to \(\pi\)-allylpalladium, the regio- and stereochemical information of the starting homoallyl alcohol would be completely transferred to the allylated product.

Scheme 27.
Treatment of homoallyl alcohol bearing a methyl group at the allylic position with 1-bromonaphthalene in the presence of cesium carbonate under palladium catalysis in boiled toluene provided the linear product regioselectively. On the other hand, the reaction of homoallyl alcohol having a methyl group at the olefin terminus gave the branched product exclusively (Scheme 28).

The stereospecific allylation reaction was then conducted. Starting from threo- or erythro-4, 1-crotylnaphthalene was obtained, the stereochemistry of which was E and Z, respectively (Scheme 29). The experimental results were consistent with her hypothesis.
3.1.2. **Synthesis of (Arylalkenyl)silanes by Palladium-Catalyzed Regiospecific and Stereoselective Allyl Transfer from Silyl-Substituted Homoallyl Alcohols to Aryl Halides (Chapter 2)**

The studies for palladium-catalyzed allylation reaction via retro-allylation in Chapter 1 shed light on the usefulness of homoallyl alcohols as allylmetal equivalents. It is noteworthy that the homoallyl alcohols are stable to air and moisture, and able to be handled without special care. Therefore, the synthesis of more complex homoallyl alcohols seems to be relatively easy, leading to prepare highly functionalized allylmetal equivalents which is difficult to achieve by other methods.

In Chapter 2, the author presents synthesis of aryl(alkenyl)silanes by palladium-catalyzed retro-allylation reactions of silyl-substituted homoallyl alcohols with aryl halides. The reaction proceeded in regio- and stereospecific manner as expected, and various aryl halides enabled to take part in the allylation reaction (Scheme 30).

Scheme 30.

\[
\begin{align*}
\text{HO} & \quad \text{Sit-BuMe}_2 \\
\text{Si} & \quad \text{BuMe}_2 \\
+ & \quad \text{Np-Br} \\
\text{cat. Pd(OAc)}_2/\text{P(c-Hex)}_3 & \quad \text{K}_2\text{CO}_3 \\
\text{toluene, reflux, 3 h} & \quad \text{Np} = 1\text{-Naphthyl} \\
\rightarrow & \quad \text{93% } E/Z = 95:5
\end{align*}
\]

\[
\begin{align*}
\text{HO} & \quad \text{R} \\
\text{Sit-BuMe}_2 & \quad \text{Np-Br} \\
\text{cat. Pd(OAc)}_2/\text{PAr}_3 & \quad \text{Cs}_2\text{CO}_3 \\
\text{toluene, reflux, 4 h} & \quad \text{R} = \text{H}, \text{88%} \\
\quad & \quad \text{R} = \text{Me}, \text{92% } E/Z = 100:0
\end{align*}
\]

The stereochemistry of the product indicated that the reaction would proceed via the most stable six-membered cyclic chair-like transition state in which the allylic substituent of the palladium alkoxide is located at the equatorial position. Encouraged by the result, the author performed asymmetric transfer reaction by using an enantiomerically-pure homoallyl alcohol.
bearing a stereogenic center at the allylic position, and succeeded in transfer of the chirality to the product, α-arylcrotylsilane, without loss of enantiomeric excess (Scheme 31).

Scheme 31.

3.1.3. Synthesis of Arylallenes by Palladium-Catalyzed Retro-Propargylation of Homopropargyl Alcohols (Chapter 3)

As a wide range of homoallyl alcohols bearing substituents at the allyl moiety became applicable to the regio- and stereoselective allylation reaction with aryl halides, the author expected the retro-allylation chemistry would be extended to retro-propargylation. Homopropargyl alcohols instead of homoallyl alcohols should be subjected to palladium-catalyzed cross-coupling reaction as allenylmetal equivalents via retro-propargylation.

In Chapter 3, the author reports synthesis of arylallenes by palladium-catalyzed reaction of homopropargyl alcohols with aryl halides. After a series of reaction optimization, gem-di-, tri- and tetrasubstituted arylallenes were successfully obtained regioselectively in moderate to good yield from relatively simple homopropargyl alcohols (Scheme 32).
3.2. Synthesis of Three-Membered Rings by Palladium-Catalyzed Reactions of Aryl or Alkenyl Halides with Allylic Alcohols or Amines (Chapters 4 and 5)

Palladium-catalyzed intramolecular carboetherification or carboamination reaction of alkenes with organic halides emerged as an attractive method to construct heterocycles, forming both carbon-heteroatom and carbon-carbon bonds in a single operation as described in Section 2. A number of five-membered heterocycles have been synthesized by the methodology. Meanwhile, the preparation of strained three-membered heterocycles has remained a challenge. The author overcame such limitation and opened the door to construct three-membered heterocycles such as epoxides and aziridines.

3.2.1. Synthesis of Epoxides by Palladium-Catalyzed Reaction of Tertiary Allyl Alcohols with Aryl and Alkenyl Halides (Chapter 4)

Epoxides are among the most synthetically useful intermediates and are found in many natural products and biologically active compounds. Numerous methods for the preparation of epoxides have been reported so far. However, novel synthetic methods for the construction of epoxides have been still required because of their synthetic importance in organic chemistry.

During the course of her investigation on palladium-catalyzed reactions of unsaturated alcohols with aryl halides, the author serendipitously found that carboetherification/arylation reaction is applicable for the reaction of tertiary allyl alcohols with aryl halides, which provides a new
synthetic strategy for preparation of epoxides (Scheme 33). In the epoxidation reaction, the choice of ligand is quite important. Only the use of biarylphosphine ligands such as RuPhos or Xantphos was effective for the epoxidation reaction. Otherwise, a competitive Mizoroki-Heck reaction predominated or exclusively proceeded under the reaction conditions.

Scheme 33.

The reaction of tertiary allyl alcohols having a stereogenic center at the oxygenated carbon was also examined. Interestingly, both yield and diastereoselectivity became better as substituents at the stereogenic carbon became larger (Scheme 34).

Scheme 34.

3.2.2. Synthesis of Aziridines by Palladium-Catalyzed Reaction of Allylamines with Aryl and Alkenyl Halides: Evidence of a syn-Carboamination Pathway (Chapter 5)

Taking into consideration the fact that allyl alcohols undergo carboetherification reaction, the author expected that allylamines would also be able to undergo arylative cyclization reaction to
afford the corresponding aziridine. In Chapter 5, the author describes the synthesis of aziridines by palladium-catalyzed reaction of N-arylallylamines with aryl and alkenyl halides (Scheme 35). It should be noted that the yields of the aziridination reaction were superior to those of epoxidation reaction due to the absence of a competitive Mizoroki-Heck reaction.

Scheme 35.

Moreover, the author disclosed the evidence that the reaction would proceed through a syn-aminopalladation pathway by a deuterium-labeling experiment (Scheme 36).
References and Notes

General Introduction

General Introduction

General Introduction

General Introduction

Chapter 1

Palladium-Catalyzed Regio- and Stereospecific Allylation Reaction of Aryl Halides with Homoallyl Alcohols via Retro-Allylation

Treatment of tertiary homoallyl alcohol with aryl halide under palladium catalysis resulted in the transfer of the allyl moiety of the homoallyl alcohol to aryl halide and yielded the corresponding allylarene regio- and stereospecifically. The transfer process includes retro-allylation, which proceeds via a conformationally regulated six-membered transition state. The retro-allylation can be regarded as a method for the regio- and stereospecific preparation of σ-allylpalladium.
Introduction

Allylation reactions are not only fundamental but also useful transformations in organic synthesis. Among them, transition metal-catalyzed cross-coupling allylation of aryl halides with allylmetal reagents ranks as one of the most attractive allylation reactions.\(^1\) In the case of palladium catalysis, allylmetal reagents such as allylstannane and allylboron reagents serve as the allyl sources and effect transmetalation to yield allyl(aryl)palladium intermediates. The intermediate occupies the last place in the catalytic cycle of the cross-coupling allylation reaction, thereby being most responsible for the control of the regio- and stereoselectivity of the allylation reaction when a substituted allyl group is to be introduced. However, such regio- and stereoselective allylations are very difficult processes.\(^2,3\)

In Chapter 1, the author reports a new protocol for allylation reaction of aryl halides with homoallyl alcohols as the allyl sources (Scheme 1). The working hypothesis is depicted in Scheme 2. After oxidative addition of aryl halide 2 to zerovalent palladium to generate arylpalladium halide A, ligand exchange between A and homoallyl alcohol 1 in the presence of a base occurs to afford alkoxy(aryl)palladium B. Then, retro-allylation\(^4-8\) of intermediate B, the key step of her strategy, takes place to provide \(\sigma\)-allyl(aryl)palladium C. Finally, reductive elimination from C gives the allylated product 3. Given that the retro-allylation would proceed in a concerted fashion via a conformationally regulated six-membered cyclic transition state and that the reductive elimination from C is faster than isomerization of C to \(\pi\)-allyl(aryl)palladium, the stereo- and regiochemical information of homoallyl alcohol 1 can be transferred to the allylated product 3.\(^9\)

Scheme 1.
Results and Discussion

Treatment of 1-bromonaphthalene (2a) with homoallyl alcohol 1a in the presence of cesium carbonate under palladium catalysis in refluxing toluene provided 1-methallylnaphthalene (3a) in good yield (Table 1, entry 1). Sterically demanding 2d as well as electron deficient 2e–2h underwent the methallylation reaction. The reaction of electron-rich p-bromoanisole (2i) resulted in a lower yield of coupling product 3g. However, the use of p-iodoanisole (2j) provided a better yield of 59%. 1-Chloronaphthalene (2b) remained untouched under the reaction conditions (entry 2). In the reactions of aryl triflates, no significant differences in rate and yield were observed (entries 1 and 3). Although the present catalytic system provides a new access for the methallylarenes, the scope of the reaction was somewhat limited.
Table 1. Pd(OAc)_2/P(p-tol)_3-Catalyzed Methallylation of Aryl Halides 2 with Homoallyl Alcohol 1a via Retro-Allylation^a

<table>
<thead>
<tr>
<th>entry</th>
<th>Ar−X</th>
<th>2</th>
<th>3, yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2a: X=Br</td>
<td>3a, 86</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2b: X=Cl</td>
<td>3a, 6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2c: X=OTf</td>
<td>3a, 87</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2d</td>
<td>3b, 90</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2e</td>
<td>3c, 64</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2f</td>
<td>3d, 83b</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2g</td>
<td>3e, 71c</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2h</td>
<td>3f, 57</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2i: X=Br</td>
<td>3g, 29</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2j: X=I</td>
<td>3g, 59</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2k: X=OTf</td>
<td>3g, 61</td>
</tr>
</tbody>
</table>

A mixture of Pd(OAc)_2 (0.025 mmol), P(p-tol)_3 (0.10 mmol), Cs_2CO_3 (0.72 mmol), 1 (0.60 mmol), and 2 (0.50 mmol) was boiled in toluene (3.0 mL) for 8 h. ^b A catalyst prepared from Pd(OAc)_2 (0.013 mmol) and P(p-tol)_3 (0.050 mmol) was used. ^c A catalyst prepared from Pd(OAc)_2 (0.013 mmol) and PPh_3 (0.050 mmol) was used.
After additional screening of ligands, the author found that the combination of Pd(OAc)$_2$ and P(c-Hex)$_3$ was the best catalyst. The reaction of 1a with 1-chloronaphthalene (2b) was dramatically accelerated by using 5 mol% Pd(OAc)$_2$ and 10 mol% P(c-Hex)$_3$ (Table 2, entry 1). The use of P(c-Hex)$_3$ also promoted the methallylation of 4-bromobiphenyl and 2-bromonaphthalene, wherein the use of P(p-tol)$_3$ failed to attain satisfactory yields (entries 2 and 3). The bulkier P(c-Hex)$_3$ would increase steric hindrance around the palladium center of the alkoxy(aryl)palladium B, preventing the vacant coordination site that is responsible for the indispensable interaction with the double bond of 1a from being occupied through the coordination of an additional P(c-Hex)$_3$, and/or the dimerization of the palladium complex.10

2-Bromopyridine (2n) was converted to 2-methallylpyridine (3j) in moderate yield, the remainder being 2n untouched (entry 4). Electron-deficient aryl chloride 2o smoothly underwent the methallylation reaction (entry 5). Although the reaction of electron-rich p-bromoanisole (2i) with P(p-tol)$_3$ resulted in a lower yield of coupling product 3g, P(c-Hex)$_3$ was the better ligand (entry 6). The reactions of electron-rich, much less reactive p-chloroanisole (2p) and p-bromo-N,N-dimethylaniline (2q) proceeded smoothly with the aid of P(c-Hex)$_3$ (entries 7 and 8). Tri(tert-butyl)phosphine was also a highly effective ligand (entry 9). In this case, a catalyst prepared from equimolar amounts of Pd(OAc)$_2$ and P(t-Bu)$_3$ was essential to attain high catalytic activity; otherwise the yields were poor (entry 10). Thus electron-rich trialkylphosphines have significantly expanded the scope of organic halides. Attempted methallylations of alkenyl halides resulted in poor to fair yields. The highest yield was observed when α-bromostyrene (2r) reacted with the aid of (R)-MONOPHOS ligand (entry 11). Tricyclohexylphosphine did not work well in the reaction of 2r (entry 12).
Table 2. Pd(OAc)$_2$/P(c-Hex)$_3$-Catalyzed Methallylation of Aryl Halides 2 with Homoallyl Alcohol 1a via Retro-Allylationa

<table>
<thead>
<tr>
<th>entry</th>
<th>Ar–X</th>
<th>2</th>
<th>3, yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2b</td>
<td>3a, 79c(6)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2l</td>
<td>3h, 83 (34)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2m</td>
<td>3i, 86 (<30)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2n</td>
<td>3j, 56</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2o</td>
<td>3d, 79</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2i : X=Br</td>
<td>3g, 67 (29)</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2p : X=Cl</td>
<td>3g, 70</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2q</td>
<td>3k, 80</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2q</td>
<td>3k, 57d</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2q</td>
<td>3k, 12e</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2r</td>
<td>3l, 45f,g</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2r</td>
<td>3l, 5</td>
</tr>
</tbody>
</table>

a A mixture of Pd(OAc)$_2$ (0.025 mmol), P(c-Hex)$_3$ (0.050 mmol), Cs$_2$CO$_3$ (0.72 mmol), 1a (0.60 mmol), and 2 (0.50 mmol) was boiled in toluene (3.0 mL). b isolated yields. Yields in the reaction under Pd(OAc)$_2$/P(p-tol)$_3$ catalysis are in parentheses. c As a byproduct, 2-methallylnaphthalene was obtained in 8% yield. d P(t-Bu)$_3$ (0.025 mmol) was used. e P(t-Bu)$_3$ (0.050 mmol) was used. f 74% of 2q was recovered. g (R)-MONOPHOS, a monodentate phosphoramidite ligand, [(R)-(binaphthoxy)]PNMe$_2$ (0.050 mmol) was used. h Alcohol 1a (1.0 mmol) and Cs$_2$CO$_3$ (1.2 mmol) were used.
Homoallyl alcohol 1b effected allylation of 2a to yield 1-allylnaphthalene (3m) in excellent yield (Scheme 3). The reaction of 1b implies the generality of the allyl transfer reaction in Pd(OAc)$_2$/PR$_3$ system. Both P(p-tol)$_3$ and P(c-Hex)$_3$ served as suitable ligands for the allylation reaction, so all of the allyl transfer reactions described below were conducted with comparing the efficiency of these two ligands.

Scheme 3.

To justify her idea depicted in Scheme 2, she subsequently prepared a variety of homoallyl alcohols having unsymmetrically substituted allyl moieties that are to be transferred. As Table 3 clearly shows, the reactions with the homoallyl alcohols indeed proceeded with high regiospecificity. In the reaction of 1c (entries 1 and 2), the carbon-carbon bond formation took place at the terminal olefinic carbon of 1c to provide trisubstituted alkene 3n exclusively. The corresponding regioisomer 3o was hardly detected. Notably the 3n/3o selectivity obtained by using P(c-Hex)$_3$ was much better than that obtained by using P(p-tol)$_3$. By changing P(p-tol)$_3$ to P(c-Hex)$_3$, increasing the steric bulk around the palladium would accelerate the rate of the reductive elimination, thereby avoiding undesirable isomerization of the initially formed σ-allylpalladium. The formation of linear coupling product 3p predominated over that of branched 3q in the reaction of 1d (entries 3 and 4). In contrast, the use of 1e led to the opposite regioselectivity (entries 5 and 6). The regiospecificity is highly suggestive of the retro-allylation of B followed by rapid reductive elimination (Scheme 2). In addition, the yield of 3q diminished when P(c-Hex)$_3$ was used as a ligand. In contrast to the reaction with homoallyl alcohols bearing no substituents at olefin terminus, the reaction with 1e having a methyl group at
the *cis* position was significantly affected by the steric hindrance at palladium complexes. The bulkier palladium complex ligated by P(c-Hex)$_3$ would have difficulty in approaching an internal alkene to undergo retro-allylation.

It is worth noting that alcohol 1f, the stereoisomer of 1e, resisted the transformation under either palladium catalysis (entries 7 and 8). The methyl substituent located at the *trans* position to the hydroxylated moiety would retard the reaction. The author is tempted to assume that, on the transition state of the retro-allylation reaction, the methyl group and one of the ligands on the palladium of square planar geometry would create so strong repulsion that the palladium could not approach the carbon–carbon double bond (Scheme 4).

Thus, the substituents on the carbon-carbon double bonds proved to influence the efficiency of the allyl transfer reaction. In contrast, the substituents at the allylic positions had little effect on the efficiency. These facts strongly suggest that the reactions proceed via a retro-allylation process. From a mechanistic point of view, her carbon-carbon bond cleavage is completely different from the palladium-catalyzed β-carbon elimination.\(^9\)

Scheme 4.

\[n-\text{Bu} \quad n-\text{Bu} \quad \text{HO} \quad \text{Me} \quad 1\text{e} \quad \rightarrow \quad \left[\begin{array}{c} n-\text{Bu} \\ n-\text{Bu} \\ \text{O} \\ \text{Me} \\ \text{L} \\ \text{Pd} \\ \text{L} \\
\end{array} \right] \tag{\hat{\ddagger}} \]

\[L = \text{Np or } \text{PR}_3 \]

\[n-\text{Bu} \quad n-\text{Bu} \quad \text{HO} \quad \text{Me} \quad 1\text{f} \quad \rightarrow \quad \left[\begin{array}{c} n-\text{Bu} \\ n-\text{Bu} \\ \text{O} \\ \text{Me} \\ \text{L} \\ \text{Pd} \\ \text{L} \\
\end{array} \right] \tag{\hat{\ddagger}} \]
Although the reactions of 1d selectively yielded the linear coupling product 3p, 3p comprised a mixture of (E) and (Z) isomers (Table 3, entries 3 and 4). The author thus designed diastereomerically pure 1g, having tert-butyl and methyl groups at the oxygenated carbon (Table 4). To her delight, 1g realized stereospecific synthesis of (E)- and (Z)-3p. Treatment of 2a with threeo-1g11 under the palladium catalysis afforded (E)-3p stereoselectively (entries 1 and 2).
On the other hand, formation of (Z)-3p predominated over that of (E)-3p in the reaction of erythro-1g (entries 3 and 4). Electron-deficient aryl halides 2f and 2o as well as electron-rich aryl halide 2p also participated in stereospecific allylations (entries 5–10). The formations of (Z)-3 from erythro-1g were always exclusive when P(c-Hex), was used. The allyl transfer reaction was applied to stereospecific synthesis of vinyl ether 3v starting from diastereomerically pure 1h (Table 4, entries 11–14). Highly stereoselective synthesis of silyl enolate (E)-3x also highlights the utility of the retro-allylation strategy (entries 15 and 16).

Table 4. Stereospecific Allylation of 2 with Diastereomerically Pure Homoallyl Alcohols 1g–1l

<table>
<thead>
<tr>
<th>entry</th>
<th>1</th>
<th>2</th>
<th>PR<sub>3</sub></th>
<th>(E)- and (Z)-3</th>
<th>branched 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2a</td>
<td>P(p-tol)<sub>3</sub></td>
<td>3p, 73%, <i>E/Z</i> = 98:2</td>
<td>3q, 4%</td>
</tr>
<tr>
<td>2</td>
<td>t-Bu<sub>Me</sub></td>
<td>t-Bu<sub>Me</sub></td>
<td>2a</td>
<td>P(c-Hex)<sub>3</sub></td>
<td>3p, 95%, <i>E/Z</i> = 97:3</td>
</tr>
<tr>
<td>3</td>
<td>t-Bu<sub>Me</sub></td>
<td>t-Bu<sub>Me</sub></td>
<td>2a</td>
<td>P(p-tol)<sub>3</sub></td>
<td>3p, 78%, <i>E/Z</i> = 4:96</td>
</tr>
<tr>
<td>4</td>
<td>t-Bu<sub>Me</sub></td>
<td>t-Bu<sub>Me</sub></td>
<td>2a</td>
<td>P(c-Hex)<sub>3</sub></td>
<td>3p, 70%, <i>E/Z</i> = 0:100</td>
</tr>
<tr>
<td>5</td>
<td>2f</td>
<td>P(p-tol)<sub>3</sub></td>
<td>3r, 84%, <i>E/Z</i> = 97:3</td>
<td>3s, 2%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2f</td>
<td>P(p-tol)<sub>3</sub></td>
<td>3r, 74%, <i>E/Z</i> = 8:92</td>
<td>3s, 2%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2o</td>
<td>P(c-Hex)<sub>3</sub></td>
<td>3r, 78%, <i>E/Z</i> = 95:5</td>
<td>3s, 4%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2o</td>
<td>P(c-Hex)<sub>3</sub></td>
<td>3r, 73%, <i>E/Z</i> = 0:100</td>
<td>3s, 6%<sup>b</sup></td>
<td></td>
</tr>
</tbody>
</table>
The author rationalizes the mechanism of the stereospecific allyl transfer reaction as follows (Scheme 5). Upon the retro-allylation reaction of *threo*-1g, a chairlike transition state 4a that locates the tert-butyl group at the equatorial position would be most stable among possible transition states including another chairlike transition state 4b and twist-boatlike transition states, on the basis of the conventional conformational analysis. Formation of aryl[(E)-crotyl]palladium (E)-5 is thus favored. The intermediate probably undergoes reductive elimination so rapidly that its isomerization into π-allylpalladium and any other isomers is negligible. A similar explanation is applicable to the reaction of *erythro*-1g, where a chairlike transition state having the tert-butyl group at the equatorial position and the two methyl groups at...
the axial positions would be preferred.

Conclusion

The author has devised a new method for the preparation of \(\sigma \)-allylpalladium, which is difficult to generate in a stereo- and regioselective manner, by taking advantage of retro-allylation as a bond-cleavage strategy. Coupled with immediate use of the \(\sigma \)-allylpalladium, the retro-allylation realizes stereo- and regiospecific allylations of aryl halides.
Experimental Section

Instrumentation and Chemicals

1H NMR (300 MHz) and 13C NMR (75.3 MHz) spectra were taken on Varian Mercury 300 spectrometers and were recorded in CDCl$_3$. Chemical shifts (δ) are in parts per million relative to tetramethylsilane at 0.00 ppm for 1H and relative to residual CHCl$_3$ at 77.23 ppm for 13C unless otherwise noted. 19F NMR spectra were obtained in CDCl$_3$ with fluorotrichloromethane as an external standard. IR spectra were determined on a SHIMADZU FTIR-8200PC spectrometer. Mass spectra (EI unless otherwise noted) were determined on a JEOL Mstation 700 spectrometer. TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F$_{254}$. Silica gel (Wakogel 200 mesh) and silica gel 60N (KANTO Co. Ltd. 40–100 mesh) were used for column chromatography. Gel permeation chromatography (GPC) was performed by LC-908 (Japan Analytical Industry Ltd., two in-line JAIGEL-2H, toluene, 3.80 mL/min, RI detector). Elemental analyses were carried out at the Elemental Analysis Center of Kyoto University.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Toluene was purchased from Wako Pure Chemical Co. and stored over slices of sodium. Tri(p-tolyl)phosphine, triphenylphosphine, tri(tert-butyl)phosphine, and cesium carbonate were purchased from Wako Pure Chemical Co. Tricyclohexylphosphine was purchased from Strem. Tricyclohexyphosphine and tri(tert-butyl)phosphine were dissolved in degassed toluene and hexane, respectively and stored strictly under argon. Palladium acetate was obtained from TCI. All reactions were carried out under argon atmosphere. The preparation of homoallyl alcohols 1a–1i were described below.

Preparation of 1a–1d

Preparation of 1a is representative. Under argon atmosphere, a solution of methallylmagnesium chloride (1.00 M THF solution, 28.0 mL, 28.0 mmol) and THF (20 mL) were placed in a 100-mL reaction flask. At 0 $^\circ$C, 2,4-dimethyl-3-pentanone (3.28 mL, 23.0 mmol) was added dropwise via a syringe to the solution. The mixture was stirred for 1.5 h at room temperature. The mixture was poured into 1 M hydrochloric acid (30 mL). Extractive workup followed by silica gel column purification (hexane/ethyl acetate = 10:1) provided 1a (3.66 g, 21.5 mmol, 93%).

Preparation of 1e and 1f

Sodium hydride (60% suspension in oil, 1.20 g, 30 mmol) was placed in a 100-mL reaction flask equipped with a Dimroth condenser under argon. The hydride was washed with hexane (10 mL x 3) and THF (10 mL x 1). THF (50 mL) and methyltriphénylphosphonium iodide (11
g, 27 mmol) were added at 0 °C. After the resulting mixture was stirred for 1 h at ambient temperature, 5-nonanone (4.34 mL, 25.0 mmol) was added. The whole mixture was heated at 50 °C for 2 h. Triphenylphosphine oxide was removed to yield 2-butyl-1-hexene. The crude oil was dissolved in 30 mL of dichloromethane in a 100-mL round-bottomed flask.

\textit{m}-Chloroperbenzoic acid (77% purity, 5.6 g, 25 mmol) was added portionwise at 0 °C. After being stirred for 1 h at room temperature, the mixture was quenched with saturated sodium thiosulfate (5 mL). Sodium hydroxide solution (1 M, 30 mL) was then added. Organic components were extracted with hexane/ethyl acetate = 10:1 three times. The organic layer was washed with sodium hydroxide solution (1 M, 30 mL). Concentration followed by purification on silica gel (hexane/ethyl acetate = 10:1) yielded 1,2-epoxy-2-butylhexane (2.70 g, 17.3 mmol, 69%) as a colorless oil.

A 200-mL three-necked reaction flask equipped with a dropping funnel and a Dimroth condenser was allowed to cool to –78 °C under argon. Gaseous propyne was charged into the reaction flask to obtain ca. 2 mL (40 mmol) of liquid propyne. THF (50 mL) and then butyllithium (1.62 M hexane solution, 21.4 mL, 34.6 mmol) were added dropwise through the dropping funnel at –78 °C. After completion of the addition, hexamethylphosphoramide (15 mL) and 1,2-epoxy-2-butylhexane (2.70 g, 17.3 mmol in 10 mL of THF) were added via syringes. The resulting solution was stirred at –78 °C for 15 min and was allowed to warm gradually to room temperature by removing the bath. The mixture was heated at 50 °C for 60 h. The reaction was quenched with saturated ammonium chloride solution (40 mL). Extraction, concentration, and purification furnished 5-butyl-2-nonyl-5-ol (2.86 g, 14.6 mmol, 84%) as a colorless oil.

The reduction of the alkynol to yield 1e was performed according to the literature.12 Under an atmosphere of argon, diethyl ether (8 mL), 5-butyl-2-nonyl-5-ol (1.62 g, 8.26 mmol), and isopropylmagnesium bromide (0.98 M ethereal solution, 8.5 mL, 8.3 mmol) were sequentially added at 0 °C. After being stirred for 10 min at 0 °C, the mixture was cooled to –78 °C. Titanium tetraisopropoxide (3.05 mL, 10.3 mmol) and isopropylmagnesium bromide (21.1 mL, 20.7 mmol) were added to obtain a black solution. The mixture was allowed to warm to –50 °C and stirred for 3 h at the same temperature. The mixture was carefully poured into ice-cold 1 M hydrochloric acid (40 mL). The resulting mixture was stirred for 30 min at ambient temperature. Extractive workup and silica gel column purification afforded 1.36 g of 1e (6.85 mmol, 83%) as a colorless oil.

Preparation of 1f also started from 5-butyl-2-nonyl-5-ol. Lithium aluminum hydride (0.911 g, 24 mmol) was placed in a 100-mL reaction flask. THF (32 mL) and the alcohol (1.18 g, 6.0 mmol, dissolved in 13 mL of THF) were added through a dropping funnel. After completion of the addition, the whole mixture was stirred for 24 h at reflux. After being cooled to room temperature, the mixture was poured into ice-cold hydrochloric acid (1 M). The products were
extracted with hexane/ethyl acetate = 10:1. The organic layer was dried over magnesium sulfate and concentrated in vacuo. Purification of the crude product was performed on silica gel neutral (Kanto Chemical, spherical, neutral, 60N) with hexane/ethyl acetate = 10:1 as an eluent. (E)-5-Butyl-2-nonene-5-ol (1f) was obtained in 89% yield (1.05 g, 5.32 mmol, a colorless oil).

Preparation of threo- and erythro-1g

Crotylmagnesium chloride (0.95 M THF solution, 25.3 mL, 24 mmol) was added to a solution of pinacolone (2.47 mL, 20.0 mmol) in ether (30 mL) at 0 °C under an atmosphere of argon. The mixture was stirred at room temperature for 1.5 h. The reaction mixture was poured into 1 M hydrochloric acid (30 mL), and products were extracted with ether. Silica gel column purification (hexane/ethyl acetate = 20:1) provided threo-1g ($R_f = 0.45$, 1.89 g, 12.1 mmol, 60%) and erythro-1g ($R_f = 0.36$, 0.24 g, 1.5 mmol, 8%). The relative stereochemistry was determined according to the literature.\(^{13}\)

Preparation of threo- and erythro-1h

Ether (60 mL) and allyl phenyl ether (1.37 mL, 10.0 mmol) were placed in a 100-mL reaction flask under argon. At –78 °C, sec-butyllithium (1.01 M cyclohexane solution, 9.90 mL, 10.0 mmol) was added dropwise via a syringe. After the mixture was stirred for 30 min at –78 °C, triethylaluminum (0.92 M hexane solution, 10.9 mL, 10.0 mmol) and pinacolone (1.24 mL, 10.0 mmol) were added.\(^{14}\) The resulting mixture was allowed to warm to room temperature and stirred for 8 h. The reaction was quenched with 1 M hydrochloric acid (30 mL). Extraction with hexane/ethyl acetate = 5:1 and concentration in vacuo provided a crude oil that mainly consisted of threo-1h and erythro-1h. Purification on silica gel (gradient starting from hexane/ethyl acetate = 40:1) afforded threo-1h ($R_f = 0.38$ (hexane/ethyl acetate = 10:1), 0.542 g, 2.31 mmol, 23%) and erythro-1h ($R_f = 0.25$ (hexane/ethyl acetate = 10:1), 0.689 g, 2.94 mmol, 29%). The relative stereochemistry was determined by further derivatization shown below.

Preparation of 1i

A 100-mL reaction flask was filled with argon, and THF (15 mL), allyl alcohol (1.22 mL, 18.0 mmol), and butyllithium (1.60 M hexane solution, 10.3 mL, 16.5 mmol) were added at –78 °C. The resulting mixture was stirred for 30 min. Chlorotriisopropylsilane (3.21 mL, 15.0 mmol) was added at –78 °C. The mixture was stirred at room temperature for 3 h. The reaction was quenched with saturated ammonium chloride. Extraction and silica gel column purification (hexane/ethyl acetate = 10:1) provided allyl triisopropylsilyl ether (2.84 g, 13.3 mmol, 88%).

Ether (39 mL) and allyl triisopropylsilyl ether (2.84 g, 13.3 mmol) were placed in a 100-mL reaction flask under argon. At –78 °C, sec-butyllithium (1.00 M cyclohexane solution, 13.3 mL,
13.3 mmol) was added dropwise via a syringe. The mixture was stirred for 30 min at –40 °C. After the mixture was cooled to −78 °C, triethylaluminum (0.92 M hexane solution, 14.4 mL, 13.3 mmol) and pinacolone (1.64 mL, 13.3 mmol) were added. The resulting mixture was stirred for 5 min at the same temperature, then allowed to warm to room temperature, and stirred for 5 h. The reaction was quenched with saturated ammonium chloride solution. A crude oil was purified on silica gel (hexane/ethyl acetate = 40:1) provided as a mixture of erythro and threo isomers in a ratio of 9:1 (2.09 g, 6.65 mmol, 50%, not optimized). Homoallyl alcohol 1i was used as the mixture. The relative stereochemistry was inversely deduced from the product 3x.

Typical Procedure for Pd(OAc)$_2$/P(p-tol)$_3$-Catalyzed Allylation of Aryl Halides with Homoallyl Alcohol

Cesium carbonate (0.23 g, 0.72 mmol) was placed in a 30-mL two-necked reaction flask equipped with a Dimroth condenser. The cesium carbonate was dried in vacuo with heating with a hair dryer for 2 min. Palladium acetate (5.6 mg, 0.025 mmol) and tri(p-tolyl)phosphine (30 mg, 0.10 mmol) were added in the reaction flask. The flask was then filled with argon by using the standard Schlenk technique. Toluene (3.0 mL), homoallyl alcohol 1a (0.10 g, 0.60 mmol), and 1-bromonaphthalene (2a, 0.10 g, 0.50 mmol) were sequentially added at ambient temperature. The resulting mixture was heated at reflux for 8 h. After the mixture was cooled to room temperature, water (20 mL) was added. The product was extracted with hexane (20 mL × 3). The combined organic layer was dried over sodium sulfate, and concentrated in vacuo. Silica gel column purification with hexane as an eluent gave 1-methallylnaphthalene (3a, 0.078 g, 0.43 mmol) in 86% yield.

Typical Procedure for Pd(OAc)$_2$/P(c-Hex)$_3$-Catalyzed Allylation of Aryl Halides with Homoallyl Alcohol

The procedure was similar to that described above except for the order of the addition of reagents. After dried cesium carbonate (0.23 g, 0.72 mmol) and palladium acetate (5.6 mg, 0.025 mmol) were placed in a reaction flask, the flask was filled with argon by using the standard Schlenk technique. Tricyclohexylphosphine (0.50 M in toluene, 0.10 mL, 0.050 mmol) and toluene (1.0 mL) were added, and the resulting mixture was stirred for 10 min at room temperature. The rest of the procedure was similar to those described above.

Stereochemical Assignment of erythro-1h

One of the two isomers of 1h (0.117 g, 0.50 mmol), which was the slower moving band of $R_f = 0.29$ (hexane/ethyl acetate = 10:1, the other isomer showed $R_f = 0.42$), was dissolved in THF (1.0
mL), and the solution was placed in a 30-mL reaction flask under argon. Borane dimethyl sulfide complex (0.095 mL, 1.0 mmol) was added at 0 °C. After the mixture was stirred at ambient temperature for 15 h, water (0.30 mL), 6 M NaOH (0.30 mL, 1.8 mmol), and 30% hydrogen peroxide (0.60 mL, 5.4 mmol) were sequentially added. A slightly exothermic reaction took place. The whole mixture was heated at reflux for 1 h. The reaction was quenched with aqueous sodium thiosulfate, and the products were extracted with ethyl acetate. After removal of solvent, silica gel column purification yielded 0.044 g of erythro-4,5,5-trimethyl-3-phenoxyhexane-1,4-diol (0.174 mmol, 35% yield, unoptimized). X-ray quality crystals were grown from heptane (Figure 1). The stereochemistry of erythro-II was tentatively assigned according to the stereochemistry of the allyl transfer.

Figure 1. ORTEP Diagram of erythro-4,5,5-trimethyl-3-phenoxyhexane-1,4-diol. Hydrogen atoms are omitted for clarity.
Characterization Data for New Compounds

(Z)-5-Butyl-2-nonen-5-ol (1e): IR (neat) 3387, 3020, 2934, 2862, 1456, 1379, 1259, 1217, 1142, 1015, 907, 696 cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (t, J = 7.0 Hz, 6H), 1.26–1.33 (m, 8H), 1.42–1.45 (m, 5H), 1.64 (ddt, J = 7.0, 1.5, 1.0 Hz, 3H), 2.21 (dm, J = 7.5 Hz, 2H), 5.46 (dtq, J = 11.0, 7.5, 1.5 Hz, 1H), 5.65 (dqt, J = 11.0, 7.0, 1.5 Hz, 1H); ¹³C NMR (CDCl₃) δ 13.33, 14.35, 23.54, 26.01, 36.80, 39.08, 74.87, 125.47, 127.46. Found: C, 78.58; H, 12.93%. Calcd for C₁₃H₂₆O: C, 78.72; H, 13.21%.

(E)-5-Butyl-2-nonen-5-ol (1f): IR (neat) 3402, 3025, 2934, 2861, 1458, 1379, 1341, 1259, 1217, 1142, 1001, 971, 906, 403 cm⁻¹; ¹H NMR (CDCl₃) δ 0.91 (t, J = 7.0 Hz, 6H), 1.24–1.33 (m, 8H), 1.39–1.43 (m, 5H), 1.69 (dm, J = 6.0 Hz, 2H), 2.12 (dm, J = 7.0 Hz, 2H), 5.44 (dtq, J = 15.0, 7.0, 1.0 Hz, 1H), 5.53 (dqt, J = 15.0, 6.0, 1.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.36, 18.42, 23.53, 25.94, 38.98, 42.80, 74.14, 126.34, 129.56. Found: C, 78.42; H, 12.99%. Calcd for C₁₃H₂₆O: C, 78.72; H, 13.21%.

erythro-4-Phenoxy-2,2,3-trimethyl-5-hexen-3-ol (erythro-1h): IR (neat) 3493, 2959, 2877, 1587, 1495, 1456, 1366, 1335, 1287, 1240, 1078, 1045, 993, 925, 751, 691, 402 cm⁻¹; ¹H NMR (CDCl₃) δ 1.02 (s, 9H), 1.09 (s, 1H), 1.30 (s, 3H), 4.78 (dt, J = 6.0, 1.0 Hz, 1H), 5.33 (dt, J = 17.5, 1.5 Hz, 1H), 5.38 (dt, J = 10.5, 1.5 Hz, 1H), 6.00 (ddd, J = 17.5, 10.5, 6.0 Hz, 1H), 6.88 (dd, J = 8.5, 1.0 Hz, 2H), 6.92 (tt, J = 7.5, 1.0 Hz, 1H), 7.25 (dd, J = 8.5, 7.5 Hz, 2H); ¹³C NMR (C₆D₆) δ 19.09, 26.80, 38.60, 76.98, 81.54, 116.07, 119.09, 121.04, 130.12, 136.06, 158.28. Found: C, 76.71; H, 9.64%. Calcd for C₁₅H₂₂O₂: C, 76.88; H, 9.46%.

threo-4-Phenoxy-2,2,3-trimethyl-5-hexen-3-ol (threo-1h): IR (neat) 3583, 2959, 2876, 1588, 1495, 1396, 1373, 1223, 1101, 1073, 992, 958, 930, 752, 691, 408 cm⁻¹; ¹H NMR (CDCl₃) δ 1.03 (s, 9H), 1.22 (s, 3H), 2.74 (s, 1H), 4.72 (d, J = 7.5 Hz, 1H), 5.27 (dm, J = 17.5 Hz, 1H), 5.29 (dm, J = 10.5 Hz, 1H), 5.89 (ddd, J = 17.5, 10.5, 7.5 Hz, 1H), 6.92 (dd, J = 8.5, 1.0 Hz, 2H), 6.96 (tt, J = 7.0, 1.0 Hz, 1H), 7.27 (dd, J = 8.5, 7.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 19.45, 26.75, 37.85, 77.73, 82.88, 116.91, 119.70, 121.60, 129.59, 134.90, 157.30. Found: C, 76.85; H, 9.59%. Calcd for C₁₅H₂₂O₂: C, 76.88; H, 9.46%.
erythro-4-Triisopropylsiloxy-2,2,3-trimethyl-5-hexen-3-ol (erythro-1i): IR (neat) 2946, 2868, 1464, 1421, 1384, 1370, 1094, 1065, 1007, 922, 883, 812, 684 cm⁻¹; ¹H NMR (CDCl₃) δ 1.01 (s, 9H), 1.05–1.13 (m, 22H), 1.18 (s, 3H), 4.26 (d, J = 9.0 Hz, 1H), 5.20 (dm, J = 17.0 Hz, 1H), 5.21 (dm, J = 10.5 Hz, 1H), 6.00 (ddd, J = 17.0, 10.5, 9.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 13.09, 18.44, 18.49, 20.34, 26.98, 37.85, 81.87, 118.04, 139.48. Found: C, 68.78; H, 12.40%. Calcd for C₁₈H₃₈O₂Si: C, 68.72; H, 12.18%.

3-(2,6-Dimethylphenyl)-2-methyl-1-propene (3b): IR (neat) 3076, 3020, 2958, 2918, 2856, 1651, 1470, 1447, 1375, 1096, 893, 768 cm⁻¹; ¹H NMR (CDCl₃) δ 2.25 (s, 6H), 3.28 (bs, 2H), 4.20–4.22 (m, 1H), 4.69–4.71 (m, 1H), 7.00–7.06 (m, 3H); ¹³C NMR (CDCl₃) δ 20.04, 23.71, 37.53, 109.97, 126.13, 128.00, 136.81, 137.24, 143.11; Found: C, 89.70; H, 9.99%. Calcd for C₁₂H₁₆: C, 89.94; H, 10.06%.

4-(2-Methyl-2-propenyl)biphenyl (3h): IR (neat) 3029, 2913, 2852, 1647, 1517, 1486, 1436, 1409, 1374, 1009, 892, 804, 760, 743, 697 cm⁻¹; ¹H NMR (CDCl₃) δ 1.72 (s, 3H), 3.37 (s, 2H), 4.78 (m, 1H), 4.84 (m, 1H), 7.26–7.28 (m, 2H), 7.32–7.35 (m, 1H), 7.42–7.45 (m, 2H), 7.52–7.54 (m, 2H), 7.58–7.60 (m, 2H); ¹³C NMR (CDCl₃) δ 22.36, 45.02, 112.39, 125.45, 126.08, 127.36, 127.70, 127.76, 127.82, 128.02, 132.35, 133.76, 137.50, 145.25. Found: C, 92.39; H, 7.88%. Calcd for C₁₆H₁₄: C, 92.26; H, 7.74%.

4-(2-Methyl-2-propenyl)-N,N-dimethylaniline (3k): IR (neat) 3072, 2852, 2800, 1649, 1615, 1520, 1444, 1346, 1227, 1163, 948, 888, 797, 567 cm⁻¹; ¹H NMR (CDCl₃) δ 1.68 (s, 3H), 2.92 (s, 6H), 3.23 (s, 2H), 4.71–4.73 (m, 1H), 4.76–4.78 (m, 1H), 6.70 (d, J = 9.0 Hz, 2H), 7.06 (d, J = 9.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 22.23, 31.13, 41.08, 43.87, 111.34, 113.06, 128.11,
129.68, 146.20, 149.41. Found: C, 82.11; H, 9.84%. Calcd for C_{12}H_{17}N: C, 82.23; H, 9.78%.

(E)-3-Naphthyl-1-phenoxypropene ((E)-3v): IR (neat) 3042, 2924, 1672 1593, 1510, 1491, 1396, 1306, 1167, 1109, 935, 793, 777, 754, 691 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 3.85 (dd, \(J = 7.0, 1.5\) Hz, 2H), 5.72 (dt, \(J = 12.0, 7.0\) Hz, 1H), 6.49 (dt, \(J = 12.0, 1.5\) Hz, 1H), 6.95 (dd, \(J = 7.0, 1.0\) Hz, 2H), 7.03 (tt, \(J = 7.0, 1.0\) Hz, 1H), 7.29 (dd, \(J = 8.5, 7.0\) Hz, 2H), 7.41–7.46 (m, 2H), 7.49–7.52 (m, 1H), 7.54–7.57 (m, 1H), 7.75–7.77 (m, 1H), 7.87–7.89 (m, 1H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 30.92, 111.92, 116.62, 122.81, 123.94, 125.82, 125.85, 126.11, 126.16, 127.28, 128.98, 129.78, 132.00, 136.54, 143.44, 157.44; Found: C, 87.38; H, 6.16%. Calcd for C\(_{19}\)H\(_{16}\)O: C, 87.66; H, 6.19%.

(Z)-3-Naphthyl-1-phenoxypropene ((Z)-3v): IR (neat) 3042, 2957, 2924, 1666, 1595, 1510, 1491, 1383, 1227, 1167, 1090, 1074, 791, 779, 754, 691 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 4.03 (dd, \(J = 7.0, 1.5\) Hz, 2H), 5.08 (dt, \(J = 7.0, 6.0\) Hz, 1H), 6.51 (dt, \(J = 6.0, 1.5\) Hz, 1H), 7.08–7.11 (m, 3H), 7.34–7.39 (m, 2H), 7.41–7.44 (m, 2H), 7.47–7.50 (m, 2H), 7.73–7.75 (m, 1H), 7.85–7.88 (m, 1H), 8.12–8.15 (m, 1H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 28.28, 114.47, 116.65, 122.95, 124.30, 125.77, 125.86, 126.05, 126.08, 127.08, 128.86, 129.88, 132.00, 134.01, 136.54, 143.44, 157.65; Found: C, 87.66; H, 6.25%. Calcd for C\(_{19}\)H\(_{16}\)O: C, 87.66; H, 6.19%.

(E)-3-(1-Naphthyl)-1-triisopropylsiloxy-1-propene ((E)-3x): IR (neat) 3042, 2944, 2892, 2866, 1664, 1643, 1253, 1169, 924, 883, 790, 776, 687 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.04–1.17 (m, 21H), 3.70 (d, \(J = 7.5\) Hz, 2H), 5.32 (dt, \(J = 12.0, 7.5\) Hz, 1H), 6.44 (dt, \(J = 12.0, 1.5\) Hz, 1H), 7.35–7.36 (m, 1H), 7.39–7.42 (m, 1H), 7.45–7.51 (m, 2H), 7.71–7.72 (m, 1H), 7.84–7.86 (m, 1H), 8.06–8.07 (m, 1H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 12.16, 17.94, 30.94, 109.30, 124.09, 125.64, 125.79, 125.81, 125.89, 126.86, 128.82, 132.10, 133.94, 137.72, 142.44; Found: C, 77.52; H, 9.48%. Calcd for C\(_{22}\)H\(_{32}\)OSi: C, 77.59; H, 9.47%.
References and Notes

Chapter 2

Synthesis of (Arylalkenyl)silanes by Palladium-Catalyzed Regiospecific and Stereoselective Allyl Transfer from Silyl-Substituted Homoallyl Alcohols to Aryl Halides

The reactions of silyl-substituted homoallyl alcohols with aryl halides under palladium catalysis result in regiospecific and stereoselective allyl transfer from the alcohols to aryl halides, offering modular synthesis of (E)-3-aryl-1-alkenyl-, (E)-1-aryl-2-alkenyl-, and optically active (E)-1-aryl-2-butenylsilanes.
Introduction

Alkenylsilanes are indispensable reagents in modern organic synthesis. For instance, alkenylsilanes serve as coupling partners of organic halides in Hiyama cross-coupling reaction, forming a new carbon-carbon bond. Allylsilanes are representative reagents for the allylation of carbonyl compounds. The transformation of a carbon-silicon bond to a carbon-oxygen bond is also possible by using Tamao-Fleming oxidation. Developing new methods for highly selective synthesis of vinyl- and allylsilanes, including optically active ones, is thus still quite important.

In Chapter 1, the author reported palladium-catalyzed allyl transfer from homoallyl alcohols to aryl halides through carbon-carbon bond cleavage. The allyl transfer proceeds in a regio- and stereospecific manner, reflecting the structure of homoallyl alcohols used. In Chapter 2, she presents regiospecific and stereoselective allyl transfer reaction for the synthesis of aryl-substituted (E)-1- or 2-alkenylsilanes from silyl-substituted homoallyl alcohols (Scheme 1).

Scheme 1.

Results and Discussion

Treatment of 1-bromonaphthalene (2a) with 1a, containing an allylic silane moiety, in the presence of K$_2$CO$_3$ under Pd(OAc)$_2$/P(c-Hex)$_3$ catalysis provided vinylsilane 3a’ in good yield with moderate E selectivity (Scheme 2). The reaction with 1b having a bulkier t-BuMe$_2$Si
group proceeded to yield 3a with excellent selectivity of $E/Z = 95:5$. The improvement of the stereoselectivity would originate from the stronger preference of the t-BuMe$_2$Si group being at the pseudoequatorial position in the transition state of the retro-allylation. It is worth noting that only one silyl group at the allylic position can be a decisive factor in determining the stereoselectivity, whereas tedious preparation of diastereomerically pure and differently 1,1,2-trisubstituted homoallyl alcohols was essential to attain high E selectivity in the previous report.3

Scheme 2.

The scope of aryl halides is wide enough to afford a variety of (E)-3-aryl-1-propenylsilanes in excellent yields (Table 1$^{14'}$). Sterically demanding (entry 1), electron-deficient (entries 2–5), and electron-rich (entry 6) aryl bromides participated in the reaction. The use of P(c-Hex)$_3$ as a ligand allowed her to use aryl chlorides as substrates (entries 7 and 8).
Table 1. Synthesis of (E)-3-aryl-1-propenylsilanes 3

<table>
<thead>
<tr>
<th>entry</th>
<th>Ar–X 2</th>
<th>3, yield(%)</th>
<th>E/Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3b, 92</td>
<td>93:7</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3c, 75</td>
<td>96:4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3d, 89</td>
<td>95:5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3e, 87</td>
<td>96:4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>3f, 97</td>
<td>95:5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>3g, 92</td>
<td>94:6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>3f-Cl, 89</td>
<td>97:3</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>3g-Cl, 92</td>
<td>95:5</td>
</tr>
</tbody>
</table>
The author then focused on homoallyl alcohol 4a, containing a (Z)-1-alkenylsilane moiety. The reactions of 4a with aryl bromides in the presence of Cs₂CO₃ under Pd(OAc)₂/PAr₃ catalysis provided 1-aryl-2-propenylsilanes in high yields (Table 2, entries 1–6). P(c-Hex)Ph₂ was exceptionally essential to attain high yield when electron-rich aryl bromide 2g was used (entry 7).

Interestingly, silylated homoallyl alcohols 4b–d having one methyl group at the allylic position were converted to (E)-1-aryl-2-butenylsilanes stereoselectively (entries 8–16). Fortunately, the allyl transfer reaction to 1-bromonaphthalene (2a) always provided the E isomers exclusively (entries 8, 10, and 15). The exclusive formation of the E isomers would result from the steric factor of the 1-naphthyl group on palladium in the transition state of the retro-allylation. The Me₃Si, t-BuMe₂Si, and Me₂PhSi groups were compatible under the reaction conditions. The bulkiness of the silyl groups had little influence on stereoselectivity (entries 9 vs 11 and 13 vs 16). On the other hand, when the larger substituent, n-Bu, was introduced at the allylic position, the E selectivity of the reaction was excellent (entries 13 vs 17). The E selective formation of 5 was explained in a fashion similar to that in Scheme 2. In addition, the steric repulsion between the substituent at the allylic position and the silyl substituent at the olefin terminus also contributed to preferable E selectivity (Scheme 3).

Scheme 3.

\[\text{Scheme 3.} \]
Chapter 2

Table 2. Synthesis of 1-aryl-2-alkenylsilanes

\[
\begin{array}{cccccc}
\text{entry} & 2 & Si & R & 4 & \text{conditions}\text{a} & 5, \text{yield (%)}^b \\
1 & 2a & t-BuMe_2Si & H & 4a & A^c & 5aa, 88 \\
2 & 2b & & & 4a & A & 5ba, 66 \\
3 & 2c & & & 4a & A & 5ca, 81 \\
4 & 2d & & & 4a & A^{c,d} & 5da, 61 \\
5 & 2e & & & 4a & A & 5ea, 68 \\
6 & 2f & & & 4a & A^d & 5fa, 88 \\
7 & 2g & & & 4a & A^e & 5ga, 74 \\
8 & 2a & t-BuMe_2Si & Me & 4b & B & 5ab, 92 (100:0) \\
9 & 2d & & & 4b & B & 5db, 83 (89:11) \\
10 & 2a & Me_3Si & Me & 4c & B & 5ac, 92 (100:0) \\
11 & 2d & & & 4c & B & 5dc, 68 (95:5) \\
12 & 2e & & & 4c & B & 5ec, 46 (96:4) \\
13 & 2f & & & 4c & B & 5fc, 91 (96:4) \\
14 & 2g & & & 4c & B^f & 5gc, 46 (100:0) \\
15 & 2a & Me_2PhSi & Me & 4d & B & 5ad, 93 (100:0) \\
16 & 2f & & & 4d & C & 5fd, 84 (94:6) \\
17 & 2f & Me_3Si & n-Bu & 4e & C^g & 5fe, 92 (100:0) \\
\end{array}
\]

\text{a} Conditions A: 5 mol\% Pd(OAc)_2, 20 mol\% P(p-tol)_3, 1.44 equiv Cs_2CO_3, reflux, 4–15 h. Conditions B: 5 mol\% Pd(OAc)_2, 20 mol\% PPh_3, 1.20 equiv Cs_2CO_3, reflux, 4–7 h. Conditions C: 2.5 mol\% Pd(OAc)_2, 10 mol\% PPh_3, 1.20 equiv Cs_2CO_3, reflux, 45 min. \text{b} E/Z Ratios of 5 are in parentheses. \text{c} PPh_3 was used instead of P(p-tol)_3. \text{d} Reaction run using 2.5 mol\% of Pd(OAc)_2 and 10 mol\% of the ligand. \text{e} P(c-Hex)Ph_2 (10 mol\%) was used. \text{f} P(t-Bu)_3 (5 mol\%) was used instead. \text{g} The reaction time was 5 h.

The reactions of optically active (S)-4d (96\% ee) with 2-substituted aryl bromides resulted in excellent chirality transfer to (E)-1-aryl-2-butylsilanes 5 (Table 35). The enantiomeric excesses of the products were indirectly determined after converting allylsilanes 5 to the corresponding 1-aryl-1-butanol 6. The conversion consisted of hydrogenation with hydrazine,
acid-mediated conversion of the phenyl group on silicon to a trifluoroacetoxy group, and Tamao-Fleming oxidation with retention of configuration of the chiral carbon.\(^7\)

Table 3.

![Chemical structures](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>2</th>
<th>5, yield (%)</th>
<th>ee of 6 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>5ad, 92</td>
<td>6ad, 96</td>
</tr>
<tr>
<td>2</td>
<td>2b</td>
<td>5bd, 97</td>
<td>6bd, 96</td>
</tr>
<tr>
<td>3</td>
<td>2h</td>
<td>5hd, 94</td>
<td>6hd, 94</td>
</tr>
<tr>
<td>4</td>
<td>2i</td>
<td>5id, 90</td>
<td>6id, 96</td>
</tr>
<tr>
<td>5</td>
<td>2j</td>
<td>5jd, 87</td>
<td>6jd, 95</td>
</tr>
</tbody>
</table>

The excellent chirality transfer is rationalized as follows (Scheme 4). Comparing 7a and 7b, two possible chairlike transition states of the retro-allylation step, 7a would be the more preferable because the methyl group at the allylic position occupies the pseudoequatorial position. The palladium center would approach the Re face of the alkene moiety, which leads to the
formation of 8a having E,R configuration. Immediate reductive elimination from 8a without loss of the chirality provides (E,S)-5.

Scheme 4.

The reaction of optically active (S)-4d (96% ee) with bromobenzene provided a mixture of (E)- and (Z)-5kd in a ratio of 93:7 (Scheme 5). Since the author could not determine the enantiomeric excess of each isomer, the mixture was converted to 1-phenylbutanol according to the procedure described in Table 3. The enantiomeric excess of 6kd was 85% ee. The ee value of 6kd strongly supports that complete chirality transfer to both (E)- and (Z)-5kd took place according to the mechanism shown in Scheme 4.
Conclusion

The author applied the allyl transfer reaction to silyl-substituted homoallyl alcohols and developed a new method for the preparation of (arylalkenyl)silanes. Starting from optically active homoallyl alcohol bearing a stereogenic center at the allylic position, the corresponding allylic silanes were obtained in excellent yields with perfect chirality transfer.
Experimental Procedure

Instrumentation and Chemicals

All experiments were conducted using the same instruments described in Chapter 1. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Toluene was purchased from Wako Pure Chemical Co. and stored over slices of sodium. Tri(p-tolyl)phosphine, triphenylphosphine, cesium carbonate, and potassium carbonate were purchased from Wako Pure Chemical Co. Palladium acetate was obtained from TCI. Tricyclohexylphosphine was obtained from Strem. Tricyclohexylphosphine was dissolved in degassed toluene to prepare 0.5 M solution and stored strictly under argon. The preparations of the homoallyl alcohols are described in the following section. All reactions were carried out under argon atmosphere.

Preparation of 1a and 1b

Under argon atmosphere, allyl(tert-butyl)dimethylsilane (1.80 g, 11.5 mmol), N,N,N',N'-tetramethylethylenediamine (1.58 mL, 10.5 mmol), and THF (30 mL) were placed in a 100-mL reaction flask. At –78 °C, tert-butyllithium (1.59 M pentane solution, 6.60 mL, 10.5 mmol) was added dropwise via a syringe to the solution. The mixture was stirred for 2 h at –30 °C. The reaction mixture was again cooled to –78 °C before titanium tetraisopropoxide (3.39 mL, 11.5 mmol) was added. After stirring for 1 h at the same temperature, acetone (0.71 mL, 9.6 mmol) was added. The resulting mixture was stirred for 3 h. The mixture was poured into 1 M hydrochloric acid (40 mL) at 0 °C and stirred for 10 min. Extractive workup followed by silica gel column purification (hexane/ethyl acetate = 20:1) provided 1b (1.14 g, 5.34 mmol, 56%). A similar procedure gave 1a, starting from allyltrimethylsilane (45%).

Preparation of 4a

A 100-mL reaction flask was filled with argon. THF (10 mL), tert-butyldimethylsilylacetylene (2.65 mL, 14.2 mmol), and butyllithium (1.60 M hexane solution, 9.37 mL, 14.9 mmol) were added at 0 °C. The resulting mixture was stirred for 30 min. Hexamethylphosphoramide (2.49 mL, 14.9 mmol) and isobutylene oxide (1.38 mL, 15.6 mmol) were added at 0 °C. The mixture was allowed to warm to room temperature and stirred for 20 h at ambient temperature. The reaction was quenched with saturated ammonium chloride solution (20 mL). Extraction, evaporation, and purification furnished 5-(tert-butyldimethylsilyl)-2-methyl-4-pentyn-2-ol (2.77 g, 13.0 mmol, 92%) as a white solid.

The reduction of the alkynol to yield 4a was performed according to the literature. Under an atmosphere of argon, diethyl ether (13 mL), 5-(tert-butyldimethylsilyl)-2-methyl-4-pentyn-2-ol (2.77 g, 13.0 mmol), and isopropylmagnesium bromide (1.00 M ethereal solution, 13.5 mL, 13.5
mmol) were sequentially added at 0 °C. After being stirred for 10 min at 0 °C, the mixture was cooled to −78 °C. Titanium tetraisopropoxide (7.69 mL, 26.0 mmol) and isopropylmagnesium bromide (52.0 mL, 52.0 mmol) were added. The resulting black solution was allowed to warm to −50 °C and stirred for 3 h at the same temperature. The mixture was carefully poured into ice-cold 1 M hydrochloric acid (100 mL). The resulting mixture was stirred for 30 min at ambient temperature. Extractive workup and silica gel column purification afforded 2.47 g of 4a (11.5 mmol, 88%) as a colorless oil.

Preparation of 4b–4e

Preparation of 4c is representative. Under argon atmosphere, n-butyllithium (1.60 M hexane solution, 22.0 mL, 36.0 mmol) was added dropwise to a solution of trimethylsilylacetylene (4.24 mL, 30.0 mmol) in THF (30 mL) at −78 °C. After stirring for 15 min at this temperature, acetaldehyde (3.35 mL, 60.0 mmol) was added. The reaction mixture was stirred at the same temperature for 2 h before quenching with saturated ammonium chloride solution (40 mL). Extraction and silica gel column purification provided 4-trimethylsilyl-3-butyn-2-ol (4.11 g, 28.9 mmol).

4-Dimethylaminopyridine (ca. 0.1 g) was placed in a 100-mL reaction flask under argon. A solution of 4-trimethylsilyl-3-butyn-2-ol (4.11 g, 28.9 mmol) in dichloromethane (30 mL), pyridine (3.51 mL, 43.4 mmol), and ethyl chloroformate (3.32 mL, 34.7 mmol) were sequentially added at 0 °C. The reaction mixture was allowed to warm to room temperature and was stirred for 1 h. The mixture was poured into saturated sodium hydrogencarbonate solution, and the product was extracted with ethyl acetate three times. The combined organic layer was dried and concentrated in vacuo. Silica gel column purification provided the carbonate (5.53 g, 25.8 mmol, 89% in 2 steps) as a colorless oil.

Diethyl ether (50 mL) and the carbonate (4.5 g, 21 mmol) were placed in a 100-mL reaction flask under argon. The flask was cooled to −50 °C, and then titanium tetraisopropoxide (6.20 mL, 19.0 mmol) and isopropylmagnesium bromide (1.00 M ether solution, 40.0 mL, 40.0 mmol) were added and the whole mixture was stirred for 1 h at this temperature. After the obtained black solution was cooled to −78 °C, acetone (1.10 mL, 15.0 mmol) was added. The reaction mixture was warmed to −20 °C and stirring for 3 h at this temperature. The mixture was carefully poured into ice-cold 1 M hydrochloric acid (100 mL). Extractive workup followed by silica gel column purification (hexane/ethyl acetate = 10:1) afforded 2,3-dimethyl-5-trimethylsilyl-4-pentyn-2-ol (1.38 g, 7.49 mmol, 50%) and the starting carbonate (5.54 mmol).

The reduction of 2,3-dimethyl-5-trimethylsilyl-4-pentyn-2-ol to yield 4c was accomplished by a similar procedure for the preparation of 4a. Note that 1.5 equivalent of titanium
tetraisopropoxide and 3.0 equivalent of isopropylmagnesium bromide were used for the reduction of 2,3-dimethyl-5-trimethylsilyl-4-pentyn-2-ol. Alcohol 4c was obtained in 82% yield as colorless oil.

Preparation of 4d is different from that of 4c in the first step. A 300-mL three-necked reaction flask equipped with a Dimroth condenser was cooled to 0 °C under argon atmosphere. Butyllithium (1.60 M hexane solution, 46.9 mL, 75.0 mmol) was added dropwise to the solution of 3-butyn-2-ol (2.35 mL, 30.0 mmol) in THF (60 mL) via a syringe at 0 °C. After stirring for 30 min at this temperature, chlorodimethylphenylsilane (12.5 mL, 75.0 mmol) was added at 0 °C. The reaction mixture was refluxed for 2 h. After cooling to 0 °C, 1.4 M sulfuric acid (33 mL, 150 mmol) was added dropwise below 45 °C and stirred for another 5 min. Extraction, evaporation, purification by silica gel column provided a mixture of 4-dimethylphenylsilyl-3-butyn-2-ol (21.7 mmol, 72%) and tetramethyldiphenyldisiloxane. The disiloxane was separated in the next step by silica gel column purification.

Preparation of (S)-4d
Preparations of 4-methoxybenzyl trichloroacetimidate and methyl (S)-3-[(4-methoxybenzyl)oxy]-2-methylpropanoate were performed according to the literature.10 Sodium hydride (60% suspension in oil, 0.56 g, 14 mmol) was placed in a 100-mL reaction flask under argon. The hydride was washed with hexane (9 mL × 3). Diethyl ether (25 mL) and 4-methoxybenzyl alcohol were slowly added at 0 °C. The reaction mixture was allowed to warm to room temperature, stirred for 30 min, and then cooled to 0 °C. Trichloroacetonitrile (5.61 mL, 56.0 mmol) was added dropwise via a syringe and the resulting mixture was allowed to warm gradually to room temperature by removing the ice bath. After stirring for 2 h, the reaction was quenched with saturated sodium hydrogen carbonate solution. The mixture was extracted with ether three times. The combined organic layer was dried over sodium sulfate and concentrated in vacuo to afford crude 4-methoxybenzyl trichloroacetimidate.

Under argon atmosphere, pyridinium p-toluenesulfonate (1.01 g, 4.0 mmol) was added to a solution of methyl (S)-3-hydroxy-2-methylproponate (4.73 mL, 40.0 mmol) and 4-methoxybenzyltrichloroacetimidate (ca. 56 mmol) in dichloromethane (80 mL) at room temperature. After stirring for 17 h, saturated sodium hydrogen carbonate solution (50 mL) was added. The product was extracted with hexane/ethyl acetate = 10:1 three times, and the organic layer was washed with water and brine. Evaporation followed by silica gel column purification (hexane/ethyl acetate = 10:1) provided methyl (S)-3-[(4-methoxybenzyl)oxy]-2-methylpropanoate (8.80 g, 36.9 mmol, 92%).

A 300-mL reaction flask was filled with argon. Methylmagnesium iodide (1.00 M ether solution, 88.6 mL, 88.6 mmol) was placed in the flask at 0 °C and a solution of methyl
(S)-3-[(4-methoxybenzyl)oxy]-2-methylpropanoate (8.80 g, 36.9 mmol) in diethyl ether (30 mL) was added dropwise through a syringe. The resulting mixture was stirred for 2 h at room temperature, before quenching with saturated ammonium chloride solution (100 mL). Extractive workup followed by silica gel column purification furnished (S)-4-[(4-methoxybenzyl)oxy]-2,3-dimethyl-2-butanol (6.35 g, 26.6 mmol, 72%) as a colorless oil.

A solution of (S)-4-[(4-methoxybenzyl)oxy]-2,3-dimethyl-2-butanol (6.35 g, 26.6 mmol) in THF (27 mL) was placed in a 100-mL flask under argon. The flask was cooled to 0 °C, and then butyllithium (1.60 M hexane solution, 16.9 mL, 27.0 mmol) was added dropwise via a syringe. After stirring for 15 min at 0 °C, chlorotriethylsilane (5.36 mL, 31.9 mmol) was added at ambient temperature. The reaction mixture was heated at 50 °C for 12 h. After the reaction mixture was cooled to room temperature, water was added. Extraction, evaporation and silica gel column purification provided silyl-protected alcohol (8.13 g, 23.1 mmol, 87%) as a colorless oil.

Pd/C (10% Pd, 1.05 g) was placed in a 100-mL reaction flask. A solution of silyl-protected alcohol (8.13 g, 23.1 mmol) in ethanol (92 mL) was added under argon atmosphere. The flask was then flushed with hydrogen. After stirring for 12 h at atmospheric pressure of H₂, starting material was detected by TLC. The hydrogen balloon was then replaced by a new one and the reaction mixture was heated at 40 °C for 2 h. The reaction mixture was filtrated and the filtrate was concentrated. Silica gel column purification afforded (S)-3-triethylsiloxy-2,3-dimethyl-1-butanol (3.67 g, 15.8 mmol, 68%) as a colorless oil.

Molecular sieves 4A (powdered, 15.8 g) was placed in a reaction flask. Under argon atmosphere, a solution of (S)-3-triethylsiloxy-2,3-dimethyl-1-butanol (3.67 g, 15.8 mmol) in dichloromethane (100 mL), N-methylmorpholine N-oxide (5.55 g, 47.3 mmol), and tetrapropylammonium perruthenate (0.39 g, 1.1 mmol) were sequentially added. After stirring for 1 h, the mixture was concentrated in vacuo, which was followed by filtration through a pad of neutral silica gel with the aid of hexane/ethyl acetate = 5:1. (S)-3-Triethylsiloxy-2,3-dimethylbutanal was obtained as an oil.

Tetrabromomethane (7.46 mmol, 22.5 mmol) was placed in a 300-mL flask under argon. Dichloromethane (80 mL) and triphenylphosphine (11.8 g, 45.0 mmol) were added at 0 °C. The reaction mixture was turned to red brown solution. After stirring for 1 h, the mixture was cooled to −78 °C, a solution of crude (S)-3-triethylsiloxy-2,3-dimethylbutanal in dichloromethane (20 mL) was added and the resulting mixture was stirred for 1 h at ambient temperature. The mixture was concentrated in vacuo. Hexane (100 mL) was added to precipitate phosphine oxide. Filtration, evaporation, purification by neutral silica gel column (hexane) provided (S)-(4,4-dibromo-1,1,2-trimethyl-3-butenyloxy)triethylsilane (3.00 g, 7.8 mmol, 49% in two steps) as a colorless oil.
THF (25 mL) and (S)-(4,4-dibromo-1,1,2,2-trimethyl-3-butenyloxy)triethylsilane (3.00 g, 7.8 mmol) were placed in a 100-mL flask under argon. The solution was cooled to −78 °C, then butyllithium (1.60 M hexane solution, 12.1 mL, 19.4 mmol) was added dropwise via a syringe. The mixture was allowed to warm to −20 °C and stirred at ambient temperature. After 1 h, the mixture was recooled to −78 °C, chlorodimethylphenylsilane (3.9 mL, 23.3 mmol) was added to the mixture and the resulting mixture was stirred for 2.5 h at −20 °C. The reaction was quenched with saturated ammonium chloride solution. Extractive workup followed by column purification on neutral silica gel afforded (S)-(4-dimethylphenylsilyl-1,2,2-trimethyl-3-butenyloxy)triethylsilane (3.72 g, 7.4 mmol, 94%) as a colorless oil.

Under argon atmosphere, diethyl ether (10 mL), (S)-(4-dimethylphenylsilyl-1,2,2-trimethyl-3-butenyloxy)triethylsilane (3.72 g, 7.4 mmol), titanium tetraisopropoxide (3.29 mL, 11.1 mmol), and isopropylmagnesium bromide (1.0 M ether solution, 22.3 mL, 22.3 mmol) were added to a 100-mL flask at −78 °C. The resulting black solution was stirred for 2 h at −50 °C, then warmed to −40 °C, and stirred for another 1 h. The reaction was quenched with ice-cold 1 M hydrochloric acid (40 mL). Extraction, evaporation, and purification by neutral silica gel column (hexane) provided (Z)-(S)-(4-dimethylphenylsilyl-1,2,2-trimethyl-3-butenyloxy)triethylsilane (2.26 g, 5.8 mmol, 78%) as a colorless oil.

(Z)-(S)-(4-Dimethylphenylsilyl-1,2,2-trimethyl-3-butenyloxy)triethylsilane (2.26 g, 5.8 mmol) was placed in a 100-mL flask. Methanol (60 mL), THF (12 mL), and p-toluenesulfonic acid monohydrate (0.06 g, 0.3 mmol) were added and the resulting mixture was stirred for 2 h at room temperature. The mixture was then concentrated in vacuo and purified on neutral silica gel column. (S)-4d was obtained (1.35 g, 5.5 mmol, 95%) as a colorless oil. Total yield was 14 % starting from methyl (S)-3-hydroxy-2-methylpropanoate.

Preparation of carbamate for determination of enantiomeric excess of (S)-4d

(S)-4d (0.075 g, 0.30 mmol) was placed in a 20-mL reaction flask under argon. Pyridine (0.30 mL) and phenylisocyanate (0.049 mL, 0.45 mmol) were added at room temperature. After the mixture was stirred for 24 h at ambient temperature, brine (15 mL) was added. Extractive workup followed by silica gel column purification (hexane/ethyl acetate = 30:1 then 10:1) afforded the carbamate (0.067 g, 0.18 mmol, 60%). The enantiomeric excess was determined to be 96% ee according to HPLC analysis. HPLC conditions : Daicel CHIRALPAK AD-H, hexane/2-propanol = 98/2, 1.0 mL/min, retention time : 6.19 min (R, minor); 6.98 min (S, major).

Typical procedure for the synthesis of (E)-3-aryl-1-propenylsilanes
Potassium carbonate (0.083 g, 0.58 mmol) was placed in a 30-mL two-necked reaction flask equipped with a Dimroth condenser. The potassium carbonate was dried in vacuo with heating with a hair dryer for 2 min. Palladium acetate (4.5 mg, 0.020 mmol) was added in the reaction flask. The flask was filled with argon by using the standard Schlenk technique. Tricyclohexylphosphine (0.5 M toluene solution, 0.080 mL, 0.04 mmol) and toluene (0.4 mL) were then added at room temperature. After the mixture was stirred for 10 min, a solution of homoallyl alcohol 1b (0.10 g, 0.48 mmol) and 1-bromonaphthalene (0.083 g, 0.40 mmol) in toluene (2.0 mL) was added at ambient temperature. The resulting mixture was heated at reflux for 3 h. After the resulting mixture was cooled to room temperature, water (20 mL) was added. The product was extracted with hexane/ethyl acetate = 5:1 three times. The combined organic layer was dried over sodium sulfate and concentrated in vacuo. Silica gel column purification provided tert-butyldimethyl[3-(1-naphthyl)-1-propenyl]silane (3a, 0.11 g, 0.37 mmol, E/Z = 95:5, 93%) as a colorless oil.

Typical procedure for the synthesis of (E)-1-aryl-2-alkenylsilanes

The volume of the solvent is very important in the reactions with 4a. Reaction conditions of each aryl bromide are showed in the next page. The reactions of 4b-4e were performed with 0.17 M.

<table>
<thead>
<tr>
<th>entry</th>
<th>2</th>
<th>Pd (mol%) / Ligand (mol%)</th>
<th>Ligand</th>
<th>conc. of 2 (mmol/mL)</th>
<th>time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>5/20</td>
<td>PPh₃</td>
<td>0.50</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2b</td>
<td>2.5/10</td>
<td>P(p-tol)₃</td>
<td>0.50</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2c</td>
<td>5/20</td>
<td>P(p-tol)₃</td>
<td>0.50</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2d</td>
<td>5/20</td>
<td>P(p-tol)₃</td>
<td>0.17</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>2e</td>
<td>2.5/10</td>
<td>PPh₃</td>
<td>0.17</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>2f</td>
<td>5/10</td>
<td>P(p-tol)₃</td>
<td>0.067</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>2g</td>
<td>5/10</td>
<td>P(c-Hex)Ph₂</td>
<td>0.50</td>
<td>4</td>
</tr>
</tbody>
</table>

Cesium carbonate (0.19 g, 0.58 mmol) was placed in a 30-mL two-necked reaction flask equipped with a Dimroth condenser. The cesium carbonate was dried by the same procedure mentioned above. Palladium acetate (4.5 mg, 0.020 mmol) and triphenylphosphine (0.021 g, 0.080 mmol) were added in the reaction flask. The flask was filled with argon by using the
standard Schlenk technique. Toluene (0.2 mL) was added at room temperature and the mixture was stirred for 10 min. Toluene (0.6 mL), homoallyl alcohol 4a (0.10 g, 0.48 mmol), and 1-bromonaphthalene (0.083 g, 0.40 mmol) were added to the yellow solution obtained at ambient temperature. The resulting mixture was then heated at reflux for 4 h. After the resulting mixture was cooled to room temperature, water (20 mL) was added. Extractive workup followed by silica gel column purification afforded tert-butyldimethyl[1-(1-naphthyl)allyl]silane (5aa, 0.099 g, 0.35 mmol, 88%) as a colorless oil. The product was contaminated with 2% of 3a.

Typical procedure for chirality transfer from optically active (S)-4d to (E)-1-aryl-2-butenyilsilanes

Dried cesium carbonate (0.20 g, 0.60 mmol) was placed in a 30-mL two-necked reaction flask equipped with a Dimroth condenser. Palladium acetate (5.6 mg, 0.025 mmol) and triphenylphosphine (0.026 g, 0.10 mmol) were added in the reaction flask. The flask was filled with argon by using the standard Schlenk technique. Toluene (1.0 mL) was added at room temperature and the mixture was stirred for 10 min to obtain a yellow solution. A solution of (S)-4d (0.12 g, 0.50 mmol) and 1-bromonaphthalene (0.10 g, 0.60 mmol) in toluene (2.0 mL) was added at ambient temperature. The resulting mixture was then heated at reflux for 8 h. After the resulting mixture was cooled to room temperature, water (20 mL) was added. Extraction, evaporation, column purification on neutral silica gel gave (E)-dimethyl[1-(1-naphthyl)-2-butyl]phenylsilane (5ad, 0.15 g, 0.46 mmol, 92%) as a colorless oil.

p-Toluenesulfonyl hydrazide (0.931 g, 5.00 mmol) was added to a 30-mL two-necked reaction flask equipped with a Dimroth condenser. Under argon atmosphere, (E)-dimethyl[1-(1-naphthyl)-2-butenyl]phenylsilane (5ad, 0.46 mmol), dioxane (5.55 mL), and triethylamine (0.697 mL, 5.00 mmol) were sequentially added to the reaction flask at room temperature. The resulting mixture was then refluxed for 10 h. After the mixture was cooled to room temperature, water was added. The mixture was extracted (hexane/ethyl acetate = 30:1) three times and dried over sodium sulfate. The combined organic layer was then concentrated in vacuo. The residue was purified by gel permeation chromatography. The hydrogenated product was obtained as a colorless oil (0.13 g, 0.39 mmol, 85%).

A 20-mL two-necked reaction flask containing the reduced product (0.13 g, 0.39 mmol) was filled with argon. Trifluoroacetic acid (1.95 mL) was added at ambient temperature. After stirring for 1 h, the solvent was removed in vacuo. Methanol (0.78 mL), potassium hydrogenfluoride (0.122 g, 1.56 mmol), tetrabutylammonium fluoride (1.0 M THF solution, 0.78 mL, 0.8 mmol), aqueous 30% hydrogen peroxide (ca. 0.47 mL, 5.8 mmol), and potassium hydrogen carbonate
(0.331 g, 3.31 mmol) were sequentially added at room temperature. The resulting mixture was then heated at 50 °C for 30 min. The reaction was quenched with saturated sodium thiosulfate solution (15 mL). Extractive workup followed by silica gel column purification (hexane/ethyl acetate = 5:1) provided 1-(1-naphthyl)-1-butanol (6ad, 0.14 mmol, 36%) as a colorless oil. The reaction conditions were not optimized.

Characterization Data for New Compounds

2-Methyl-3-trimethylsilyl-4-penten-2-ol (1a): IR (neat) 3444, 2970, 1625, 1370, 1249, 1156, 901, 857, 838 cm⁻¹; ¹H NMR (CDCl₃) δ 0.07 (s, 9H), 1.25 (s, 3H), 1.64 (s, 1H), 1.83 (d, J = 11.5 Hz, 1H), 4.96 (dd, J = 17.0, 2.0 Hz, 1H), 5.06 (dd, J = 10.0 2.0 Hz, 1H), 5.76 (ddd, J = 17.0, 11.5, 10.0 Hz, 1H); ¹³C NMR (CDCl₃) δ −0.34, 30.08, 30.24, 50.54, 72.88, 116.59, 136.96. Found: C, 62.43; H, 11.88%. Calcd for C₉H₂₀OSi: C, 62.72; H, 11.70%.

3-(tert-Butyldimethylsilyl)-2-methyl-4-penten-2-ol (1b): IR (neat) 3463, 3074, 2930, 2857, 1626, 1465, 1364, 1334, 1250, 1155, 1108, 904, 826, 801, 766, 663 cm⁻¹; ¹H NMR (CDCl₃) δ 0.05 (s, 3H), 0.17 (s, 3H), 0.91 (s, 9H), 1.24 (s, 3H), 1.28 (s, 3H), 1.84 (s, 1H), 2.01 (d, J = 11.5 Hz, 1H), 5.03 (dd, J = 17.0, 2.5 Hz, 1H), 5.12 (dd, J = 10.0, 2.5 Hz, 1H), 5.81 (ddd, J = 17.0, 11.5, 10.0 Hz, 1H); ¹³C NMR (CDCl₃) δ −4.88, −2.79, 18.27, 27.39, 29.85, 30.01, 46.45, 72.49, 117.89, 138.64. Found: C, 67.28; H, 12.12%. Calcd for C₁₂H₂₆OSi: C, 67.22; H, 12.22%.

(Z)-5-(tert-Butyldimethylsilyl)-2-methyl-4-penten-2-ol (4a): IR (neat) 3351, 2955, 2928, 2884, 2857, 1607, 1472, 1463, 1249, 826, 812, 772 cm⁻¹; ¹H NMR (CDCl₃) δ 0.10 (s, 6H), 0.89 (s, 9H), 1.24 (s, 6H), 1.44 (bs, 1H), 2.33 (dd, J = 7.5, 1.5 Hz, 2H), 5.70 (dt, J = 14.5, 1.5 Hz, 1H), 6.39 (dt, J = 14.5, 7.5 Hz, 1H); ¹³C NMR (CDCl₃) δ −3.70, 17.07, 26.62, 29.54, 47.23, 70.82, 130.17, 144.76. Found: C, 67.02; H, 12.49%. Calcd for C₁₂H₂₆OSi: C, 67.22; H, 12.22%.

(Z)-5-(tert-Butyldimethylsilyl)-2,3-dimethyl-4-penten-2-ol (4b): IR (neat) 3389, 2955, 2929, 2857, 1608, 1463, 1363, 1251, 1140, 826, 811, 779 cm⁻¹; ¹H NMR (CDCl₃) δ 0.11 (s, 3H), 0.12 (s, 3H), 0.89 (s, 9H), 1.00 (d, J = 6.5 Hz, 3H), 1.17 (s, 3H), 1.19 (s, 3H), 1.45 (s, 1H), 2.39 (dq, J = 10.5, 6.5 Hz, 1H), 5.62 (d, J = 14.0 Hz, 1H), 6.30 (dd, J = 14.0, 10.5 Hz, 1H); ¹³C NMR (CDCl₃) δ −3.60, −3.53, 16.42, 16.79, 26.62, 26.93, 27.37, 48.41, 72.44, 128.13, 151.13. Found: C, 68.08; H, 12.43%. Calcd for C₁₃H₂₈OSi: C, 68.35; H, 12.35%.
(Z)-2,3-Dimethyl-5-trimethylsilyl-4-penten-2-ol (4c): IR (neat) 3394, 2968, 2900, 1601, 1374, 1248, 837, 765 cm⁻¹; ¹H NMR (CDCl₃) δ 0.13 (s, 9H), 1.00 (d, J = 7.0 Hz, 3H), 1.17, (s, 3H), 1.19 (s, 3H), 1.45 (bs, 1H), 2.39, (dq, J = 11.0, 7.0 Hz, 1H), 5.59 (d, J = 14.0 Hz, 1H), 6.22 (dd, J = 14.0, 11.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 0.68, 16.27, 27.03, 27.27, 48.68, 72.43, 131.13, 150.30. Found: C, 64.27; H, 11.68%. Calcd for C₁₀H₂₂OSi: C, 64.45; H, 11.90%.

(Z)-5-(Dimethylphenylsilyl)-2,3-dimethyl-4-penten-2-ol (4d): IR (neat) 3402, 2970, 2936, 1605, 1373, 1248, 835, 821, 784, 731, 699 cm⁻¹; ¹H NMR (CDCl₃) δ 0.41 (s, 6H), 0.89 (d, J = 6.5 Hz, 3H), 1.06 (s, 6H), 1.20 (s, 1H), 2.29 (dq, J = 10.5, 6.5 Hz, 1H), 5.74 (d, J = 14.5 Hz, 1H), 6.33 (dd, J = 14.5, 10.5 Hz, 1H), 7.34–7.37 (m, 3H), 7.54–7.58 (m, 2H); ¹³C NMR (CDCl₃) δ –0.66, –0.52, 16.02, 26.62, 27.41, 48.48, 72.43, 128.06, 128.86, 133.96, 139.86, 151.98. Found: C, 72.71; H, 10.00%. Calcd for C₁₅H₂₄OSi: C, 72.52; H, 9.74%.

(Z)-2-Methyl-3-[2-(trimethylsilyl)ethenyl]-2-heptanol (4e): IR (neat) 3045, 2957, 2933, 2900, 2861, 1610, 1462, 1378, 1247, 1135, 838, 767 cm⁻¹; ¹H NMR (CDCl₃) δ 0.04 (s, 9H), 3.91 (dd, J = 6.0, 1.5 Hz, 2H), 5.76 (dt, J = 18.0, 1.5 Hz, 1H), 6.28 (dt, J = 18.0, 6.0 Hz, 1H), 7.34–7.36 (m, 1H), 7.41–7.45 (m, 1H), 7.47–7.55 (m, 2H), 7.74–7.76 (m, 1H), 7.85–7.88 (m, 1H), 8.01–8.03 (m, 1H); ¹³C NMR (CDCl₃) δ –1.01, 40.56, 124.46, 125.71, 125.83, 125.93, 126.64, 127.11, 128.83, 132.06, 132.33, 134.03, 136.42, 144.79. Found: C, 68.07; H, 12.49%. Calcd for C₁₃H₂₆Osi: C, 68.35; H, 12.35%.

(E)-Trimethyl[3-(1-naphthyl)-1-propenyl]silane (3a'): IR (neat) 3045, 2955, 2897, 1612, 1597, 1396, 1248, 991, 880 cm⁻¹; ¹H NMR (CDCl₃) δ 0.04 (s, 9H), 3.91 (dd, J = 6.0, 1.5 Hz, 2H), 5.76 (dt, J = 18.0, 1.5 Hz, 1H), 6.28 (dt, J = 18.0, 6.0 Hz, 1H), 7.34–7.36 (m, 1H), 7.41–7.45 (m, 1H), 7.47–7.55 (m, 2H), 7.74–7.76 (m, 1H), 7.85–7.88 (m, 1H), 8.01–8.03 (m, 1H); ¹³C NMR (CDCl₃) δ –1.01, 40.56, 124.46, 125.71, 125.83, 125.93, 126.64, 127.11, 128.83, 132.06, 132.33, 134.03, 136.42, 144.79. Found: C, 79.67; H, 8.65%. Calcd for C₁₅H₂₆Si: C, 79.93; H, 8.38%.
(E)-tert-Butyldimethyl[3-(1-naphthyl)-1-propenyl]silane (3a): IR (neat) 3045, 2926, 2855, 1611, 1597, 1581, 1511, 1463, 1397, 1361, 1247, 1008, 991, 828, 776 cm⁻¹; ¹H NMR (CDCl₃) δ 0.00 (s, 6H), 0.85 (s, 9H), 3.93 (dd, J = 6.0, 1.5 Hz, 2H), 5.76 (dt, J = 18.5, 1.5 Hz, 1H), 6.29 (dt, J = 18.5, 6.0 Hz, 1H), 7.33–7.35 (m, 1H), 7.42–7.45 (m, 1H), 7.47–7.52 (m, 2H), 7.75–7.76 (m, 1H), 7.86–7.88 (m, 1H), 8.03–8.05 (m, 1H); ¹³C NMR (CDCl₃) δ −5.93, 16.77, 26.64, 40.87, 124.55, 125.71, 125.81, 125.89, 126.59, 127.12, 128.79, 129.23, 132.32, 134.01, 136.42, 146.23. Found: C, 81.07; H, 9.43%. Calcd for C₁₉H₂₆Si: C, 80.78; H, 9.28%.

(E)-tert-Butyl[3-(2,6-dimethylphenyl)-1-propenyl]dimethylsilane (3b): IR (neat) 2927, 2856, 1615, 1464, 1248, 989, 826, 810, 766 cm⁻¹; ¹H NMR (CDCl₃) δ −0.02 (s, 6H), 0.83 (s, 9H), 2.29 (s, 6H), 3.49 (dd, J = 5.5, 2.0 Hz, 2H), 5.50 (dt, J = 18.5, 2.0 Hz, 1H), 6.08 (dt, J = 18.5, 5.5 Hz, 1H), 7.02–7.07 (m, 3H); ¹³C NMR (CDCl₃) δ −5.93, 16.75, 20.14, 26.66, 37.02, 126.15, 127.42, 128.13, 136.42, 137.03, 144.34. Found: C, 78.14; H, 11.07%. Calcd for C₁₇H₂₈Si: C, 78.38; H, 10.83%.

(E)-tert-Butyl[3-(4-trifluoromethylphenyl)-1-propenyl]dimethylsilane (3c): IR (neat) 2954, 2929, 2856, 1326, 1165, 1127, 1106, 1069, 858, 826, 811, 780 cm⁻¹; ¹H NMR (CDCl₃) δ 0.01 (s, 6H), 0.87 (s, 9H), 2.59 (s, 3H), 3.52 (dd, J = 6.5, 1.5 Hz, 2H), 5.72 (dt, J = 18.5, 1.5 Hz, 1H), 6.12 (dt, J = 18.5, 6.0 Hz, 1H), 7.28 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃) δ −5.90, 16.73, 26.65, 43.35, 124.58 (q, J = 272.2 Hz), 125.55 (q, J = 3.8 Hz), 128.65 (q, J = 32.2 Hz), 129.18, 130.18, 144.44 (q, J = 1.0 Hz), 145.32. Found: C, 63.82; H, 7.94%. Calcd for C₁₆H₂₃F₃Si: C, 63.97; H, 7.72%.

(E)-1-[4-[3-(tert-Butyldimethylsilyl)-2-propenyl]phenyl]ethanone (3d): IR (neat) 3045, 2927, 2855, 1687, 1606, 1360, 1267, 1248, 826, 812, 779 cm⁻¹; ¹H NMR (CDCl₃) δ 0.01 (s, 6H), 0.86 (s, 9H), 2.59 (s, 3H), 3.52 (dd, J = 6.5, 1.5 Hz, 2H), 5.72 (dt, J = 18.0, 1.5 Hz, 1H), 6.13 (dt, J = 18.0, 6.5 Hz, 1H), 7.26 (d, J = 8.5 Hz, 2H), 7.90 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ −5.92, 16.74, 26.64, 26.80, 43.53, 128.81, 129.11, 130.04, 135.44, 145.33, 146.10, 198.11. Found: C, 74.58; H, 9.78%. Calcd for C₁₇H₂₀OSi: C, 74.39; H, 9.55%.
Chapter 2

(E)-4-[3-(**tert**-Butyldimethylsilyl)-2-propenyl]benzaldehyde (3e): IR (neat) 2953, 2927, 2883, 2855, 1704, 1699, 1605, 1471, 1248, 1211, 1168, 827, 811, 775 cm⁻¹; ¹H NMR (CDCl₃) δ 0.01 (s, 6H), 0.86 (s, 9H), 3.54 (dd, J = 6.0, 1.0 Hz, 2H), 5.73 (dt, J = 18.5, 1.0 Hz, 1H), 6.13 (dt, J = 18.5, 6.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 8.0 Hz, 2H), 9.98 (s, 1H); ¹³C NMR (CDCl₃) δ −5.93, 16.73, 26.62, 43.71, 129.57, 130.23, 130.38, 134.86, 145.01, 147.74, 192.27. Found: C, 73.60; H, 9.33%. Calcd for C₁₆H₂₄OSi: C, 73.78; H, 9.29%.

Ethyl (E)-4-[3-(**tert**-butyldimethylsilyl)-2-propenyl]benzoate (3f): IR (neat) 2928, 2855, 1721, 1609, 1275, 1100, 828, 808, 779, 760 cm⁻¹; ¹H NMR (CDCl₃) δ 0.00 (s, 6H), 0.86 (s, 9H), 1.39 (t, J = 7.0 Hz, 3H), 3.51 (dd, J = 6.0, 1.5 Hz, 2H), 4.36 (q, J = 7.0 Hz, 2H), 5.71 (dt, J = 18.0, 1.5 Hz, 1H), 6.13 (dt, J = 18.0, 6.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.98 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃) δ −5.92, 14.57, 16.74, 26.64, 43.54, 61.03, 128.57, 128.89, 129.86, 129.94, 145.52, 145.67, 166.89. Found: C, 70.71; H, 9.22%. Calcd for C₁₉H₂₈OSi: C, 71.00; H, 9.27%.

(E)-**tert**-Butyl[3-(4-methoxyphenyl)-1-propenyl]dimethylsilane (3g): IR (neat) 2953, 2927, 2885, 2854, 1615, 1511, 1464, 1248, 1176, 1040, 857, 827, 811, 777 cm⁻¹; ¹H NMR (CDCl₃) δ 0.00 (s, 6H), 0.86 (s, 9H), 3.40 (dd, J = 6.5, 1.5 Hz, 2H), 3.79 (s, 3H), 5.68 (dt, J = 18.5, 1.5 Hz, 1H), 6.13 (dt, J = 18.5, 6.5 Hz, 1H), 6.84 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ −5.87, 16.75, 26.67, 42.77, 55.47, 114.00, 128.45, 129.81, 132.36, 147.10, 158.10. Found: C, 73.28; H, 10.08%. Calcd for C₁₉H₂₆OSi: C, 73.22; H, 9.98%.

tert-Butyldimethyl[1-(1-naphthyl)-2-propenyl]silane (5aa): IR (neat) 3048, 2929, 2856, 1626, 1471, 1464, 1392, 1363, 1250, 1080, 901, 824, 782, 757 cm⁻¹; ¹H NMR (CDCl₃) δ 0.27 (s, 3H), 0.15 (s, 3H), 0.88 (s, 9H), 4.06 (d, J = 10.0 Hz, 1H), 5.01 (dd, J = 10.0, 1.5 Hz, 1H), 5.05 (dd, J = 16.5, 1.5 Hz, 1H), 6.34 (dt, J = 16.5, 10.0 Hz, 1H), 7.35−7.36 (m, 1H), 7.40−7.51 (m, 3H), 7.63−7.65 (m, 1H), 7.83−7.84 (m, 1H), 8.09−8.11 (m, 1H); ¹³C NMR (CDCl₃) δ −6.76, −6.00, 18.41, 27.44, 35.11, 113.71, 123.80, 125.08, 125.49 (overrapped 2C), 125.53, 125.64, 129.20, 131.46, 134.43, 139.76, 140.00. Found: C, 80.86; H, 9.30%. Calcd for C₁₉H₂₆Si: C, 80.78; H, 9.28%.

82
tert-Butyl[1-(2,6-dimethylphenyl)-2-propenyl]dimethylsilane (5ba): IR (neat) 3071, 2956, 2929, 2857, 1622, 1464, 1252, 902, 856, 832, 822, 807, 767 cm⁻¹; ¹H NMR (CDCl₃) δ –0.25 (s, 3H), 0.23 (s, 3H), 0.94 (s, 9H), 2.28 (s, 3H), 2.34 (s, 3H), 3.68 (dt, J = 6.5, 2.0 Hz, 1H), 4.74 (dt, J = 16.5, 2.0 Hz, 1H), 4.92 (dt, J = 10.0, 2.0 Hz, 1H), 6.17 (dd, J = 16.5, 10.0, 6.5 Hz, 1H), 6.94–7.03 (m, 3H); ¹³C NMR (CDCl₃) δ –5.69, –4.39, 18.48, 22.21, 22.60, 27.19, 34.16, 113.35, 125.05, 128.53, 136.16, 136.73, 137.93, 139.69. Found: C, 78.35; H, 11.07%. Calcd for C₁₇H₂₈Si: C, 78.38; H, 10.83%.

tert-Butyl[1-(4-trifluoromethylphenyl)-2-propenyl]dimethylsilane (5ca): IR (neat) 2931, 2859, 1615, 1326, 1253, 1164, 1125, 1106, 1070, 1017, 905, 858, 837, 822, 803, 782 cm⁻¹; ¹H NMR (CDCl₃) δ –0.13 (s, 3H), 0.06 (s, 3H), 0.83 (s, 9H), 3.21 (d, J = 10.0 Hz, 1H), 5.00 (dd, J = 10.0, 1.5 Hz, 1H), 5.00 (dd, J = 17.0, 1.5 Hz, 1H), 6.17 (dt, J = 17.0, 10.0 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃) δ –6.96, –6.50, 18.21, 27.21, 42.50, 113.97, 124.66 (q, J = 271.7 Hz), 125.48 (q, J = 3.9 Hz), 127.28 (q, J = 32.1 Hz), 128.08, 138.49, 147.81 (q, J = 1.5 Hz); ¹⁹F NMR (CDCl₃) δ –62.72. Found: C, 64.21; H, 7.85%. Calcd for C₁₆H₂₃F₃Si: C, 63.97; H, 7.72%.

1-{4-[1-(tert-Butyldimethylsilyl)-2-propenyl]phenyl}ethanone (5da): IR (neat) 2957, 2929, 2883, 2857, 1684, 1602, 1406, 1359, 1271, 1252, 1181, 858, 836, 823, 803, 780 cm⁻¹; ¹H NMR (CDCl₃) δ –0.13 (s, 3H), 0.06 (s, 3H), 0.83 (s, 9H), 2.57 (s, 3H), 3.22 (d, J = 10.0 Hz, 1H), 4.90 (dd, J = 10.0, 1.5 Hz, 1H), 4.91 (dd, J = 17.0, 1.5 Hz, 1H), 6.19 (dt, J = 17.0, 10.0 Hz, 1H), 7.19 (d, J = 8.5 Hz, 2H), 7.85 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ –6.90, –6.49, 18.28, 26.65, 27.21, 42.96, 113.92, 127.97, 128.83, 134.25, 138.39, 149.70, 197.89. Found: C, 74.15; H, 9.66%. Calcd for C₁₇H₂₈O: C, 74.39; H, 9.55%.

4-{1-(tert-Butyldimethylsilyl)-2-propenyl}benzaldehyde (5ea): IR (neat) 2929, 2857, 1699, 1602, 1250, 1215, 1168, 834, 776 cm⁻¹; ¹H NMR (CDCl₃) δ –0.12 (s, 3H), 0.07 (s, 3H), 0.83 (s, 9H), 3.26 (d, J = 10.0 Hz, 1H), 5.01 (dd, J = 10.0, 1.5 Hz, 1H), 5.01 (dd, J = 17.0, 1.5 Hz, 1H), 6.19 (dt, J = 17.0, 10.0 Hz, 1H), 7.26 (d, J = 8.5 Hz, 2H), 7.77 (d, J = 8.5 Hz, 2H), 9.94 (s, 1H); ¹³C NMR (CDCl₃) δ –6.91, –6.49, 18.31, 27.19, 43.31, 114.19, 128.40, 130.21, 133.77, 138.11, 151.46, 192.01. Found: C, 73.60; H, 9.48%. Calcd for C₁₆H₂₅O: C, 73.78; H, 9.29%.
Ethyl 4-[1-(tert-butyl(dimethyl)silyl)-2-propenyl]benzoate (5fa): IR (neat) 3077, 2930, 2857, 1717, 1607, 1464, 1408, 1367, 1277, 1252, 1178, 1101, 1021, 822, 803, 767 cm⁻¹; ¹H NMR (CDCl₃) δ –0.13 (s, 3H), 0.05 (s, 3H), 0.82 (s, 9H), 1.38 (t, J = 7.5 Hz, 3H), 3.21 (d, J = 9.5 Hz, 1H), 4.35 (q, J = 7.5 Hz, 2H), 4.98–5.01 (m, 2H), 6.15–6.22 (m, 1H), 7.16 (d, J = 8.5 Hz, 2H), 7.93 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ –6.91, –6.55, 14.58, 18.26, 27.20, 42.88, 60.92, 113.78, 127.21, 127.78, 129.92, 138.53, 149.14, 166.93. Found: C, 70.79; H, 9.39%. Calcd for C₁₈H₂₆O₂Si: C, 71.00; H, 9.27%.

tert-Butyl[1-(4-methoxyphenyl)-2-propenyl]dimethylsilane (5ga): IR (neat) 2955, 2929, 2883, 2856, 2835, 1626, 1511, 1464, 1298, 1248, 1178, 1040, 899, 823, 806, 785, 774 cm⁻¹; ¹H NMR (CDCl₃) δ –0.11 (s, 3H), 0.04 (s, 3H), 0.81 (s, 9H), 3.06 (d, J = 10.0 Hz, 1H), 3.78 (s, 3H), 4.93 (dd, J = 10.0, 2.0 Hz, 1H), 4.94 (dd, J = 17.0, 2.0 Hz, 1H), 6.14 (dt, J = 17.0, 10.0 Hz, 1H), 6.81 (d, J = 9.0 Hz, 2H), 7.02 (d, J = 9.0 Hz, 2H); ¹³C NMR (CDCl₃) δ –6.74, –6.57, 18.10, 27.25, 41.08, 55.45, 112.73, 114.05, 128.88, 135.20, 139.95, 157.25. Found: C, 73.39; H, 10.10%. Calcd for C₁₆H₂₆OSi: C, 73.22; H, 9.98%.

(E)-tert-Butyldimethyl[1-(1-naphthyl)-2-butenyl]silane (5ab): IR (neat) 3046, 2956, 2928, 2882, 2855, 1471, 1463, 1392, 1256, 1248, 1082, 966, 835, 826, 806, 791, 775 cm⁻¹; ¹H NMR (CDCl₃) δ –0.35 (s, 3H), 0.11 (s, 3H), 0.88 (s, 9H), 1.68 (dd, J = 6.5, 1.5 Hz, 3H), 4.00 (d, J = 10.0 Hz, 1H), 5.49 (dq, J = 15.0, 6.5 Hz, 1H), 5.95 (ddq, J = 15.0, 10.0, 1.5 Hz, 1H), 7.32–7.34 (m, 1H), 7.40–7.50 (m, 3H), 7.61–7.62 (m, 1H), 7.81–7.83 (m, 1H), 8.08–8.10 (m, 1H); ¹³C NMR (CDCl₃) δ –6.98, –5.90, 18.26, 18.29, 27.44, 33.42, 123.89, 124.53, 124.78, 125.23, 125.42, 125.52, 125.58, 129.16, 131.39, 132.19, 134.38, 140.78. Found: C, 81.17; H, 9.69%. Calcd for C₂₀H₂₈Si: C, 81.01; H, 9.52%.

(E)-1-[4-[1-(tert-butyl(dimethyl)silyl)-2-butenyl]phenyl]ethanone (5db): IR (neat) 2958, 2929, 2882, 2856, 1682, 1602, 1359, 1270, 1179, 834, 823, 803 cm⁻¹; ¹H NMR (CDCl₃) δ –0.16 (s, 3H), 0.02 (s, 3H), 0.83 (s, 9H), 1.68 (dd, J = 7.0, 1.5 Hz, 3H), 2.56 (s, 3H), 3.16 (d, J = 10.0 Hz, 1H), 5.43 (dq, J = 15.0, 7.0 Hz, 1H), 5.80 (ddq, J = 15.0, 10.0, 1.5 Hz, 1H), 7.16 (d, J = 8.5 Hz, 2H), 7.85 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ –7.12, –6.42, 18.17, 18.25, 26.67, 27.21, 41.27, 124.91, 127.80, 128.77, 130.51, 134.02, 150.63, 197.96. Found: C, 74.70; H, 9.52%. Calcd for C₁₄H₂₆O: C, 74.94; H, 9.78%.
(E)-Trimethyl[1-(1-naphthyl)-2-butenyl]silane (5ac): IR (neat) 3046, 2959, 2894, 1711, 1393, 1249, 1086, 964, 838, 794, 776 cm⁻¹; ¹H NMR (CDCl₃) δ −0.03 (s, 9H), 1.72 (dd, J = 6.5, 1.5 Hz, 3H), 3.80 (d, J = 9.5 Hz, 1H), 5.49 (dq, J = 15.0, 6.5 Hz, 1H), 5.94 (ddq, J = 15.0, 9.5, 1.5 Hz, 1H), 7.32–7.34 (m, 3H), 7.41–7.49 (m, 3H), 7.62–7.63 (m, 1H), 7.82–7.84 (m, 1H), 8.05–8.07 (m, 1H); ¹³C NMR (CDCl₃) δ −2.28, 18.34, 36.55, 123.96, 124.01, 124.13, 125.15, 125.40, 125.42, 125.60, 129.06, 130.07, 131.61, 134.32, 139.99. Found: C, 80.20; H, 8.66%. Caled for C₁₇H₂₂Si: C, 80.25; H, 8.72%.

(E)-1-[4-(1-Trimethylsilyl-2-butenyl)phenyl]ethanone (5dc): IR (neat) 2959, 1683, 1603, 1414, 1358, 1271, 1249, 1179, 962, 866, 841 cm⁻¹; ¹H NMR (CDCl₃) δ −0.05 (s, 9H), 1.72 (dd, J = 6.5, 1.5 Hz, 3H), 2.57 (s, 3H), 2.99 (d, J = 10.0 Hz, 1H), 5.43 (dq, J = 15.0, 6.5 Hz, 1H), 5.80 (ddq, J = 15.0, 10.0, 1.5 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃) δ −2.84, 18.34, 26.67, 43.82, 124.71, 127.24, 128.73, 129.12, 133.95, 149.84, 198.00. Found: C, 73.27; H, 9.19%. Caled for C₁₅H₂₂O: C, 73.11; H, 9.00%.

(E)-4-(1-Trimethylsilyl-2-butenyl)benzaldehyde (5ec): IR (neat) 2959, 1700, 1602, 1570, 1249, 1213, 1168, 843, 817 cm⁻¹; ¹H NMR (CDCl₃) δ −0.04 (s, 9H), 1.72 (dd, J = 6.5, 1.5 Hz, 3H), 3.02 (d, J = 10.0 Hz, 1H), 4.35 (q, J = 7.5 Hz, 2H), 5.45 (dq, J = 15.0, 6.0 Hz, 1H), 5.80 (ddq, J = 15.0, 10.0, 1.5 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 9.93 (s, 1H); ¹³C NMR (CDCl₃) δ −2.85, 18.34, 44.20, 124.98, 127.67, 128.84, 130.13, 133.49, 151.63, 192.12. Found: C, 72.07; H, 8.77%. Caled for C₁₄H₂₀O₂Si: C, 72.36; H, 8.67%.

Ethyl (E)-4-(1-trimethylsilyl-2-butenyl)benzoate (5fc): IR (neat) 2960, 1718, 1607, 1367, 1276, 1249, 1178, 1101, 869, 839, 708 cm⁻¹; ¹H NMR (CDCl₃) δ −0.06 (s, 9H), 1.38 (t, J = 7.5 Hz, 3H), 1.71 (dd, J = 6.0, 1.5 Hz, 3H), 2.98 (d, J = 10.0 Hz, 1H), 4.35 (q, J = 7.5 Hz, 2H), 5.43 (dq, J = 15.0, 6.0 Hz, 1H), 5.80 (ddq, J = 15.0, 10.0, 1.5 Hz, 1H), 7.11 (d, J = 8.5 Hz, 2H), 7.92 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ −2.86, 14.59, 18.34, 43.72, 60.87, 124.55, 126.88, 127.07, 129.29, 129.80, 149.28, 167.03. Found: C, 69.27; H, 8.73%. Caled for C₁₆H₂₃O₂Si: C, 69.51; H, 8.75%.
(E)-[1-(4-Methoxyphenyl)-2-butenyl]trimethylsilane (5gc): IR (neat) 2956, 2834, 1611, 1509, 1247, 1178, 1039, 868, 839 cm⁻¹; ¹H NMR (CDCl₃) δ –0.06 (s, 9H), 1.69 (dd, J = 6.0, 1.5 Hz, 3H), 2.80 (d, J = 10.0 Hz, 1H), 3.77 (s, 3H), 5.38 (dq, J = 15.0, 6.0 Hz, 1H), 5.74 (ddq, J = 15.0, 10.0, 1.5 Hz, 1H), 6.80 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H); ¹³C NMR (CDCl₃) δ –2.74, 18.34, 41.80, 55.46, 113.94, 123.49, 128.18, 130.81, 135.41, 156.99. Found: C, 71.60; H, 9.46%. Calcd for C₁₄H₂₂OSi: C, 71.73; H, 9.46%.

(E)-Dimethyl[1-(1-naphthyl)-2-butenyl]phenylsilane (5ad): IR (neat) 3047, 3013, 2959, 2915, 2853, 1427, 1393, 1248, 1114, 833, 809, 794, 777, 732, 701 cm⁻¹; ¹H NMR (CDCl₃) δ 0.20 (s, 3H), 0.23 (s, 3H), 1.68 (ddd, J = 6.5, 1.5, 1.0 Hz, 3H), 3.98 (d, J = 9.5 Hz, 1H), 5.39 (ddq, J = 15.0, 6.5, 1.0 Hz, 1H), 5.86 (ddq, J = 15.0, 9.5, 1.5 Hz, 1H), 7.14–7.15 (m, 1H), 7.27–7.33 (m, 2H), 7.33–7.43 (m, 6H), 7.61–7.62 (m, 1H), 7.80–7.81 (m, 1H), 7.97–7.99 (m, 1H); ¹³C NMR (CDCl₃) δ –4.35, –3.38, 18.26, 36.27, 123.88, 124.44, 124.57, 125.34, 125.35, 125.38, 125.48, 127.64, 128.98, 129.23, 130.74, 131.62, 134.24, 134.55, 137.55, 139.27. Found: C, 83.21; H, 7.57%. Calcd for C₂₂H₂₄Si: C, 83.48; H, 7.64%.

Ethyl (E)-4-[1-(dimethylphenylsilyl)-2-butenyl]benzoate (5fd): IR (neat) 2960, 1715, 1607, 1276, 1249, 1178, 1101, 831, 809, 736, 702 cm⁻¹; ¹H NMR (CDCl₃) δ 0.23 (s, 3H), 0.24 (s, 3H), 1.38 (t, J = 7.0 Hz 3H), 1.68 (ddd, J = 6.5, 1.5, 1.0 Hz, 3H), 3.15 (d, J = 10.0 Hz, 1H), 4.35 (q, J = 7.0 Hz, 2H), 5.37 (dq, J = 15.0, 6.5 Hz, 1H), 5.73 (ddq, J = 15.0, 10.0, 1.5 Hz, 1H), 6.94 (d, J = 8.5 Hz, 2H), 7.30–7.31 (m, 4H), 7.34–7.38 (m, 1H), 7.85 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ –4.52, –4.29, 14.58, 18.29, 43.43, 60.88, 125.02, 126.96, 127.36, 127.73, 129.04, 129.45, 129.63, 134.50, 136.59, 148.53, 167.04. Found: C, 74.25; H, 7.73%. Calcd for C₂₁H₂₂O₅Si: C, 74.51; H, 7.74%.

Ethyl (E)-4-[1-(trimethylsilyl)-2-heptenyl]benzoate (5fe): IR (neat) 2958, 2929, 2859, 1718, 1608, 1276, 1249, 1177, 1104, 837 cm⁻¹; ¹H NMR (CDCl₃) δ –0.05 (s, 9H), 0.89 (t, J = 7.5 Hz, 3H), 1.28–1.37 (m, 4H), 1.38 (t, J = 7.0 Hz, 3H), 2.05 (td, J = 7.0, 6.5 Hz, 2H), 2.89 (d, J = 9.5 Hz, 1H), 4.35 (q, J = 7.0 Hz, 2H), 5.41 (dt, J = 15.0, 6.5 Hz, 1H), 5.77 (ddt, J = 15.0, 9.5, 1.5 Hz, 1H), 7.11 (d, J = 8.5 Hz, 2H), 7.93 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ –2.86, 14.15, 14.59, 22.41, 32.21, 32.71, 43.68, 60.86, 126.86, 127.06, 128.10, 129.79, 130.25, 149.34, 167.03. Found: C, 71.59; H, 9.34%.

86
Calcd for C_{19}H_{30}O_{2}Si: C, 71.64; H, 9.49%.

(E)-[1-(2,6-Dimethylphenyl)-2-butenyl]dimethylphenylsilane (5bd): IR (neat) 3069, 3017, 2957, 2915, 1427, 1249, 1112, 830, 813, 767, 735, 700 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.21 (s, 3H), 0.35 (s, 3H), 1.65 (dt, \(J = 6.5, 1.5\) Hz, 3H), 2.15 (s, 3H), 2.22 (s, 3H), 3.72 (d, \(J = 8.0\) Hz, 1H), 5.27 (dqd, \(J = 15.0, 6.5, 1.5\) Hz, 1H), 5.83 (ddq, \(J = 15.0, 8.0, 1.5\) Hz, 1H), 6.90–6.94 (m, 3H), 7.30–7.37 (m, 3H), 7.43–7.46 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) –2.33, –2.00, 18.20, 22.29, 22.64, 36.88, 124.76, 124.83, 127.84, 128.33, 129.11, 129.46, 129.54, 134.06, 135.88, 136.13, 139.61, 140.02. Found: C, 81.53; H, 9.00%. Calcd for C\(_{20}\)H\(_{26}\)Si: C, 81.56; H, 8.90%.

(E)-[1-(2-Phenylphenyl)-2-butenyl]dimethylphenylsilane (5hd): IR (neat) 3056, 3020, 2958, 2915, 1476, 1427, 1245, 831, 748, 701 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.12 (s, 3H), 0.15 (s, 3H), 1.67 (dd, \(J = 6.0, 1.5\) Hz, 3H), 3.33 (d, \(J = 9.5\) Hz, 1H), 5.22 (dq, \(J = 15.0, 6.0\) Hz, 1H), 5.71 (ddq, \(J = 15.0, 9.5, 1.5\) Hz, 1H), 7.04–7.09 (m, 2H), 7.10–7.13 (m, 3H), 7.17–7.18 (m, 2H), 7.20–7.26 (m, 3H), 7.29–7.36 (m, 4H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) –4.42, –3.50, 18.27, 37.88, 123.56, 124.60, 126.73, 127.23, 127.60, 128.13 (overlapped, 2C), 129.09, 129.70, 130.47, 131.59, 134.44, 137.71, 140.20, 141.53, 142.25. Found: C, 84.35; H, 7.89%. Calcd for C\(_{24}\)H\(_{26}\)Si: C, 84.15; H, 7.65%.

(E)-[1-(4-Methoxy-2-methylphenyl)-2-butenyl]dimethylphenylsilane (5id): IR (neat) 2956, 2914, 1608, 1500, 1427, 1253, 1196, 1113, 1049, 849, 830, 818, 737, 701 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.23 (s, 3H), 0.28 (s, 3H), 1.65 (ddd, \(J = 6.5, 1.5, 1.0\) Hz, 3H), 2.05 (s, 3H), 3.22 (d, \(J = 9.0\) Hz, 1H), 3.76 (s, 3H), 5.28 (dq, \(J = 15.0, 6.5, 1.0\) Hz, 1H), 5.66 (ddq, \(J = 15.0, 9.0, 1.5\) Hz, 1H), 6.63–6.66 (m, 2H), 6.87–6.89 (m, 1H), 7.28–7.31 (m, 2H), 7.34–7.37 (m, 3H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) –4.50, –3.74, 18.26, 20.62, 26.35, 55.36, 111.24, 116.08, 123.85, 127.63, 128.19, 129.17, 131.17, 133.15, 134.47, 136.34, 137.92, 156.65. Found: C, 77.42; H, 8.68%. Calcd for C\(_{20}\)H\(_{26}\)O\(_{2}\)Si: C, 77.36; H, 8.44%.

87
Methyl (E)-4-(1-dimethylphenylsilyl-2-buteryl)-3-methylbenzoate (5jd): IR (neat) 2953, 2916, 1720, 1608, 1436, 1428, 1292, 1270, 1249, 1143, 1113, 831, 812, 768, 737, 702 cm⁻¹; ¹H NMR (CDCl₃) δ 0.25 (s, 3H), 0.29 (s, 3H), 1.68 (dd, J = 6.0, 1.5 Hz, 3H), 2.08 (s, 3H), 3.37 (d, J = 9.0 Hz, 1H), 3.89 (s, 3H), 5.35 (dq, J = 6.0, 1.5 Hz, 1H), 5.72 (ddq, J = 15.0, 9.0, 1.5 Hz, 1H), 7.01–7.03 (m, 1H), 7.28–7.31 (m, 4H), 7.33–7.37 (m, 1H), 7.74–7.76 (m, 2H); ¹³C NMR (CDCl₃) δ −4.66, −4.08, 18.26, 20.34, 38.33, 52.05, 124.88, 126.20, 126.99, 127.18, 127.74, 129.46, 129.86, 131.63, 134.39, 135.02, 136.90, 147.16, 167.65. Found: C, 74.58; H, 7.60%. Calcd for C₂₁H₂₆O₂Si: C, 74.51; H, 7.74%.

Table S1. Conditions for determining the enantiomeric excesses of 6

<table>
<thead>
<tr>
<th>6</th>
<th>column</th>
<th>eluent hexane/i-PrOH</th>
<th>Flow /mL•min⁻¹</th>
<th>Retention time /min</th>
<th>S, major</th>
<th>R, minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>6ad</td>
<td>AD-H</td>
<td>95/5</td>
<td>1.5</td>
<td>6.62</td>
<td>7.62</td>
<td></td>
</tr>
<tr>
<td>6bd</td>
<td>OD-H</td>
<td>95/5</td>
<td>1.0</td>
<td>5.14</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>6hd</td>
<td>OD-H</td>
<td>95/5</td>
<td>1.0</td>
<td>5.19</td>
<td>5.83</td>
<td></td>
</tr>
<tr>
<td>6id</td>
<td>OD-H</td>
<td>95/5</td>
<td>1.0</td>
<td>7.61</td>
<td>8.79</td>
<td></td>
</tr>
<tr>
<td>6jd</td>
<td>AD-H</td>
<td>95/5</td>
<td>1.5</td>
<td>9.58</td>
<td>8.78</td>
<td></td>
</tr>
<tr>
<td>6kd</td>
<td>OD-H</td>
<td>98/2</td>
<td>1.2</td>
<td>9.74</td>
<td>8.72</td>
<td></td>
</tr>
</tbody>
</table>
References and Notes

(5) The regioselectivity of each reaction was greater than 99:1. One exception is the reaction in entry 6, Table 1, wherein the regioselectivity was 98:2. We assume that the bulky silyl groups would accelerate the reductive elimination steps and that the conceivable isomerization of the \(\sigma \)-allyl(aryl)palladium intermediates scarcely took place.

(6) When allylsilane having an aryl or an isopropoxy group on the silicon was employed, decomposition of the allylsilane was observed and no coupling products were obtained.

Chapter 3

Synthesis of Arylallenes by Palladium-Catalyzed Retro-Propargylation of Homopropargyl Alcohols

Treatment of tertiary homopropargyl alcohols with aryl halides under palladium catalysis provided arylallenes regioselectively. The reaction includes retro-propargylation, which proceeds in a concerted fashion via a cyclic transition state and transfers the stereochemistry of homopropargyl alcohols through C–C bond cleavage. The present method enables to use homopropargyl alcohols as allenylmetal equivalents.
Introduction

Allenes are a class of compounds that have interesting reactivity due to the two orthogonal π-bonds\(^1\) and have been found in many natural products.\(^2\) Transition-metal-catalyzed cross-coupling reaction of aryl halides with allenylmetals is one of the most convenient ways to prepare arylallenes.\(^3\) In the case of palladium catalysis, allenylzinc and allenylcopper reagents have been mainly used. These reagents can easily undergo transmetalation with the arylpalladium halide intermediates formed in situ through oxidative addition of aryl halides to palladium. However, the preparation of these allenylmetals requires multiple steps, and they should be handled carefully because of their high reactivity. Moreover, they are in equilibrium with the corresponding propargylmetals\(^4\) so that the control of regioselectivity in the coupling reaction can be difficult.

In Chapter 3, the author reports a new allenylation reaction of aryl halides with homopropargyl alcohols as allenylmetal equivalents (Scheme 1). During the studies on palladium-catalyzed regio- and stereospecific allyl transfer from homoallyl alcohols to aryl halides via retro-allylation described in Chapters 1 and 2,\(^5\) the author expected the retro-allylation would be extended to retro-propargylation (Scheme 2). If retro-propargylation from intermediate B occurs via a cyclic transition state to provide σ-allenyl(aryl)palladium C and subsequent reductive elimination proceeds faster than isomerization of C to π-allenyl- or propargylpalladium, regioselective allenylated product can be obtained. It is noteworthy that tertiary homopropargyl alcohols are stable to air and moisture. In addition, they are readily accessible in short steps.

Scheme 1.
Results and Discussion

Homopropargyl alcohol 1a and bromobenzene 2a was chosen as model substrates, and the effect of a base and an additive in the allenylation was investigated under Pd$_2$(dba)$_3$/PMe$_3$ catalysis. The use of bases such as potassium phosphate and cesium carbonate which prompted the allyl transfer reaction described in Chapters 1 and 2 gave disappointing results, and most of the starting material was recovered intact (entries 1 and 2). The catalytic cycle worked better in the presence of cesium hydroxide monohydrate (entry 4). The addition of dehydrating reagents suppressed the reaction (entries 5 and 6). A positive effect of the addition of water was observed in the case of potassium hydroxide and cesium carbonate, while the effect on the latter was trivial (compare entries 2 with 3 and 7 with 8, respectively). Although the exact role of water was not clear at this stage, the oxygen atom on water might coordinate to palladium as a Lewis base to protect palladium from undesirable deactivation. Encouraged by the results, the
author evaluated various Lewis bases in the presence of potassium hydroxide. Indeed, some Lewis bases dramatically promoted the allenylation reaction (entries 9, 12, 13 and 15). In contrast, Lewis bases bearing a bulky substituent near the coordinating site diminished the yields (entries 10 and 11). The use of a much stronger base, DMSO, and bidentate coordinating molecules such as DME and 1,10-phenanthroline resulted in no formation of the allenylation product (entries 16–18). Finally, the combination of KOH and DMA was found to be optimal from the viewpoint of reproducibility and the yield (entry 13).

Table 1. Screening of Base and Additive for Palladium-Catalyzed Allenylation of Bromobenzene

<table>
<thead>
<tr>
<th>entry</th>
<th>base</th>
<th>additive</th>
<th>3a, yield<sup>a</sup>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K<sub>3</sub>PO<sub>4</sub></td>
<td>–</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Cs<sub>2</sub>CO<sub>3</sub></td>
<td>H<sub>2</sub>O</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>CsOH+H<sub>2</sub>O</td>
<td>–</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>CsOH+H<sub>2</sub>O</td>
<td>MS4A</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>CsOH+H<sub>2</sub>O</td>
<td>Na<sub>2</sub>SO<sub>4</sub></td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>KOH</td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>KOH</td>
<td>H<sub>2</sub>O</td>
<td>35–61</td>
</tr>
<tr>
<td>9</td>
<td>KOH</td>
<td>MeOH</td>
<td>47–61</td>
</tr>
<tr>
<td>10</td>
<td>KOH</td>
<td>i-PrOH</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>KOH</td>
<td>t-BuOH</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>KOH</td>
<td>pyridine</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>KOH</td>
<td>DMA</td>
<td>56</td>
</tr>
<tr>
<td>14</td>
<td>KOH</td>
<td>DMF</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>KOH</td>
<td>Et<sub>3</sub>O</td>
<td>44</td>
</tr>
<tr>
<td>16</td>
<td>KOH</td>
<td>DMSO</td>
<td>0<sup>b</sup></td>
</tr>
<tr>
<td>17</td>
<td>KOH</td>
<td>DME</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>KOH</td>
<td>1,10-phenanthroline</td>
<td>0<sup>b</sup></td>
</tr>
</tbody>
</table>

^aH¹NMR yields. ^bComplex mixture.
Subsequently, various phosphorus ligands were assessed under the conditions shown in Table 1, entry 13 (Table 2). Aryllallene 3a was obtained exclusively only when primary alkyl-substituted trialkylphosphines were used (entries 1, 4, 5, and 7). The best ratio of palladium to ligand was 1 to 4, less of which was prone to cause precipitation of palladium black (entry 4–6). Among a series of trialkylphosphines, trioctylphosphine bearing longer alkyl chains showed the highest catalytic activity (entry 7). Other phosphine ligands and phosphite ligands were not effective for the formation of 3a (entries 8–13). It should be noted that the reaction scarcely proceeded and most of the starting materials were recovered when divalent palladium complex such as Pd(OAc)$_2$ and [(allyl)PdCl]$_2$ were used (entries 2 and 3). This was probably because homopropargyl alcohol 1a might coordinate tightly to palladium(II) to suppress the generation of active palladium(0) catalyst prior to the initial oxidative addition step as outlined in Scheme 2. The additional fine-tuning of the amounts of KOH and DMA under Pd$_2$(dba)$_3$/P(n-Oct)$_3$ catalysis gave her the best result (entry 14).
Table 2. The Effect of Ligand in Palladium-Catalyzed Allenylation of Bromobenzene

<table>
<thead>
<tr>
<th>entry</th>
<th>ligand (mol%)</th>
<th>3a, yield(a) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PMe₃ (20)</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>PMe₃ (20)</td>
<td>4ᵇ</td>
</tr>
<tr>
<td>3</td>
<td>PMe₃ (20)</td>
<td>8ᶜ</td>
</tr>
<tr>
<td>4</td>
<td>P(n-Bu)₃ (20)</td>
<td>44–63</td>
</tr>
<tr>
<td>5</td>
<td>P(n-Bu)₃ (10)</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>P(n-Bu)₃ (5)</td>
<td>16ᵈ</td>
</tr>
<tr>
<td>7</td>
<td>P(n-Oct)₃ (20)</td>
<td>65</td>
</tr>
<tr>
<td>8</td>
<td>P(c-Hex)₃ (20)</td>
<td>14ᵉ</td>
</tr>
<tr>
<td>9</td>
<td>P(c-Hex)₃ (10)</td>
<td>11ᵉ</td>
</tr>
<tr>
<td>10</td>
<td>P(t-Bu)₃ (5)</td>
<td>0ᵃ</td>
</tr>
<tr>
<td>11</td>
<td>PPh₃ (20)</td>
<td>0ᵃ</td>
</tr>
<tr>
<td>12</td>
<td>P(OMe)₃ (20)</td>
<td>0ᵃ</td>
</tr>
<tr>
<td>13</td>
<td>P(OPh)₃ (20)</td>
<td>0ᵃ</td>
</tr>
<tr>
<td>14</td>
<td>P(n-Oct)₃ (20)</td>
<td>74ᶠ</td>
</tr>
</tbody>
</table>

ᵃ¹H NMR yields. ᵇPd(OAc)₂ (5 mol%) was used. ᶜ[(allyl)PdCl]₂ was used. ᵈPd black was detected. ᵉComplex mixture. ᶠKOH (2.0 equiv) and DMA (0.7 equiv) were used.

With optimized conditions in hand, the author performed the allenylation reaction of various aryl halides with homopropargyl alcohol 1a (Table 3). The reaction of bromobenzene (2a) with 1a provided aryllallene 3a in 74% yield. In the reaction, no propargylated product was detected. This result is strongly suggestive of her hypothesis. A wide range of p-substituted aryl bromides including electron-deficient as well as electron-rich ones could be employed (entries 2–7). Sterically demanding 2h and 2i also participated in the allenylation reaction. Aryl bromides that possess carbonyl groups except for 2f decomposed under the strongly basic conditions. Instead, acetal-protected substrates such as 2j and 2k gave good results (entries 10 and 11). Scope of the substituents at the alkyne terminus was then examined. Not only
primary but also secondary alkyl groups did not interfere with the reaction (entries 12–14). Notably, allenylation of 2a with 1c proceeded to furnish 3m, leaving the benzyl ether moiety untouched. Unfortunately, the bulky tert-butyl group of 1e suppressed the reaction (entry 15).6

Table 3. Palladium-Catalyzed Allenylation of Aryl Bromides 2 with Homopropargyl Alcohols 1 via Retro-Propargylation6

<table>
<thead>
<tr>
<th>entry</th>
<th>R 1</th>
<th>Ar–Br 2</th>
<th>3, yieldb(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n-Bu 1a</td>
<td>2a: R' = H</td>
<td>3a, 74</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2b: Me</td>
<td>3b, 67</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2c: Ph</td>
<td>3c, 68</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2d: F</td>
<td>3d, 62</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2e: CF3</td>
<td>3e, 63</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2f: t-BuCO</td>
<td>3f, 85</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2g: OMe</td>
<td>3g, 63c</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2h</td>
<td>3h, 65</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2i</td>
<td>3i, 64</td>
</tr>
</tbody>
</table>
Homopropargyl alcohols having one or two methyl groups at the propargylic position were converted to tris- or tetrasubstituted arylallenes, respectively (Table 4). Although higher temperature was required, a variety of aryl bromides reacted with 4 and 5 to produce the corresponding allenes 6 in moderate to good yields.

Finally, the author attempted diastereoselective synthesis of tetrasubstituted arylallenes as depicted in Scheme 3. Taking advantage of the retro-propargylation that would proceed in a concerted fashion via a cyclic transition state, the stereochemical information of homopropargyl alcohols would be transferred to the corresponding allenes through C–C bond cleavage. The reaction of diastereomerically pure homopropargyl alcohol anti-7 with bromobenzene (2a) provided tetrasubstituted allene 8a in good yield with perfect anti selectivity (Table 5, entry 1). On the other hand, syn-8a was obtained as the sole product in the reaction of syn-7 (entry 2). Other aryl bromides also underwent the stereospecific allenylation reaction with both diastereomers (entries 3–8).
Table 4. Synthesis of Tri- and Tetrasubstituted Arylallenesa

<table>
<thead>
<tr>
<th>entry</th>
<th>alcohol</th>
<th>Ar–Br 2</th>
<th>6, yieldb(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2a</td>
<td>6a, 68</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2b</td>
<td>6b, 64</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2d</td>
<td>6c, 60</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2f</td>
<td>6d, 62</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2j</td>
<td>6e, 71</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2k</td>
<td>6f, 63</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>2a</td>
<td>6g, 68</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2f</td>
<td>6h, 80</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2j</td>
<td>6i, 79</td>
</tr>
</tbody>
</table>

a The reaction conditions are the same as those in Table 3 except for the use of xylene instead of toluene. b Isolated yields.

Scheme 3.
Conclusion

The author has developed a new method for the generation of σ–allenylpalladium from homopropargyl alcohols via retro-propargylation and applied it to the highly regioselective synthesis of gem-di-, tri- and tetrasubstituted arylallenes.
Experimental Section

Instrumentation and Chemicals

All experiments were conducted using the same instruments described in Chapter 1. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Toluene was purchased from Wako Pure Chemical Co. and stored over slices of sodium. Xylene was purchased from Nacalai Tesque Co. and stored as the same above. N,N-Dimethylacetamide (DMA) was purchased from Aldrich and dried over molecular sieves 4A. Potassium hydroxide (pellet) was purchased from Wako Pure Chemical Co. and powdered under argon atmosphere prior to use. Trioctylphosphine was purchased from Strem and diluted to prepare a 1.0 M degassed hexane solution and stored strictly under argon. Tris(dibenzylideneacetone)dipalladium was from Aldrich. All reactions were carried out under argon atmosphere. Homopropargyl alcohols 1a–1e were prepared by the ring-opening reaction of 2,2-dimethyloxirane with alkynyllithium. Alcohols 4 and 5 were prepared by the procedure of Sato.8

Preparation of 7

A 300–mL reaction flask was filled with argon. THF (60 mL) and 1-hexyne (8.28 mL, 72.0 mmol) were placed in the flask. At −78 °C, butyllithium (1.60 M hexane solution, 41.2 mL, 66.0 mmol) was added dropwise to the solution via a syringe. After 15 min, hexamethylphosphoramide (HMPA, 6.00 mL) and 2-methylcyclohexanone (7.28 mL, 60.0 mmol) were sequentially added, and the resulting mixture was stirred for 2 h at −78 °C. The reaction was quenched with saturated ammonium chloride solution (60 mL). Extractive workup followed by silica gel column purification (hexane/ethyl acetate = 10:1) provided 1-(1-hexynyl)-2-methylcyclohexanol (7.09 g, 36.5 mmol, 61%) as a colorless liquid.

Under argon atmosphere, THF (35 mL), 1-(1-hexynyl)-2-methylcyclohexanol (7.09 g, 36.5 mmol), and butyllithium (1.60 M hexane solution, 22.8 mL, 36.5 mmol) were added at −78 °C, and the resulting mixture was stirred for 1 h at this temperature. Ethyl chloroformate (4.36 mL, 45.6 mmol) was added at −78 °C. The resulting mixture was then warmed to 60 °C. After being stirred for 12 h, the mixture was poured into saturated ammonium chloride solution (40 mL). Extraction, evaporation, and purification on silica gel afforded ethyl 1-(1-hexynyl)-2-methylcyclohexyl carbonate (9.36 g, 35.1 mmol, 96%) as a colorless liquid.

A solution of the carbonate (10.5 g, 39.4 mmol) in diethyl ether (80 mL) was placed in the 300–mL reaction flask under argon atmosphere. The flask was cooled to −50 °C. Titanium tetraisopropoxide (11.6 mL, 39.4 mmol) and isopropylmagnesium bromide (1.00 M ether solution, 74.9 mL, 74.9 mmol) were added. The resulting black solution was stirred for 1 h at this temperature and then cooled to −78 °C. Acetaldehyde (2.21 mL, 39.4 mmol) was added,
and the mixture was allowed to warm up to –20 ºC. After being stirred for 3 h, the reaction was quenched with ice-cold 1 M hydrochloric acid (150 mL). Extraction followed by silica gel column purification furnished 1-[1-(1-hexynyl)-2-methylcyclohexyl]ethanol (2.93 g, 13.2 mmol, 33%) as a colorless liquid.

In a 100–mL reaction flask, pyridinium chlorochromate (4.27 g, 19.8 mmol) and neutral silica gel (4.27 g) were added and the flask was flushed with argon. Dichloromethane (30 mL) and 1-[1-(1-hexynyl)-2-methylcyclohexyl]ethanol (2.93 g, 13.2 mmol) were added at 0 ºC. The resulting mixture was stirred at ambient temperature. After 10 h, the mixture was passed through a pad of celite, dried over sodium sulfate, and evaporated. 1-[1-(1-Hexynyl)-2-methylcyclohexyl]ethanone (2.50 g, 11.3 mmol, 86%) was obtained after silica gel column purification as a colorless liquid.

Under an atmosphere of argon, methyllithium (1.09 M ether solution, 15.6 mL, 17.0 mmol) was placed in the reaction flask at –78 ºC. 1-[1-(1-Hexynyl)-2-methylcyclohexyl]ethanone (2.50 g, 11.3 mmol) in ether solution (15 mL) was added dropwise through a syringe at this temperature, and the mixture was stirred for 4 h at the same temperature. The reaction was quenched with 1 M hydrochloric acid (20 mL). After extractive workup, the starting material, along with the desired product, was detected in the crude mixture by NMR. The residue was treated with the same reaction conditions for additional two times. Purification on silica gel (hexane/ethyl acetate = 20:1) afforded anti-7 (Rf = 0.31, 1.81 g, 7.67 mmol, 68%) and syn-7 (Rf = 0.24, 0.58 g, 2.46 mmol, 22%). Both of the diastereomers were obtained as colorless liquids.

Typical Procedure for Palladium-catalyzed Cross-coupling Allenylation of Aryl Halides with Homopropargyl Alcohol

Tris(dibenzylideneacetone)dipalladium (9.1 mg, 0.010 mmol) was placed in a 30–mL two-necked reaction flask equipped with a Dimroth condenser. With a glovebox filled with argon, powdered potassium hydroxide (0.045 g, 0.80 mmol) was added. N,N-Dimethylacetamide (DMA, 26 µL, 0.28 mmol) was added to the reaction flask via a microsyringe at room temperature. Trioctylphoshine (1.0 M hexane solution, 0.080 mL, 0.080 mmol) and toluene (2.0 mL) were sequentially added, and the mixture was stirred for 10 min at ambient temperature. A solution of homopropargyl alcohol 1a (0.074 g, 0.48 mmol) and bromobenzene (0.063 g, 0.40 mmol) in toluene (4.0 mL) was added to the resulting brown solution. The reaction mixture was heated at reflux for 4 h. After the mixture was cooled to room temperature, the reaction was quenched with water (20 mL). The product was extracted with hexane/ethyl acetate = 5:1 three times. The combined organic layer was dried over sodium sulfate and concentrated in vacuo. Purification on silica gel with hexane as an eluent provided
3-phenyl-1,2-heptadiene (0.051 g, 0.30 mmol, 74%) as a colorless liquid.

Characterization Data for Compounds

Spectral data for some compounds (3a and 4b) are found in the literature.

2-Methyl-4-nonyl-2-ol (1a): IR (neat) 3374, 2963, 2863, 1467, 1378, 1146, 907 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.91 (t, \(J = 7.0\) Hz, 3H), 1.28 (s, 6H), 1.41 (tq, \(J = 7.0, 7.0\) Hz, 2H), 1.49 (tt, \(J = 7.0, 7.0\) Hz, 2H), 1.94 (s, 1H), 2.19 (tt, \(J = 7.0, 2.5\) Hz, 2H), 2.33 (t, \(J = 2.5\) Hz, 2H); \(^1\)C NMR (CDCl\(_3\)) \(\delta\) 13.82, 18.62, 22.18, 28.74, 31.31, 34.72, 70.08, 76.42, 83.30.

2-Methyl-4-phenyl-4-octyn-2-ol (1b): IR (neat) 3384, 2973, 2933, 1497, 1454, 1376, 1145, 907, 746 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.31 (s, 6H), 1.83 (tt, \(J = 7.5, 7.0\) Hz, 2H), 1.91 (s, 1H), 2.22 (tt, \(J = 7.0, 2.5\) Hz, 2H), 2.36 (t, \(J = 2.5\) Hz, 2H), 2.72 (t, \(J = 7.5\) Hz, 2H), 7.18–7.21 (m, 3H), 7.27–7.31 (m, 2H); \(^1\)C NMR (CDCl\(_3\)) \(\delta\) 18.44, 28.79, 30.86, 34.74, 35.10, 70.12, 76.97, 83.30, 126.10, 128.57, 128.71, 141.85.

9-Benzylxy-2-methyl-4-nonyl-2-ol (1c): IR (neat) 3415, 2934, 2862, 1454, 1363, 1113, 907, 737 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.28 (s, 6H), 1.58–1.64 (m, 2H), 1.70–1.75 (m, 2H), 1.93 (s, 1H), 2.22 (tt, \(J = 7.5, 2.5\) Hz, 2H), 2.33 (t, \(J = 2.5\) Hz, 2H), 3.49 (t, \(J = 6.5\) Hz, 2H), 4.50 (s, 2H), 7.27–7.31 (m, 1H), 7.33–7.36 (m, 4H); \(^1\)C NMR (CDCl\(_3\)) \(\delta\); 18.79, 25.97, 28.77, 29.13, 34.71, 70.00, 70.08, 73.09, 76.81, 83.51, 127.74, 127.84, 128.58, 138.75.

2,6-Dimethyl-4-heptyl-2-ol (1d): IR (neat) 3373, 2971, 2933, 1466, 1378, 1364, 1321, 1146, 907 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.16 (d, \(J = 7.0\) Hz, 6H), 1.28 (s, 6H), 1.94 (s, 1H), 2.33 (d, \(J = 2.5\) Hz, 2H), 2.56 (sept of t, \(J = 7.0, 2.5\) Hz, 1H); \(^1\)C NMR (CDCl\(_3\)) \(\delta\) 20.75, 23.56, 28.69, 34.64, 70.00, 75.62, 89.74.

2,6,6-Trimethyl-4-heptyl-2-ol (1e): IR (nujol) 3230, 2866, 2360, 1456, 1363, 1266, 1158, 984, 907 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.22 (s, 9H), 1.28 (s, 6H), 1.93 (s, 1H), 2.32 (s, 2H); \(^1\)C NMR (CDCl\(_3\)) \(\delta\) 27.66, 28.65, 31.50, 34.62, 69.98, 74.87, 92.75.
1-(1-Butyl-1,2-propadienyl)-4-methylbenzene (3b): IR (neat) 3024, 2958, 2928, 2860, 1939, 1511, 848, 820 cm⁻¹; ¹H NMR (CDCl₃) δ 0.93 (t, J = 7.5 Hz, 3H), 1.41 (tq, J = 7.5, 7.5 Hz, 2H), 1.53 (tt, J = 7.5, 7.5 Hz, 2H), 2.33 (s, 3H), 2.40 (tt, J = 7.5, 3.5 Hz, 2H), 5.04 (t, J = 3.5 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.19, 21.27, 22.73, 29.50, 30.27, 78.06, 105.02, 126.09, 129.28, 133.74, 136.42, 208.66; Found: C, 89.96; H, 9.72%. Calcd for C₁₄H₁₈: C, 90.26; H, 9.74%.

4-(1-Butyl-1,2-propadienyl)biphenyl (3c): IR (neat) 3030, 2956, 2929, 2859, 1938, 1486, 841, 765, 730 cm⁻¹; ¹H NMR (CDCl₃) δ 0.96 (t, J = 7.5 Hz, 3H), 1.44 (tq, J = 7.5, 7.5 Hz, 2H), 1.57 (tt, J = 7.5, 7.5 Hz, 2H), 2.46 (tt, J = 7.5, 3.5 Hz, 2H), 5.10 (t, J = 3.5 Hz, 2H), 7.34 (tt, J = 7.5, 1.5 Hz, 1H), 7.44 (dd, J = 7.5, 7.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.56 (d, J = 8.5 Hz, 2H), 7.60 (dd, J = 7.5, 1.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.21, 22.75, 29.42, 30.29, 78.36, 104.95, 126.58, 127.15, 127.26, 127.38, 128.97, 135.79, 139.52, 141.05, 209.02; Found: C, 91.82; H, 8.12%. Calcd for C₁₉H₂₀: C, 91.88; H, 8.12%.

4-(1-Butyl-1,2-propadienyl)-1-fluorobenzene (3d): IR (neat) 2959, 2931, 2861, 1941, 1602, 1508, 1232, 1159, 852, 836, 815 cm⁻¹; ¹H NMR (CDCl₃) δ 0.94 (t, J = 7.0 Hz, 3H), 1.42 (tt, J = 7.0, 7.0 Hz, 2H), 1.50–1.56 (m, 2H), 2.39 (tt, J = 7.0, 3.0 Hz, 2H), 5.06 (t, J = 3.0 Hz, 2H), 7.00 (t, J = 9.0 Hz, 2H), 7.36 (dd, J = 9.0, 5.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.16, 22.70, 29.63, 30.19, 78.40, 104.45, 115.39 (d, J = 21.6 Hz), 127.69 (d, J = 8.2 Hz), 132.71 (d, J = 3.4 Hz), 161.92 (d, J = 245.7 Hz), 208.68 (d, J = 1.4 Hz); ¹⁹F NMR (CDCl₃) δ –116.71; Found: C, 82.00; H, 7.98%. Calcd for C₁₃H₁₅F: C, 82.07; H, 7.98%.

4-(1-Butyl-1,2-propadienyl)-1-trifluoromethylenbenzene (3e): IR (neat) 2960, 2933, 2863, 1940, 1617, 1328, 1167, 1125, 1070, 843 cm⁻¹; ¹H NMR (CDCl₃) δ 0.94 (t, J = 7.5 Hz, 3H), 1.42 (tq, J = 7.5, 7.5 Hz, 2H), 1.54 (tt, J = 7.5, 7.5 Hz, 2H), 2.42 (tt, J = 7.5, 3.0 Hz, 2H), 5.13 (t, J = 3.0 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.16, 22.67, 29.25, 30.13, 78.88, 104.60, 124.52 (q, J = 272.2 Hz), 125.43 (q, J = 3.9 Hz), 126.34, 128.63 (q, J = 32.7 Hz), 140.73, 209.36; ¹⁹F NMR (CDCl₃) δ –62.94; Found: C, 69.95; H, 6.41%. Calcd for C₁₄H₁₅F₃: C, 69.99; H, 6.29%.
tert-Butyl 4-(1-butyl-1,2-propadienyl)phenyl ketone (3f): IR (neat) 2958, 2931, 2872, 1938, 1671, 1602, 1174, 961, 849 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.94 (t, \(J = 7.5\) Hz, 3H), 1.36 (s, 9H), 1.42 (tt, \(J = 7.5,\) 3.5 Hz, 2H), 2.42 (tt, \(J = 7.5,\) 3.5 Hz, 2H), 5.11 (t, \(J = 3.5\) Hz, 2H), 7.43 (d, \(J = 8.5\) Hz, 2H), 7.72 (d, \(J = 8.5\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 14.15, 22.68, 28.37, 30.21, 44.31, 78.65, 104.89, 125.71, 128.68, 136.25, 139.87, 208.26, 209.48; Found: C, 84.06; H, 9.40%. Calcd for C\(_{18}\)H\(_{24}\)O: C, 84.33; H, 9.44%.

4-(1-Butyl-1,2-propadienyl)-1-methoxybenzene (3g): IR (neat) 2957, 2931, 2859, 2835, 1939, 1608, 1510, 1250, 1178, 1039, 832 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.93 (t, \(J = 7.5\) Hz, 3H), 1.41 (tq, \(J = 7.5,\) 7.5 Hz, 2H), 1.53 (tt, \(J = 7.5,\) 7.5 Hz, 2H), 2.39 (tt, \(J = 7.5,\) 3.5 Hz, 2H), 3.81 (s, 3H), 5.04 (t, \(J = 3.5\) Hz, 2H), 6.87 (d, \(J = 9.0\) Hz, 2H), 7.33 (d, \(J = 9.0\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 14.18, 22.73, 29.63, 30.27, 55.51, 78.09, 104.71, 114.05, 127.28, 129.00, 158.63, 208.51; Found: C, 82.83; H, 9.09%. Calcd for C\(_{14}\)H\(_{18}\)O: C, 83.12; H, 8.97%.

1-(1-Butyl-1,2-propadienyl)-2-methylbenzene (3h): IR (neat) 3017, 2957, 2929, 2859, 1952, 1458, 843, 762, 726 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.90 (t, \(J = 7.5\) Hz, 3H), 1.37 (tq, \(J = 7.5,\) 7.5 Hz, 2H), 1.42 (tt, \(J = 7.5,\) 7.5 Hz, 2H), 2.31 (tt, \(J = 7.5,\) 3.5 Hz, 2H), 2.34 (s, 3H), 4.78 (t, \(J = 3.5\) Hz, 2H), 7.13–7.20 (m, 4H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 14.16, 20.42, 22.63, 30.08, 33.48, 75.36, 104.05, 125.97, 127.03, 128.12, 130.63, 136.23, 137.75, 206.89; Found: C, 90.04; H, 9.94%. Calcd for C\(_{14}\)H\(_{18}\): C, 90.26; H, 9.74%.

1-(1-Butyl-1,2-propadienyl)naphthalene (3i): IR (neat) 3045, 2957, 2930, 2871, 2858, 1466, 1394, 845, 799, 776 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.91 (t, \(J = 7.5\) Hz, 3H), 1.41 (tq, \(J = 7.5, 7.5\) Hz, 2H), 1.51 (tt, \(J = 7.5,\) 7.5 Hz, 2H), 2.47 (tt, \(J = 7.5,\) 3.5 Hz, 2H), 4.86 (t, \(J = 3.5\) Hz, 2H), 7.39–7.41 (m, 1H), 7.44–7.52 (m, 3H), 7.76–7.77 (m, 1H), 7.84–7.86 (m, 1H), 8.13–8.15 (m, 1H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 14.17, 22.63, 30.29, 34.26, 75.38, 103.28, 125.55, 125.62, 125.76, 125.90, 126.01, 127.57, 128.60, 131.52, 134.18, 136.41, 207.57; Found: C, 92.09; H, 8.29%. Calcd for C\(_{17}\)H\(_{18}\): C, 91.84; H, 8.16%.
2-[4-(1-Butyl-1,2-propadienyl)phenyl]-2-methyl-1,3-dioxane (3j): IR (neat) 2959, 2932, 2870, 1939, 1369, 1250, 1192, 1147, 1084, 842 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 0.95 (t, $J = 7.5$ Hz, 3H), 1.24 (dm, $J = 13.5$ Hz, 1H), 1.41 (tq, $J = 7.5, 7.5$ Hz, 2H), 1.50 (s, 3H), 1.56 (tt, $J = 7.5, 7.5$ Hz, 2H), 2.12 (dtt, $J = 13.5, 12.0, 5.5$ Hz, 1H), 2.43 (tt, $J = 7.5, 3.5$ Hz, 2H), 3.79–3.88 (m, 4H), 5.08 (t, $J = 3.5$ Hz, 2H), 7.38 (d, $J = 8.5$ Hz, 2H), 7.44 (d, $J = 8.5$ Hz, 2H); 13C NMR (CDCl$_3$) δ 14.19, 22.75, 25.70, 29.40, 30.29, 32.59, 61.47, 78.36, 100.74, 104.96, 126.50, 127.16, 136.19, 139.67, 208.99; Found: C, 79.18; H, 8.96%. Calcd for C$_{18}$H$_{24}$O$_2$: C, 79.37; H, 8.88%.

2-[4-(1-Butyl-1,2-propadienyl)phenyl]-1,3-dioxolane (3k): IR (neat) 2957, 2930, 2873, 2862, 1939, 1083, 943, 832 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 0.93 (t, $J = 7.5$ Hz, 3H), 1.40 (tq, $J = 7.5, 7.5$ Hz, 2H), 1.52 (tt, $J = 7.5, 7.5$ Hz, 2H), 2.41 (tt, $J = 7.5, 3.0$ Hz, 2H), 4.00–4.07 (m, 2H), 4.09–4.16 (m, 2H), 5.06 (t, $J = 3.0$ Hz, 2H), 5.81 (s, 1H), 7.42 (m, 4H); 13C NMR (CDCl$_3$) δ 14.18, 22.68, 29.45, 30.19, 65.49, 78.27, 103.84, 104.96, 126.21, 126.65, 136.25, 137.80, 209.02; Found: C, 78.38; H, 8.40%. Calcd for C$_{16}$H$_{20}$O: C, 78.65; H, 8.25%.

3,6-Diphenyl-1,2-hexadiene (3l): IR (neat) 3084, 3061, 3026, 2936, 2859, 1940, 1597, 1495, 1452, 852, 764, 748 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 1.91 (quint, $J = 7.5$ Hz, 2H), 2.47 (tt, $J = 7.5, 3.5$ Hz, 2H), 2.73 (t, $J = 7.5$ Hz, 2H), 5.10 (t, $J = 3.5$ Hz, 2H), 7.17–7.22 (m, 4H), 7.27–7.33 (m, 4H), 7.38–7.40 (m, 2H); 13C NMR (CDCl$_3$) δ 29.10, 29.73, 35.76, 78.61, 104.96, 125.96, 126.19, 126.82, 128.52, 128.58, 128.72, 136.62, 142.56, 208.81; Found: C, 92.51; H, 7.78%. Calcd for C$_{18}$H$_{18}$: C, 92.26; H, 7.74%.

7-Benzzyloxy-3-phenyl-1,2-heptadiene (3m): IR (neat) 3031, 2938, 2859, 1940, 1494, 1452, 1106, 1076, 852, 765, 735 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 1.66 (tt, $J = 8.0, 7.5$ Hz, 2H), 1.74 (tt, $J = 8.0, 6.5$ Hz, 2H), 2.45 (tt, $J = 7.5, 3.5$ Hz, 2H), 3.51 (t, $J = 6.5$ Hz, 2H), 4.51 (s, 2H), 5.07 (t, $J = 3.5$ Hz, 2H), 7.19–7.22 (m, 1H), 7.26–7.35 (m, 7H), 7.40–7.42 (m, 2H); 13C NMR (CDCl$_3$) δ 24.69, 29.47, 29.64, 70.43, 73.09, 78.42, 104.99, 126.19, 126.78, 127.70, 127.85, 128.57 (overlapped), 136.58, 138.85, 208.82; Found: C, 86.42; H, 8.19%. Calcd for C$_{20}$H$_{22}$O: C, 86.29; H, 7.97%.

106
2-Methyl-2-[4-{1-(1-methylethyl)-1,2-propadienyl}phenyl]-1,3-dioxane (3n): IR (neat) 2963, 2932, 2869, 1940, 1243, 1192, 1147, 1085, 842 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.16 (d, \(J = 7.0\) Hz, 6H), 1.22–1.27 (dm, \(J = 13.0\) Hz, 1H), 1.51 (s, 3H), 2.12 (dtt, \(J = 13.0, 6.5, 5.5\) Hz, 1H), 2.82 (sept.t, \(J = 7.0, 2.5\) Hz, 1H), 3.79–3.88 (m, 4H), 5.11 (d, \(J = 2.5\) Hz, 2H), 7.38 (d, \(J = 9.0\) Hz, 2H), 7.44 (d, \(J = 9.0\) Hz, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 22.43, 25.69, 27.53, 32.58, 61.47, 79.47, 100.73, 112.11, 126.95, 127.18, 136.00, 139.61, 207.97; Found: C, 79.29; H, 8.84%. Calcd for C\(_{17}\)H\(_{22}\)O\(_2\): C, 79.03; H, 8.58%.

2,3,3-Trimethyl-4-nonyl-2-ol (5): IR (neat) 3448, 2961, 2934, 2874, 1458, 1375, 1143 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.91 (t, \(J = 7.5\) Hz, 3H), 1.20 (s, 6H), 1.25 (s, 6H), 1.40 (tt, \(J = 7.5, 7.0\) Hz, 2H), 1.47 (tt, \(J = 7.0, 7.0\) Hz, 2H), 1.95 (s, 1H), 2.17 (t, \(J = 7.0\) Hz, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 13.83, 18.56, 22.17, 24.88, 25.12, 31.40, 41.06, 74.14, 82.65, 85.77.

4-Phenyl-2,3-octadiene (6a): IR (neat) 3025, 2957, 2927, 2860, 1947, 1597, 1494, 1458, 782, 747 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.93 (t, \(J = 7.5\) Hz, 3H), 1.38–1.45 (m, 2H), 1.49–1.55 (m, 2H), 1.77 (d, \(J = 7.0\) Hz, 3H), 2.40 (dtq, \(J = 10.0, 4.5, 3.0\) Hz, 2H), 5.46 (qt, \(J = 7.0, 3.0\) Hz, 1H), 7.18 (t, \(J = 7.5\) Hz, 1H), 7.31 (d, \(J = 8.0\) Hz, 2H), 7.40 (dd, \(J = 8.0, 7.5\) Hz, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 14.25, 14.61, 22.68, 29.82, 30.31, 88.95, 105.19, 126.18, 126.50, 128.46, 137.83, 204.89.

1-(1-Butyl-3-methyl-1,2-butadienyl)-4-methylbenzene (6b): IR (neat) 3023, 2957, 2926, 2860, 1947, 1511, 821 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.93 (t, \(J = 7.5\) Hz, 3H), 1.40 (tq, \(J = 7.5, 7.5\) Hz, 2H), 1.51 (tt, \(J = 7.5, 5.0\) Hz, 2H), 1.75 (d, \(J = 7.0\) Hz, 3H), 2.33 (s, 3H), 2.39 (dtq, \(J = 10.0, 5.0, 3.0\) Hz, 2H), 5.43 (qt, \(J = 7.0, 3.0\) Hz, 1H), 7.12 (d, \(J = 8.0\) Hz, 2H), 7.28 (d, \(J = 8.0\) Hz, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 14.24, 14.67, 21.26, 22.68, 29.93, 30.34, 88.74, 105.53, 126.10, 129.19, 134.87, 136.17, 204.64; Found: C, 89.97; H, 10.19%. Calcd for C\(_{15}\)H\(_{20}\): C, 89.94; H, 10.06%.
Chapter 3

4-(1-Butyl-3-methyl-1,2-butadienyl)-1-fluorobenzene (6c): IR (neat) 2958, 2928, 2861, 1950, 1507, 1323, 1159, 836 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.93 (t, \(J = 7.5\) Hz, 3H), 1.40 (tq, \(J = 7.5, 7.5\) Hz, 2H), 1.50 (tt, \(J = 7.5, 7.5\) Hz, 2H), 1.76 (d, \(J = 7.0\) Hz, 3H), 2.37 (ddt, \(J = 8.5, 7.5, 3.0\) Hz, 2H), 5.46 (qt, \(J = 7.0, 3.0\) Hz, 1H), 6.99 (dd, \(J = 9.0, 9.0\) Hz, 2H), 7.34 (d, \(J = 9.0, 5.5\) Hz, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 14.22, 14.60, 22.65, 30.03, 30.24, 89.17, 104.41, 115.26 (d, \(J = 21.6\) Hz), 127.63 (d, \(J = 7.7\) Hz), 133.77 (d, \(J = 2.9\) Hz), 161.79 (d, \(J = 245.2\) Hz), 204.66; \(^19\)F NMR (CDCl\(_3\)) \(\delta\) –117.08; Found: C, 82.33; H, 8.51%. Calcd for C\(_{14}\)H\(_{17}\)F: C, 82.31; H, 8.39%.

tert-Butyl 4-(1-Butyl-3-methyl-1,2-butadienyl)phenyl ketone (6d): IR (neat) 2958, 2930, 2861, 1943, 1670, 1602, 1174, 961, 850 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.94 (t, \(J = 7.5\) Hz, 3H), 1.36 (s, 9H), 1.42 (tq, \(J = 7.5, 7.5\) Hz, 2H), 1.52 (tt, \(J = 7.5, 5.0\) Hz, 2H), 1.78 (d, \(J = 7.0\) Hz, 3H), 2.41 (dt, \(J = 10.0, 5.0, 3.0\) Hz, 2H), 5.51 (qt, \(J = 7.0, 3.0\) Hz, 1H), 7.41 (d, \(J = 8.5\) Hz, 2H), 7.72 (d, \(J = 8.5\) Hz, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 14.21, 14.39, 22.64, 28.40, 29.63, 30.27, 44.29, 89.44, 104.89, 125.68, 128.69, 135.94, 140.90, 205.74, 208.70; Found: C, 84.65; H, 9.98%. Calcd for C\(_{19}\)H\(_{26}\)O: C, 84.39; H, 9.69%.

2-[4-(1-Butyl-3-methyl-1,2-butadienyl)phenyl]-2-methyl-1,3-dioxane (6e): IR (neat) 2958, 2927, 2870, 1192, 1147, 1085, 842 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.94 (t, \(J = 7.5\) Hz, 3H), 1.23 (dm, \(J = 13.0\) Hz, 1H), 1.42 (tq, \(J = 7.5, 7.5\) Hz, 2H), 1.50 (s, 3H), 1.51–1.57 (m, 2H), 1.77 (d, \(J = 7.0\) Hz, 3H), 2.12 (dm, \(J = 13.0\) Hz, 1H), 2.41 (dt, \(J = 10.5, 4.5, 3.0\) Hz, 2H), 3.79–3.89 (m, 4H), 5.48 (qt, \(J = 7.0, 3.0\) Hz, 1H), 7.39 (d, \(J = 8.5\) Hz, 2H), 7.43 (d, \(J = 8.5\) Hz, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 14.24, 14.59, 22.70, 25.70, 29.80, 30.35, 32.63, 61.46, 89.14, 100.77, 104.93, 126.47, 127.08, 137.25, 139.34, 205.03; Found: C, 79.72; H, 9.31%. Calcd for C\(_{19}\)H\(_{26}\)O\(_2\): C, 79.68; H, 9.15%.

108
2-[4-(1-Butyl-3-methyl-1,2-butenadienyl)phenyl]-1,3-dioxolane (6f): IR (neat) 2956, 2928, 2860, 1947, 1083, 943, 832 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.93 (t, \(J = 7.5\) Hz, 3H), 1.40 (tq, \(J = 7.5, 7.5\) Hz, 2H), 1.51 (tt, \(J = 7.5, 5.0\) Hz, 2H), 1.76 (d, \(J = 7.0\) Hz, 3H), 2.40 (ddt, \(J = 10.0, 5.0, 3.0\) Hz, 2H), 4.00–4.06 (m, 2H), 4.09–4.15 (m, 2H), 5.46 (qt, \(J = 7.0, 3.0\) Hz, 1H), 5.81 (s, 1H), 7.38–7.42 (m, 4H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 14.22, 14.53, 22.63, 29.87, 30.27, 65.47, 88.96, 103.89, 104.98, 126.19, 126.55, 136.03, 138.90, 205.14; Found: C, 78.75; H, 8.52%. Calcd for C\(_{17}\)H\(_{22}\)O\(_2\): C, 79.03; H, 8.58%.

2-Methyl-4-phenyl-2,3-octadiene (6g): IR (neat) 3025, 2957, 2930, 2859, 1953, 1598, 1493, 1466, 1447, 757 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.93 (t, \(J = 7.0\) Hz, 3H), 1.41 (tq, \(J = 7.0, 7.0\) Hz, 2H), 1.50 (tt, \(J = 7.5, 7.0\) Hz, 2H), 1.80 (s, 6H), 2.39 (t, \(J = 7.5\) Hz, 2H), 7.16 (tt, \(J = 7.0, 1.0\) Hz, 1H), 7.30 (dd, \(J = 8.5, 7.0\) Hz, 2H), 7.37 (dd, \(J = 8.5, 1.0\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 14.29, 20.64, 22.67, 30.09, 30.35, 98.27, 103.53, 126.22 (overlapped), 128.39, 138.77, 202.01; Found: C, 89.96; H, 9.99%. Calcd for C\(_{15}\)H\(_{20}\): C, 89.94; H, 10.06%.

tert-Butyl 4-(1-butyl-3-methyl-1,2-butenadienyl)phenyl ketone (6h): IR (neat) 2958, 2931, 2861, 1951, 1672, 1602, 1173, 961, 849 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.93 (t, \(J = 7.0\) Hz, 3H), 1.36 (s, 9H), 1.40 (tq, \(J = 7.5, 7.5\) Hz, 2H), 1.49 (tt, \(J = 7.5, 7.0\) Hz, 2H), 1.81 (s, 6H), 2.38 (t, \(J = 7.0\) Hz, 2H), 7.38 (d, \(J = 8.5\) Hz, 2H), 7.72 (d, \(J = 8.5\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 14.25, 20.47, 22.62, 28.42, 29.88, 30.30, 44.27, 98.87, 103.24, 125.68, 128.71, 135.58, 141.95, 202.98, 208.10; Found: C, 84.72; H, 10.21%. Calcd for C\(_{20}\)H\(_{28}\)O: C, 84.45; H, 9.92%.

2-[4-(1-Butyl-3-methyl-1,2-butenadienyl)phenyl]-2-methyl-1,3-dioxane (6i): IR (neat) 2958, 2932, 2870, 1369, 1250, 1192, 1147, 1085, 842 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.94 (t, \(J = 7.0\) Hz, 3H), 1.23 (dm, \(J = 13.5\) Hz, 1H), 1.41 (tq, \(J = 8.0, 7.5\) Hz, 2H), 1.48–1.53 (m, 2H), 1.50 (s, 3H), 1.81 (s, 6H), 2.12 (dtt, \(J = 13.5, 9.5, 6.0\) Hz, 1H), 2.39 (t, \(J = 7.5\) Hz, 2H), 3.80–3.87 (m, 4H), 7.35 (d, \(J = 8.5\) Hz, 2H), 7.40 (d, \(J = 8.5\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 14.29, 20.63, 22.69, 25.70, 30.04, 30.37, 32.68, 61.45, 98.54, 100.80, 103.21, 126.47, 127.02, 138.11, 138.98, 202.10; Found: C, 79.93; H, 9.50%. Calcd for C\(_{20}\)H\(_{28}\)O\(_2\): C, 79.95; H, 9.39%.
anti-2-[1-(1-Butynyl)-2-methylcyclohexyl]-2-propanol (anti-7): IR (neat) 3560, 2958, 2930, 2857, 2360, 2341, 1448, 1338, 1190 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.94 (t, \(J_{\text{HH}} = 7.5\) Hz, 3H), 1.06 (d, \(J = 6.5\) Hz, 3H), 1.10–1.18 (m, 2H), 1.20 (s, 3H), 1.24 (s, 3H), 1.36–1.66 (m, 10H), 1.70–1.74 (m, 1H), 2.27 (t, \(J = 6.5\) Hz, 2H), 2.36 (s, 1H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 13.81, 81.29, 125.89, 1949, 1494, 1448, 1338, 1190 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.93 (t, \(J = 7.5\) Hz, 3H), 1.05 (d, \(J = 7.0\) Hz, 3H), 1.26 (s, 3H), 1.33 (s, 3H), 1.31–1.54 (m, 7H), 1.57–1.64 (m, 4H), 1.67–1.74 (m, 1H), 2.01–2.03 (m, 1H), 2.14–2.29 (m, 1H), 2.23 (t, \(J = 6.5\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 13.82, 16.38, 18.66, 20.23, 22.25, 23.81, 24.78, 25.19, 27.21, 31.46, 33.06, 35.09, 49.28, 74.47, 85.39, 85.85; Found: C, 81.05; H, 12.17%. Calcd for C\(_{16}\)H\(_{28}\)O: C, 81.29; H, 11.94%.

anti-1-Butyl-2-(2-methylcyclohexylidene)ethenylbenzene (anti-8a): IR (neat) 3029, 2956, 2925, 2853, 1949, 1494, 1449, 757 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.96 (t, \(J = 7.5\) Hz, 3H), 0.99 (d, \(J = 6.5\) Hz, 3H), 1.13–1.21 (m, 1H), 1.37–1.49 (m, 4H), 1.51 (quint, \(J = 7.5\) Hz, 2H), 1.80–1.90 (m, 3H), 2.07–2.13 (m, 1H), 2.14–2.20 (m, 1H), 2.37–2.39 (m, 1H), 2.41 (t, \(J = 7.5\) Hz, 2H), 7.16, (t, \(J = 8.5\) Hz, 1H), 7.30 (dd, \(J = 8.5, 7.0\) Hz, 2H), 7.40 (d, \(J = 7.0\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 14.34, 19.87, 22.80, 26.47, 27.97, 30.01, 30.56, 32.21, 35.56, 36.80, 105.75, 111.87, 125.89, 126.10, 128.35, 139.11, 197.96; Found: C, 89.56; H, 10.42%. Calcd for C\(_{19}\)H\(_{26}\): C, 89.70; H, 10.30%.

syn-1-Butyl-2-(2-methylcyclohexylidene)ethenylbenzene (syn-8a): IR (neat) 3560, 2958, 2930, 2857, 2360, 2341, 1448, 1338, 1190 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.94 (t, \(J = 7.5\) Hz, 3H), 1.00 (d, \(J = 6.5\) Hz, 3H), 1.20–1.28 (m, 1H), 1.37–1.55 (m, 6H), 1.82–1.93 (m, 3H), 2.04–2.16 (m, 2H), 2.38–2.41 (m, 1H), 2.41 (t, \(J = 7.5\) Hz, 2H), 7.17, (td, \(J = 7.5, 1.0\) Hz, 1H), 7.31 (dd, \(J = 8.0, 7.5\) Hz, 2H), 7.45 (dd, \(J = 8.0, 1.0\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 14.32, 19.86, 22.86, 26.46, 28.25, 30.19, 30.62, 32.19, 35.70, 36.98, 105.62, 111.75, 125.77, 126.08, 128.41, 138.87, 197.99; Found: C, 89.67; H, 10.50%. Calcd for C\(_{19}\)H\(_{26}\): C, 89.70; H, 10.30%.
anti-4-[1-Butyl-2-(2-methylcyclohexylidene)ethenyl]biphenyl (anti-8b): IR (neat) 2924, 2846, 1952, 1598, 1487, 1433, 837, 762, 732 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.98 (t, \(J = 7.0\) Hz, 3H), 1.02 (d, \(J = 7.0\) Hz, 3H), 1.15–1.22 (m, 1H), 1.42–1.51 (m, 4H), 1.57 (quint, \(J = 7.5\) Hz, 2H), 1.82–1.91 (m, 3H), 2.10–2.23 (m, 2H), 2.37–2.42 (m, 1H), 2.45 (t, \(J = 7.5\) Hz, 2H), 7.32–7.35 (m, 1H), 7.42–7.49 (m, 4H), 7.53–7.56 (m, 2H), 7.59–7.61 (m, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 14.36, 19.91, 22.82, 26.48, 27.98, 30.05, 30.60, 32.24, 35.61, 36.82, 105.50, 112.03, 126.27, 127.11, 127.13, 127.21, 128.93, 138.18, 138.92, 141.29, 198.18; Found: C, 91.14; H, 8.99%. Calcd for C\(_{25}\)H\(_{30}\): C, 90.85; H, 9.15%. m.p. 88.7–89.3 ºC.

syn-4-[1-Butyl-2-(2-methylcyclohexylidene)ethenyl]biphenyl (syn-8b): IR (neat) 3029, 2955, 2925, 2853, 1947, 1486, 1448, 840, 764, 730 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.96 (t, \(J = 7.5\) Hz, 3H), 1.03 (d, \(J = 6.5\) Hz, 3H), 1.22–1.30 (m, 1H), 1.40–1.57 (m, 6H), 1.84–1.94 (m, 3H), 2.06–2.17 (m, 2H), 2.40–2.43 (m, 1H), 2.45 (t, \(J = 7.5\) Hz, 2H), 7.34 (tt, \(J = 8.0, 1.5\) Hz, 1H), 7.44 (t, \(J = 8.0\) Hz, 2H), 7.51 (d, \(J = 8.5\) Hz, 2H), 7.55 (d, \(J = 8.5\) Hz, 2H), 7.61 (dd, \(J = 8.0, 1.5\) Hz, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 14.33, 19.89, 22.87, 26.46, 28.29, 30.22, 30.65, 32.21, 35.75, 37.02, 105.38, 111.90, 126.15, 127.12, 127.16, 127.21, 128.93, 137.95, 138.89, 141.26, 198.20; Found: C, 91.00; H, 9.29%. Calcd for C\(_{25}\)H\(_{30}\): C, 90.85; H, 9.15%.

anti-4-[1-Butyl-2-(2-methylcyclohexylidene)ethenyl]-1-fluorobenzene (anti-8c): IR (neat) 2957, 2926, 2854, 1950, 1507, 1231, 1158, 834 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.95 (t, \(J = 7.5\) Hz, 3H), 0.98 (d, \(J = 7.0\) Hz, 3H), 1.12–1.20 (m, 1H), 1.37–1.47 (m, 4H), 1.52 (quint, \(J = 7.5\) Hz, 2H), 1.80–1.90 (m, 3H), 2.06–2.19 (m, 2H), 2.34–2.39 (m, 1H), 2.37 (t, \(J = 7.5\) Hz, 2H), 6.98 (t, \(J = 9.0\) Hz, 2H), 7.33 (dd, \(J = 9.0, 5.5\) Hz, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 14.32, 19.86, 22.77, 26.45, 27.97, 30.22, 30.50, 32.24, 35.57, 36.79, 104.96, 112.12, 115.11 (d, \(J = 21.1\) Hz), 127.25 (d, \(J = 7.7\) Hz), 135.03 (d, \(J = 3.4\) Hz), 161.61 (d, \(J = 244.9\) Hz), 197.68; \(^19\)F NMR (CDCl\(_3\)) \(\delta\) −117.75; Found: C, 83.63; H, 9.47%. Calcd for C\(_{19}\)H\(_{25}\)F: C, 83.78; H, 9.25%.

111
syn-4-[1-Butyl-2-(2-methylcyclohexyldiene)ethenyl]-1-fluorobenzene (syn-8c): IR (neat) 2956, 2926, 2854, 1949, 1507, 1158, 834 cm⁻¹; ¹H NMR (CDCl₃) δ 0.94 (t, J = 7.5 Hz, 3H), 0.99 (d, J = 6.5 Hz, 3H), 1.17–1.25 (m, 1H), 1.37–1.52 (m, 6H), 1.82–1.93 (m, 3H), 2.03–2.16 (m, 2H), 2.36–2.40 (m, 1H), 2.37 (t, J = 7.5 Hz, 2H), 6.99 (t, J = 9.0 Hz, 2H), 7.38 (dd, J = 9.0, 5.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.30, 19.86, 22.82, 26.41, 28.25, 30.40, 30.53, 32.18, 35.68, 36.98, 104.83, 112.01, 115.17 (d, J = 21.6 Hz), 127.12 (d, J = 7.8 Hz), 134.80, 161.58 (d, J = 244.8 Hz), 197.72; ¹⁹F NMR (CDCl₃) δ –117.75; Found: C, 83.80; H, 9.29%. Calcd for C₁₉H₂₅F: C, 83.78; H, 9.25%.

anti-2-[1-Butyl-2-(2-methylcyclohexyldiene)ethenyl]phenyl-2-methyl-1,3-dioxane (anti-8d):

IR (neat) 2957, 2926, 2855, 1947,1369, 1250, 1192, 1147, 1085, 842 cm⁻¹; ¹H NMR (CDCl₃) δ 0.97 (t, J = 7.5 Hz, 3H), 1.01 (d, J = 6.5 Hz, 3H), 1.13–1.27 (m, 2H), 1.37–1.49 (m, 4H), 1.51 (s, 3H), 1.52–1.64 (m, 2H), 1.78–1.90 (m, 3H), 2.08–2.22 (m, 3H), 2.36–2.39 (m, 1H), 2.42 (td, J = 7.5, 2.5 Hz, 2H), 3.82–3.87 (m, 4H), 7.36 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.37, 19.91, 22.82, 25.70, 26.45, 27.97, 29.98, 30.58, 32.22, 32.67, 35.59, 36.80, 61.44, 100.81, 105.44, 112.11, 126.13, 126.97, 138.46, 138.84, 198.05; Found: C, 81.03; H, 9.57%. Calcd for C₂₄H₃₄O₂: C, 81.31; H, 9.67%.

syn-2-[1-Butyl-2-(2-methylcyclohexyldiene)ethenyl]phenyl-2-methyl-1,3-dioxane (syn-8d):

IR (neat) 2957, 2926, 2855, 1947,1369, 1243, 1192, 1147, 1086, 841 cm⁻¹; ¹H NMR (CDCl₃) δ 0.95 (t, J = 7.5 Hz, 3H), 1.02 (d, J = 7.0 Hz, 3H), 1.23–1.30 (m, 2H), 1.39–1.56 (m, 6H), 1.52 (s, 3H), 1.83–1.94 (m, 3H), 2.04–2.18 (m, 3H), 2.37–2.42 (m, 1H), 2.42 (td, J = 7.0, 2.0 Hz, 2H), 3.85–3.88 (m, 4H), 7.37 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.33, 19.90, 22.89, 25.72, 26.43, 28.27, 30.17, 30.64, 32.19, 32.66, 35.73, 37.00, 61.46, 100.81, 105.31, 112.02, 125.99, 127.03, 138.20, 138.85, 198.07; HRMS Found: m/z 354.2554. Calcd for C₂₄H₃₄O₂: 354.2559.

Stereochemical Assignment of anti-7

One of the two isomers of 7 (0.085 g, 0.30 mmol), which was the faster moving band of Rᵣ = 0.31 (hexane/ethyl acetate = 20:1, the other isomer showed Rᵣ = 0.24), was dissolved in THF (1.0
mL), and the solution was placed in a 30-mL reaction flask under argon. Butyllithium (1.6 M hexane solution, 0.23 mL, 0.36 mmol) was added dropwise via a syringe at −78 ºC. After the mixture was stirred for 1 h at the same temperature, p-nitrobenzoyl chloride (0.069 g, 0.36 mmol) was added at once to the mixture at −78 ºC. The resulting mixture was allowed to warm gradually up to room temperature and heated at 60 ºC by using an oil bath for 2 h. The reaction was quenched with saturated ammonium chloride solution. Extractive workup followed by silica gel column purification yielded a mixture of anti-1-(1-hexynyl-2-methylcyclohexyl)-1-methylethyl 4-nitrobenzoate and starting material. The residue was purified by gel permeation chromatography. The pure ester was obtained as a white solid (0.066 g, 0.18 mmol, 60 % yield, unoptimized). X-ray quality crystals were grown from acetonitrile (Figure 1).

Figure 1. Ortep diagram of anti-1-(1-hexynyl-2-methylcyclohexyl)-1-methylethyl 4-nitrobenzoate. Hydrogen atoms are omitted for clarity.
Stereochemical Assignment of \textit{anti-8b}

X-ray quality crystals were grown from 2-propanol (Figure 2).

\textbf{Figure 2.} Ortep diagram of \textit{anti-8b}. Hydrogen atoms are omitted for clarity except for that at the C1.
References and Notes

(6) The reactions with homopropargyl alcohols, the substituent R at the alkyne terminus of which is H, Si-BuMe₂, or Ph, resulted in no formation of the desired products.

Synthesis of Epoxides by Palladium-Catayzed Reaction of Tertiary Allyl Alcohols with Aryl and Alkenyl Halides

A novel synthetic method for the preparation of tri- or tetrasubstituted epoxides is developed. Treatment of readily available tertiary allyl alcohol with aryl or alkenyl halide under palladium catalysis resulted in arylative cyclization to form the epoxide. The reaction includes intramolecular C–O bond and intermolecular C–C bond construction.
Introduction

Epoxides are among the most synthetically useful intermediates and are found in many natural products and biologically active compounds. Numerous methods for the preparation of epoxides have been reported so far, such as epoxidation of olefins, reaction of carbonyl compounds with sulfur ylides, and ring closure of vic-halohydrins. However, novel synthetic methods for the construction of epoxides have been still required because of their synthetic importance in organic chemistry.

Recently, palladium-catalyzed carboetherification/arylation reactions of alkenes with aryl bromides have provided a very efficient way to construct multisubstituted five-membered heterocycles. During the course of the studies for palladium-catalyzed reactions of unsaturated alcohols with aryl halides (Chapters 1–3), the author serendipitously found that Wolfe’s carboetherification is applicable to more rigid three-membered ring construction, which is a new synthetic strategy for the preparation of epoxides (Scheme 1). In Chapter 4, she reports palladium-catalyzed reactions of readily accessible tertiary allyl alcohols with aryl and alkenyl halides.

Scheme 1.

\[
R^1\text{OH} + R^4-X \xrightarrow{Pd \text{ cat.} \text{ base}} \text{carboetherification} \rightarrow R^1\text{O}R^3R^4
\]

\(R^4 = \text{aryl or alkenyl}\)

Results and Discussion

Treatment of tertiary allyl alcohol 1a with 1-bromonaphthalene in the presence of sodium tert-butoxide under palladium catalysis provided epoxide 2a in 88% yield (Table 1, entry 1). It is noteworthy that the reaction constructs both C–C and C–O bonds in a single operation. In the reaction, the choice of ligand is quite important: Only Buchwald’s biaryl phosphines P1–P4 and Xantphos P5 (Figure 1) served as suitable ligands for the epoxidation reaction. The
Mizoroki–Heck reaction of tertiary allyl alcohols with 1-bromonaphthalene predominated or exclusively proceeded when other phosphine ligands were used. The reaction with not only aryl bromide but also aryl chloride gave the corresponding epoxide 2a in good yield (entry 2). However, the use of naphthyl triflate as a starting material failed to afford the product (entry 3). Sterically demanding aryl bromides also participated in the epoxidation reaction (entries 4–7 and 9) except for bulkier 2-bromobiphenyl (entry 8). Aryl bromides bearing electron-donating groups as well as electron-deficient ones were converted to the corresponding epoxides in moderate yields (entries 10–12). Notably, alkenyl halides were also applicable to the epoxidation reaction (entries 13–15). Products 2k–2m would be difficult to synthesize in one step from simple starting materials using traditional methods. In the reactions with alkenyl halides, the combination of Pd$_2$(dba)$_3$ and P3 showed the highest catalytic activity.

Figure 1. Ligands used in the reactions

![Ligands](image-url)

- R=i-Pr Me RuPhos (P1) SPhos (P2)
- P3
- XPhos (P4) Xantphos (P5)
Table 1. Scope of Aryl and Alkenyl Halides in Palladium-Catalyzed Epoxidation/Arylation or /Alkenylationa

<table>
<thead>
<tr>
<th>entry</th>
<th>R–X</th>
<th>2, yieldb(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Br</td>
<td>2a, 88</td>
</tr>
<tr>
<td>2</td>
<td>Cl</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>OTf</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>2b, 82</td>
</tr>
<tr>
<td>5</td>
<td>Et</td>
<td>2c, 90</td>
</tr>
<tr>
<td>6</td>
<td>i-Pr</td>
<td>2d, 56</td>
</tr>
<tr>
<td>7</td>
<td>CH=CH$_2$</td>
<td>2e, 49</td>
</tr>
<tr>
<td>8</td>
<td>Ph</td>
<td>2f, 0c</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2g, 91</td>
</tr>
<tr>
<td>10</td>
<td>MeO–</td>
<td>2h, 67</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2i, 47</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2j, 50</td>
</tr>
<tr>
<td>13d</td>
<td></td>
<td>2k, 77</td>
</tr>
<tr>
<td>14d,e</td>
<td></td>
<td>2l, 74</td>
</tr>
<tr>
<td>15d</td>
<td></td>
<td>2m, 62</td>
</tr>
</tbody>
</table>

a A mixture of Pd$_2$(dba)$_3$ (0.0075 mmol), P1 (0.015 mmol), NaOt-Bu (0.60 mmol), 1a (0.30 mmol), and R–X (0.60 mmol) was boiled in toluene (3.0 mL) for 6–15 h. b Isolated yields. c No reaction. d P3 as a ligand. e The E/Z ratio of both 1-bromopropene and the product was 76:24.
Reactions of a variety of tertiary allyl alcohols with 1-bromonaphthalene were then examined (Table 2). The methyl group of 1a is not essential, and alcohol 1b having hydrogen at the internal vinylic carbon underwent the epoxidation smoothly to yield trisubstituted epoxide 3b (entry 1). With 1b, the use of Xantphos improved the yield slightly (entry 2). The reaction of alcohol having an electron-rich aryl group at the tertiary carbon center furnished the corresponding product in 75% yield (entry 3). On the other hand, an electron-withdrawing group on the benzene rings interfered with the formation of the epoxide due to the predominance of a competitive Heck reaction (entry 4). Alcohols with small alkyl substituents such as a butyl group showed lower reactivity than those with aryl substituents (entry 5). The reactions of allyl alcohols bearing ethyl and phenyl substituents at the internal olefin moiety also proceeded to give the corresponding tetrasubstituted epoxides in moderate yields (entries 6 and 7).

Table 2. Reactions with Tertiary Allyl Alcohols with 1-Bromonaphthalene

<table>
<thead>
<tr>
<th>entry</th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>ligand</th>
<th>3, yield<sup>b</sup> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>H</td>
<td>(1b)</td>
<td>P1</td>
</tr>
<tr>
<td>2<sup>c</sup></td>
<td>Ph</td>
<td>H</td>
<td>(1b)</td>
<td>P5</td>
</tr>
<tr>
<td>3</td>
<td>4-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>H</td>
<td>(1c)</td>
<td>P1</td>
</tr>
<tr>
<td>4<sup>e</sup></td>
<td>3-CF<sub>3</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>H</td>
<td>(1d)</td>
<td>P1</td>
</tr>
<tr>
<td>5<sup>f</sup></td>
<td>n-Bu</td>
<td>H</td>
<td>(1e)</td>
<td>P4</td>
</tr>
<tr>
<td>6</td>
<td>Ph</td>
<td>Et</td>
<td>(1f)</td>
<td>P1</td>
</tr>
<tr>
<td>7</td>
<td>Ph</td>
<td>Ph</td>
<td>(1g)</td>
<td>P1</td>
</tr>
</tbody>
</table>

^a Conditions: Pd₂(dba)₃ (2.5 mol%), ligand (5 mol% with P1, P4 or 10 mol% with P5), NaOt-Bu (2.0 equiv), toluene (0.1 M). ^b Isolated yields. ^c Cs₂CO₃ as a base. ^d ¹H NMR yield. ^e Product 4d was obtained in 24% yield. ^f 2 mol% of [Pd] and P4 were used.
Subsequently, the reactions of tertiary alcohols that possess a stereogenic center at the oxygenated carbon were conducted (Scheme 2). Both yield and diastereoselectivity became better as the substituents at the oxygenated carbon of alcohols 1h–1k became larger. As depicted in eq 1, 2-naphthyl-3-buten-2-ol (1i) gave a better result than 2-phenyl-3-buten-2-ol (1h). The reactions with alcohols 1j and 1k afforded the corresponding epoxides 3j and 3k, respectively, with good diastereoselectivity, bearing phenyl and naphthylmethyl substituents in a cis configuration (eq 2). As expected, bulkier tert-butyl-substituted alcohol 1l underwent a smooth reaction to afford the corresponding epoxide 3l in good yield as a single diastereomer (eq 3). Finally, the reaction was applied to the synthesis of an optically active epoxide. Starting from enantiomerically enriched tertiary alcohol 1l, which was prepared in three steps from
2,3,3-trimethyl-1-butene, we obtained (S, S)-3l as a sole product without a loss of enantiomeric excess (eq 3).

Based on the results and Wolfe’s report, the author is tempted to assume the reaction mechanism as follows (Scheme 3). Initial oxidative addition of aryl halide to zerovalent palladium occurs to afford arylpalladium halide. Subsequent ligand exchange between the palladium intermediate and allyl alcohol in the presence of the base provides palladium alkoxide. Intramolecular oxypalladation then takes place to generate alkylpalladium intermediate 5. Another possibility is a carbopalladation pathway, en route to oxapalladacyclobutane 6. Finally, reductive elimination from these intermediates gives the desired product and regenerates Pd(0). The diastereoselectivity would be determined in the oxypalladation or carbopalladation step. TS1 is the more favorable transition state than TS2 because the larger substituent R is located at the pseudoequatorial position, thus minimizing the steric repulsion from the vinylic proton or the ligand L which coordinates to the palladium center.6,7
Conclusion

The author has reported a new method for the synthesis of epoxides by palladium-catalyzed reactions of tertiary allyl alcohols with aryl halides. Moreover, the diastereoselective synthesis of trisubstituted epoxides was accomplished by the use of tertiary alcohols bearing stereogenic center at the allylic position.
Experimental Section

Instrumentation and Chemicals

All experiments were conducted using the same instruments described in Chapter 1. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Toluene was purchased from Wako Pure Chemical Co. and stored over slices of sodium. Sodium tert-butoxide and cesium carbonate were purchased from Wako Pure Chemical Co. Buchwald’s biarylphosphines (RuPhos (P1), SPhos (P2), P3 and XPhos (P4)), xantphos (P5), and tris(dibenzylideneacetone)dipalladium were purchased from Aldrich. All reactions were carried out under argon atmosphere. Tertiary allyl alcohols 1a–1e and 1h–1l were prepared by the addition reaction of vinylmagnesium bromide with ketones. Alcohols 1f and 1g were synthesized by the reaction of ketones with alkenyllithium reagents generated by the Shapiro reaction. Preparation of (R)-1l was shown below.

Preparation of 1f and 1g

Preparation of 1f is representative. p-Toluenesulfonyl hydrazide (2.79 g, 15.0 mmol) was placed in a 100–mL reaction flask and the flask was filled with argon. Hexane (75.0 mL) and 2-butanone (2.01 mL, 22.5 mmol) were added at room temperature. The mixture was then warmed to 50 °C and stirred for 7 h. A white precipitate was observed during the reaction. After the mixture was cooled to room temperature, the resulting white solid was collected through a Hirsch funnel. The solid was washed with hexane three times to yield N'-2-butanlylidene-4-methylbenzenesulfonyl hydrazide (3.47 g, 14.4 mmol) in 96 % yield.\(^7\)

N’-Butan-2-ylidene-4-methylbenzenesulfonyl hydrazide (3.47 g, 14.4 mmol) was placed in a 200–mL reaction flask. Under argon atmosphere, N,N,N',N'-tetramethylethylenediamine (28 mL) was added, and the solution was cooled to –78 °C. Butyllithium (1.60 M hexane solution, 31.5 mL, 50.4 mmol) was added dropwise via a syringe at –78 °C. The mixture was then allowed to warm to room temperature and stirred for 5 h. Benzophenone (2.10 g, 11.5 mmol) was added to the resulting mixture at ambient temperature and the mixture was stirred overnight. The mixture was poured into saturated ammonium chloride solution (100 mL) and stirred for 10 min. After extractive workup, a small amount of starting benzophenone was detected along with the desired product in the crude mixture. The residue was treated with LAH to convert remaining benzophenone to diphenylmethanol. Finally, 1f (1.41 g, 5.90 mmol, 51% yield) was obtained as a white solid after purification on silica gel (hexane/AcOEt = 10 : 1).

Preparation of (R)-1l

Osmium-catalyzed dihydroxylation of olefins\(^8\) and kinetic resolution of 1,2-diols\(^9\) were performed according to the literature procedure. Microencapsulated osmium tetraoxide (10 wt%
MC OsO₄, purchased from Wako Pure Chemical Co., 1.00 g, 0.39 mmol) and N-methylmorpholine oxide (1.20 g, 10.2 mmol) were placed in a 50–mL reaction flask. Under argon atmosphere, water (2.4 mL), acetone (2.4 mL), acetonitrile (2.4 mL) and 2,3,3-trimethyl-1-butene were sequentially added at room temperature. The mixture was stirred for two days. Methanol was added to the resulting brown solution and the mixture was filtered through a Hirsch funnel. The filtrate was concentrated under a reduced pressure. Purification on silica gel (hexane/AcOEt = 1 : 1) provided 2,3,3-trimethylbutane-1,2-diol (0.96 g, 7.2 mmol, 91%) as a white solid. Although the resulting catalyst could be used three times, the catalytic activity was gradually decreased in our hands (74% yield in the second use and 20% yield in the third one).

A catalyst for the asymmetric silylation of 2,3,3-trimethylbutane-1,2-diol was prepared according to the literature procedure.¹⁰ The catalyst (0.62 g, 2.0 mmol) and 2,3,3-trimethylbutane-1,2-diol (1.33 g, 10.0 mmol) were placed in a 50–mL reaction flask. The mixture was dissolved in diisopropylethylamine (2.18 mL, 12.5 mmol) and THF (2.0 mL) at room temperature under argon. At −78 °C, a solution of tert-butyldimethylsilyl chloride in THF (6.0 mL) was added and the resulting mixture was stirred for 24 h at the same temperature. Methanol (0.5 mL) was added before the mixture was allowed to warm to room temperature. The mixture was poured into 10 wt% citric acid solution (30 mL) and extracted with AcOEt three times. Evaporation and purification on neutral silica gel afforded the starting alcohol (0.82 g, 6.2 mmol, 62%) and silyl-protected alcohol (0.93 g, 3.8 mmol, 38%). The silylated alcohol should have (S) configuration according to the literature.¹⁰ The same reaction was repeated three times to obtain a sufficient amount of the (S)-enriched silyl-protected alcohol.

Under argon atmosphere, the (S)-enriched silyl-protected alcohol was treated with tetrabutylammonium fluoride (1.0 M THF solution, 12.0 mL, 12 mmol) in THF (10 mL) at 0 °C. After 3 h, extractive workup followed by silica gel column purification furnished optically active 2,3,3-trimethylbutane-1,2-diol (1.10 g, 8.34 mmol, 72%).

Dimethyl sulfoxide (6.22 mL, 87.6 mmol), CH₂Cl₂ (25 mL), and diisopropylethylamine (7.56 mL, 43.3 mmol) were added to a flask containing 2,3,3-trimethylbutane-1,2-diol (1.10 g, 8.34 mmol) under argon. The flask was then cooled to 0 °C, and pyridine sulfur trioxide complex (4.11g, 25.9 mmol) was added. After being stirred for 2 h, the mixture was poured into 1 M hydrochloric acid solution (30 mL). The mixture was extracted with CH₂Cl₂, and the combined organic layer was washed with saturated sodium hydrogen carbonate solution (30 mL). Evaporation followed by silica gel column purification (hexane/AcOEt = 10 : 1) gave 2-hydroxy-2,3,3-trimethylbutanal (0.725 g, 5.57 mmol, 67%).

A suspension of methyltriphenylphosphonium bromide (5.78 g, 16.2 mmol) in THF (10 mL) was placed in a 100–mL flask. Under argon atmosphere, potassium tert-butoxide (1.75 g, 15.6
mmol) was added at once, and the mixture was stirred for 30 min at ambient temperature. 2-Hydroxy-2,3,3-trimethylbutanal (0.725 g, 5.57 mmol) dissolved in THF (8 mL) was added, and the resulting mixture was warmed to 50 °C for 2 h. The reaction was quenched with saturated sodium hydrogen carbonate solution (30 mL). Extraction, evaporation, and purification by a silica gel column provided 2,2,3-trimethyl-4-penten-3-ol ((R)-11, 0.308 g, 2.40 mmol, 43%) as a colorless oil. (Caution: careful concentration under a reduced pressure was required, since the product was volatile.)

Preparation of the carbamate for the determination of enantiomeric excess of (R)-11

A solution of (R)-11 (0.0513 g, 0.40 mmol) in THF (0.80 mL) was placed in a 30–mL reaction flask under argon. The flask was then cooled to 0 °C with an ice bath. Butyllithium (1.60 M hexane solution, 0.25 mL, 0.40 mmol) was added via a syringe at 0 °C, and the mixture was stirred for 30 min. Phenyl isocyanate (0.0652 mL, 0.60 mmol) was added at 0 °C, and the mixture was allowed to warm to room temperature. After the mixture was stirred for 12 h, water (20 mL) was added. Extractive workup followed by silica gel column purification provided the carbamate (0.0620 g, 0.251 mmol, 63%) as a white solid. HPLC conditions: Daicel CHRALCEL OD-H, hexane/2-propanol = 95/5, 1.0 mL/min, retention time: 6.17 min (R, major); 7.31 min (S, minor).

Typical Procedure for Palladium-catalyzed Reactions of Tertiary Allyl Alcohols with Aryl or Alkenyl Halides

The synthesis of 2a (Table 1, entry 1) is representative. Sodium tert-butoxide (0.058 g, 0.60 mmol) was placed in a 30–mL two-necked reaction flask equipped with a Dimroth condenser, and dried in vacuo with heating with a hair dryer for 1 min. Tris(dibenzylideneacetone)dipalladium (0.0069 g, 0.0075 mmol) and 2-dicyclohexylphosphino-2’,6’-diisopropoxybiphenyl (Ruphos, 0.0070 g, 0.015 mmol) were added, and the flask was filled with argon by using the standard Schlenck technique. Toluene (1.0 mL) was added to the flask, and the mixture was stirred at room temperature. After 10 min, a solution of alcohol 1a (0.067 g, 0.30 mmol) and 1-bromonaphthalene (0.12 g, 0.60 mmol) in toluene (2.0 mL) was added. The resulting brown mixture was then heated at reflux for 6 h. After the mixture was cooled to room temperature, water (20 mL) was added. The mixture was extracted with hexane/AcOEt = 5 : 1 three times. The combined organic layer was dried over sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography on neutral silica gel with hexane/AcOEt/triethylamine = 20 : 1 : 0.1 as an eluent. 2-Methyl-2-(1-naphthalenylmethyl)-3,3-diphenyloxirane (2a) was obtained as a white solid.
Characterization Data

2-Methyl-1,1-diphenyl-2-propen-1-ol (1a): IR (neat) 3475, 3059, 1642, 1599, 1492, 1448, 1025, 907, 759, 701 cm⁻¹; ¹H NMR (CDCl₃) δ 1.81 (dd, J = 1.5, 0.5 Hz, 3H), 2.46 (s, 1H), 4.73–4.74 (m, 1H), 5.15 (dq, J = 1.5, 1.5 Hz, 1H), 7.26–7.30 (m, 2H), 7.31–7.38 (m, 8H); ¹³C NMR (CDCl₃) δ 20.27, 83.20, 115.74, 127.84, 128.12, 145.09, 149.30; HRMS Found: m/z 224.1205. Calcd for C₁₆H₁₆O: 224.1201.

1,1-Di(4-methoxyphenyl)-2-propen-1-ol (1c): IR (neat) 3478, 1609, 1511, 1250, 1176, 1035, 830 cm⁻¹; ¹H NMR (CDCl₃) δ 2.21 (s, 1H), 3.78 (s, 6H), 5.27 (dd, J = 10.5, 1.5 Hz, 1H), 5.29 (dd, J = 17.0, 1.5 Hz, 1H), 6.46 (dd, J = 17.0, 10.5 Hz, 1H), 6.85 (d, J = 9.0 Hz, 4H), 7.29 (d, J = 9.0 Hz, 4H); ¹³C NMR (CDCl₃) δ 55.47, 79.05, 113.61 (two peaks merge), 128.34, 138.39, 144.12, 158.89; HRMS Found: m/z 270.1255. Calcd for C₁₇H₁₈O₃: 270.1256.

1,1-Di(3-trifluoromethylphenyl)-2-propen-1-ol (1d): IR (neat) 3443, 1680, 1440, 1330, 1124, 1075, 804, 701 cm⁻¹; ¹H NMR (CDCl₃) δ 2.42 (s, 1H), 5.34 (dd, J = 17.0, 0.5 Hz, 1H), 5.43 (dd, J = 10.5, 0.5 Hz, 1H), 6.49 (dd, J = 17.0, 10.5 Hz, 1H), 7.40–7.48 (m, 2H), 7.49–7.52 (m, 2H), 7.55–7.58 (m, 2H), 7.71–7.74 (m, 2H); ¹³C NMR (CDCl₃) δ 79.08, 116.17, 123.64 (q, J = 3.8 Hz), 124.24 (q, J = 272.7 Hz), 124.79 (q, J = 3.9 Hz), 129.09, 130.62, 131.00 (q, J = 32.2 Hz), 142.33, 146.19; ¹⁹F NMR (CDCl₃) δ –63.12; HRMS Found: m/z 346.0788. Calcd for C₁₇H₁₂O₆F₆: 346.0792.

3-Butyl-1-hepten-3-ol (1e): IR (neat) 3426, 2935, 2862, 1458, 997, 919 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (t, J = 7.0 Hz, 6H), 1.23–1.34 (m, 8H), 1.38 (s, 1H), 1.44–1.56 (m, 4H), 5.09 (dd, J = 11.0, 1.5 Hz, 1H), 5.19 (dd, J = 17.5, 1.5 Hz, 1H), 5.82 (dd, J = 17.5, 11.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.30, 23.39, 25.86, 40.75, 75.68, 112.27, 114.49; HRMS Found: m/z 170.1669. Calcd for C₁₁H₂₂O: 170.1671.
Chapter 4

2-Methylene-1,1-diphenylbutan-1-ol (1f): IR (nujol) 3420, 1639, 1598, 1447, 1162, 1002, 907, 756, 700 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.06 (t, \(J = 7.0\) Hz, 3H), 2.09 (q, \(J = 7.0\) Hz, 2H), 2.46–2.48 (m, 1H), 4.83–4.84 (m, 1H) 5.17–5.19 (m, 1H), 7.26–7.29 (m, 2H), 7.30–7.36 (m, 8H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 12.87, 25.04, 83.76, 113.06, 127.43, 127.92, 128.08, 145.49, 155.21; HRMS Found: m/z 238.1361. Calcd for C\(_{17}\)H\(_{18}\)O: 238.1358. m.p. 61.5–62.0 °C.

1,1,2-Triphenyl-2-propen-1-ol (1g): IR (neat) 3565, 3474, 1598, 1493, 1447, 1336, 1162, 1031, 968, 918, 779, 751, 700 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 2.64 (s, 1H), 4.82 (d, \(J = 1.0\) Hz, 1H), 5.52 (d, \(J = 1.0\) Hz, 1H), 7.17–7.20 (m, 2H), 7.21–7.26 (m, 3H), 7.29–7.33 (m, 2H), 7.34–7.38 (m, 4H), 7.45–7.49 (m, 4H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 83.19, 119.83, 127.61, 127.95, 128.16 (two peaks merge), 128.52, 128.70, 139.92, 145.55, 154.47; HRMS Found: m/z 286.1359. Calcd for C\(_{21}\)H\(_{18}\)O: 286.1358.

4-Methyl-3-phenyl-1-penten-3-ol (1j): IR (neat) 3479, 2965, 1447, 990, 920, 760, 701 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.78 (d, \(J = 7.0\) Hz, 3H), 0.91 (d, \(J = 7.0\) Hz, 3H), 1.77 (s, 1H), 2.19 (qq, \(J = 7.0, 7.0\) Hz, 1H), 5.19 (dd, \(J = 11.0, 1.5\) Hz, 1H), 5.33 (dd, \(J = 17.5, 1.5\) Hz, 1H), 6.30 (dd, \(J = 17.5, 11.0\) Hz, 1H), 7.21–7.25 (m, 1H), 7.31–7.36 (m, 2H), 7.42–7.46 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 16.92, 17.29, 37.47, 79.51, 112.88, 125.66, 126.80, 128.29, 134.42, 145.91; HRMS Found: m/z 176.1203. Calcd for C\(_{12}\)H\(_{16}\)O: 176.1201.

4,4-Dimethyl-3-phenyl-1-penten-3-ol (1k): IR (neat) 3478, 2957, 1481, 1447, 1394, 1365, 1145, 968, 922, 756, 708 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.93 (s, 9H), 1.78 (s, 1H), 5.26 (dd, \(J = 17.0, 1.5\) Hz, 1H), 5.36 (dd, \(J = 17.0, 1.5\) Hz, 1H), 6.80 (dd, \(J = 17.0, 11.0\) Hz, 1H), 7.21–7.25 (m, 1H), 7.29–7.33 (m, 2H), 7.48–7.51 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 25.74, 38.41, 80.74, 113.68, 126.77, 127.41, 127.53, 142.12, 144.44; HRMS Found: m/z 190.1355. Calcd for C\(_{13}\)H\(_{18}\)O: 190.1358.

2-Methyl-2-(1-naphthylmethyl)-3,3-diphenyloxirane (2a): IR (nujol) 3028, 2924, 2853, 1597, 1495, 1447, 1171, 938, 782, 749, 710 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.02 (s, 3H), 3.06 (d, \(J = 15.0\) Hz, 1H), 3.28 (d, \(J = 15.0\) Hz, 1H), 7.22–7.30 (m, 2H), 7.31–7.35 (m, 2H), 7.38–7.44 (m, 4H), 7.46–7.50 (m, 1H), 7.51–7.55 (m, 3H), 7.68–7.72 (m, 2H), 7.73–7.76 (m, 1H), 7.82–7.84 (m, 1H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 19.46, 38.30, 68.26, 71.65, 125.05, 125.55, 125.75, 126.11, 127.34, 127.39, 127.43, 127.45, 127.61,
2-Methyl-2-(2-methylphenyl)methyl-3,3-diphenyloxirane (2b): IR (nujol) 3060, 2927, 1603, 1494, 1448, 1380, 1063, 1016, 746, 733 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.07 (s, 3H), 2.27 (s, 3H), 2.60 (d, \(J = 15.0\) Hz, 1H), 2.84 (d, \(J = 15.0\) Hz, 1H), 7.09–7.17 (m, 3H), 7.22–7.26 (m, 2H), 7.26–7.29 (m, 1H), 7.31–7.36 (m, 4H), 7.49–7.52 (m, 2H), 7.57–7.61 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 19.43, 20.37, 37.68, 68.37, 71.27, 126.02, 126.60, 127.31, 127.35, 127.42, 127.48, 128.44, 128.45, 130.23, 130.48, 136.67, 136.99, 140.26, 140.60; Found: C, 87.88; H, 7.08%. Calcd for C\(_{23}\)H\(_{22}\)O: C, 87.86; H, 7.05%. m.p. 67.9–68.2 °C.

2-(2-Ethylphenyl)methyl-3,3-diphenyloxirane (2c): IR (nujol) 2854, 1601, 1495, 1058, 1015, 761, 749, 707 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.10 (t, \(J = 7.5\) Hz, 3H), 2.56–2.69 (m, 3H), 2.85 (d, \(J = 10.5\) Hz, 1H), 7.14–7.17 (m, 3H), 7.22–7.26 (m, 2H), 7.30–7.35 (m, 5H), 7.49–7.52 (m, 2H), 7.57–7.60 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 15.34, 19.56, 26.28, 36.90, 68.38, 71.32, 125.95, 126.81, 127.32, 127.40, 127.44, 127.48, 128.43, 128.45, 128.77, 130.36, 135.93, 140.27, 140.63, 142.98; Found: C, 87.62; H, 7.50%. Calcd for C\(_{24}\)H\(_{24}\)O: C, 87.76; H, 7.37%. m.p. 70.9–71.5 °C.

2-(2-Isopropylphenylmethyl)-2-methyl-3,3-diphenyloxirane (2d): IR (neat) 3060, 2963, 1602, 1493, 1448, 1383, 1034, 1016, 761, 704 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.13 (d, \(J = 7.0\) Hz, 3H), 1.17 (d, \(J = 7.0\) Hz, 3H), 2.66 (d, \(J = 14.5\) Hz, 1H), 2.89 (d, \(J = 14.5\) Hz, 1H), 3.15 (qq, \(J = 7.0, 7.0\) Hz, 1H), 7.12–7.16 (m, 1H), 7.18–7.36 (m, 9H), 7.49–7.52 (m, 2H), 7.57–7.61 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 19.64, 23.80, 24.07, 29.08, 36.76, 68.35, 71.45, 125.46, 125.69, 126.99, 127.33, 127.42, 127.48, 128.36, 128.42, 128.45, 130.55, 135.15, 140.26, 140.64, 147.54; HRMS Found: m/z 342.1979. Calcd for C\(_{25}\)H\(_{26}\)O: 342.1984.

2-Methyl-3,3-diphenyl-2-(2-vinylphenyl)methylxirane (2e): IR (nujol) 3059, 1601, 1495, 1057, 911, 761, 749, 706 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 2.65 (d, \(J = 15.0\) Hz, 1H), 2.95 (d, \(J = 15.0\) Hz, 1H), 5.29 (dd, \(J = 11.0, 1.5\) Hz, 1H), 5.62 (dd, \(J = 17.5, 1.5\) Hz, 1H), 6.98 (dd, \(J = 17.5, 11.0\) Hz, 1H), 7.20–7.28 (m, 5H), 7.30–7.38 (m, 4H), 7.47–7.51 (m, 3H), 7.59–7.63 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 19.47, 37.52, 68.41, 71.54, 115.81, 126.06, 126.98, 127.35 (two
peaks merge), 127.43, 127.55, 127.88, 128.42, 128.48, 130.87, 135.48, 135.78, 137.65, 140.18, 140.52; Found: C, 88.32; H, 6.84%. Calcd for C_{24}H_{22}O: C, 88.31; H, 6.79%. m.p. 71.0–71.2 °C.

2-Methyl-2-(9-phenanthrenylmethyl)-3,3-diphenyloxirane (2g): IR (nujol) 1496, 1055, 1019, 925, 765, 753, 730, 706 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.06 (s, 3H), 2.24 (s, 3H), 2.52 (d, \(J = 15.0\) Hz, 1H), 2.77 (d, \(J = 15.0\) Hz, 1H), 3.77 (s, 3H), 6.69–6.71 (m, 2H), 7.14–7.17 (m, 1H), 7.22–7.26 (m, 2H), 7.30–7.35 (m, 4H), 7.46–7.50 (m, 2H), 7.56–7.59 (m, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 19.63, 40.94, 68.52, 71.53, 115.93, 127.31, 127.32, 127.39, 127.44, 128.43, 128.59, 128.66, 130.11, 130.84, 131.85, 131.95, 133.30, 134.28, 140.51; Found: C, 89.76; H, 5.96%. Calcd for C\(_{30}\)H\(_{24}\)O: C, 89.97; H, 6.04%. m.p. 135.0–135.6 °C.

2-(4-Methoxy-2-methylphenyl)methyl-2-methyl-3,3-diphenyloxirane (2h): IR (neat) 2926, 1613, 1498, 1448, 1256, 1153, 1105, 768, 753 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.12 (s, 3H), 2.71 (d, \(J = 14.0\) Hz, 1H), 2.87 (d, \(J = 14.0\) Hz, 1H), 7.23–7.29 (m, 2H), 7.30–7.39 (m, 6H), 7.46–7.50 (m, 4H), 7.56–7.61 (m, 3H), 7.73–7.76 (m, 2H), 7.87–7.88 (m, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 19.63, 20.65, 36.96, 55.34, 68.52, 71.32, 111.25, 115.93, 127.31, 127.32, 127.44, 128.43 (two peaks merge), 128.78, 131.20, 138.30, 140.31, 140.67, 153.18; Found: C, 83.88; H, 7.08%. Calcd for C\(_{29}\)H\(_{24}\)O\(_2\): C, 83.69; H, 7.02%. m.p. 83.9–84.2 °C.

4-(2,3-Epoxy-2-methyl-3,3-diphenylpropyl)phenyl phenyl ketone (2i): IR (nujol) 3027, 1653, 1607, 1495, 1448, 1277, 1178, 1019, 938, 924, 750, 700 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.12 (s, 3H), 2.71 (d, \(J = 14.0\) Hz, 1H), 2.87 (d, \(J = 14.0\) Hz, 1H), 7.23–7.29 (m, 2H), 7.30–7.39 (m, 6H), 7.46–7.50 (m, 4H), 7.56–7.61 (m, 3H), 7.73–7.76 (m, 2H), 7.87–7.88 (m, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 19.63, 40.94, 68.06, 71.60, 127.34 (two peaks merge), 127.57, 127.66, 128.45, 128.50, 128.57, 129.69, 130.21, 130.47, 132.51, 136.02, 137.95, 139.98, 140.21, 143.33, 196.70; HRMS Found: m/z 404.1779. Calcd for C\(_{29}\)H\(_{24}\)O\(_2\): 404.1779.
tert-Butyl 4-(2,3-epoxy-2-methyl-3,3-diphenylpropyl)phenyl ketone (2j): IR (nujol) 2854, 1673, 1608, 1457, 1178, 763, 726, 703 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.09 (s, 3H), 1.35 (s, 9H), 2.66 (d, \(J = 14.0\) Hz, 1H), 2.80 (d, \(J = 14.0\) Hz, 1H), 7.22–7.28 (m, 4H), 7.30–7.37 (m, 4H), 7.45–7.48 (m, 2H), 7.56–7.59 (m, 2H), 7.64–7.68 (m, 2H); \(^1\)C NMR (CDCl\(_3\)) \(\delta\) 19.62, 28.33, 40.75, 44.34, 68.10, 71.57, 127.37, 127.38, 127.55, 126.3, 128.45, 128.49, 128.55, 129.42, 136.71, 140.06, 140.31, 141.56, 208.73; Found: C, 84.08%; H, 7.39%. Calcd for C\(_{27}\)H\(_{28}\)O\(_2\): C, 84.34%; H, 7.34%. m.p. 102.1–102.8 °C.

2-Methyl-2-(3-methyl-2-butenyl)-3,3-diphenyloxirane (2k): IR (neat) 2928, 1603, 1448, 1377, 1067, 1024, 766, 753, 705 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.16 (s, 3H), 1.43 (d, \(J = 1.0\) Hz, 3H), 1.71 (d, \(J = 1.0\) Hz, 3H), 2.05 (dd, \(J = 14.5, 7.5\) Hz, 1H), 2.12 (dd, \(J = 14.5, 7.5\) Hz, 1H), 5.19 (t of sept., \(J = 7.5, 1.0\) Hz, 1H), 7.19–7.24 (m, 2H), 7.27–7.33 (m, 4H), 7.44–7.50 (m, 4H); \(^1\)C NMR (CDCl\(_3\)) \(\delta\) 18.04, 19.62, 26.11, 33.99, 68.34, 71.79, 119.19, 127.27 (two peaks merge), 127.31, 127.34, 128.29, 128.37, 134.54, 140.42, 140.79; Found: C, 86.30%; H, 8.11%. Calcd for C\(_{20}\)H\(_{22}\)O: C, 86.29%; H, 7.97%.

2-(2-Butenyl)-2-methyl-3,3-diphenyloxirane (2l, \(E/Z = 76:24\)): IR (neat) 3026, 2927, 1602, 1495, 1448, 1377, 1018, 968, 926, 750, 704 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.89 (t, \(J = 7.0\) Hz, 3H), 1.17 (s, 3H), 1.24–1.36 (m, 8H), 1.99 (td, \(J = 6.5, 6.0\) Hz, 2H), 2.05 (dd, \(J = 14.0, 6.0\) Hz, 1H), 2.11 (dd, \(J = 132
14.0, 6.0 Hz, 1H), 5.32–5.43 (m, 2H), 7.19–7.24 (m, 2H), 7.27–7.33 (m, 4H), 7.43–7.49 (m, 4H);
13C NMR (CDCl$_3$) δ 14.33, 19.57, 22.88, 29.05, 29.59, 31.95, 32.89, 38.58, 67.80, 71.69, 124.65,
127.13, 127.33 (two peaks merge), 127.92, 128.26, 128.39, 134.60, 140.30, 140.73; Found: C,
85.92; H, 8.91%. Calcd for C$_{24}$H$_{30}$O: C, 86.18; H, 9.04%.

3-(1-Naphthylmethyl)-2,2-diphenyloxirane (3b): IR (nujol) 2922, 2853, 1596, 1448, 1260,
1014, 887, 796, 777, 757, 702 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 3.11 (dd, J = 15.5, 6.0 Hz, 1H),
3.19 (dd, J = 15.5, 6.0 Hz, 1H), 3.79 (t, J = 6.0 Hz, 1H), 7.24–7.33 (m, 6H), 7.36–7.46 (m, 4H),
7.47–7.52 (m, 2H), 7.54–7.57 (m, 2H), 7.75–7.78 (m, 1H), 7.84–7.88 (m, 1H), 7.94–7.98 (m, 1H);
13C NMR (CDCl$_3$) δ 33.34, 66.49, 66.90, 124.05, 125.78, 125.89, 126.28, 126.81,
127.26, 127.58, 128.04, 128.08, 128.42, 128.50 (two peaks merge), 128.93, 132.28, 134.04,
134.19, 137.52, 140.88; HRMS Found: m/z 336.1506. Calcd for C$_{25}$H$_{20}$O: 336.1514. m.p.
84.5–85.0 °C.

2,2-Di(4-methoxyphenyl)-3-(1-naphthylmethyl)oxirane (3c): IR (neat) 2930, 2837, 1520, 1505,
1252, 1174, 1031, 895, 778, 737 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 3.12 (dd, J = 15.0, 6.0 Hz, 1H),
3.17 (dd, J = 15.0, 6.0 Hz, 1H), 3.76 (s, 3H), 3.77 (t, J = 6.0 Hz, 1H, 3.85 (s, 3H), 6.80
(d, J = 9.0 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 7.20 (d, J = 9.0 Hz, 2H), 7.28–7.32 (m, 1H),
7.39–7.43 (m, 1H), 7.44 (d, J = 9.0 Hz, 2H), 7.46–7.52 (m, 2H), 7.74–7.78 (m, 1H), 7.84–7.88 (m, 1H),
7.94–7.98 (m, 1H); 13C NMR (CDCl$_3$) δ 33.24, 55.48, 55.50, 66.41 (two peaks merge), 113.83 (two peaks merge), 124.11, 125.78,
125.87, 126.24, 126.76, 127.51, 128.61, 128.91, 129.57, 129.98, 132.31, 133.44, 134.04, 134.37,
159.33, 159.40; HRMS Found: m/z 396.1725. Calcd for C$_{27}$H$_{24}$O$_3$: 396.1723.

2,2-Di(3-trifluoromethylphenyl)-3-(1-naphthylmethyl)oxirane (3d): IR (neat) 3048, 2925,
2855, 1598, 1441, 1259, 1072, 892, 775, 700 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 3.09 (dd, J = 15.0, 6.0 Hz, 1H),
3.17 (dd, J = 15.0, 5.0 Hz, 1H), 3.79 (dd, J = 6.0, 5.0 Hz, 1H), 7.24–7.28 (m, 1H),
7.40–7.44 (m, 2H), 7.45–7.48 (m, 1H), 7.49–7.53 (m, 2H),
7.54–7.60 (m, 2H), 7.60–7.63 (m, 1H), 7.68–7.72 (m, 1H),
7.72–7.76 (m, 1H), 7.77–7.80 (m, 1H), 7.84 (s, 1H), 7.88–7.90
(m, 1H), 7.90–7.93 (m, 1H); 13C NMR (CDCl$_3$) δ 33.33, 65.99, 66.84, 123.71 (q, J = 3.8 Hz),
123.74, 124.03 (q, J = 272.6 Hz), 124.12 (q, J = 272.6 Hz), 125.22 (q, J = 3.8 Hz), 125.28 (q, J =
3.8 Hz), 125.47 (q, J = 3.8 Hz), 125.76, 126.06, 126.50, 126.90, 129.08, 129.24, 129.35, 130.62, 131.30 (q, J = 32.7 Hz), 131.34 (q, J = 32.6 Hz), 131.72, 132.14, 133.27, 134.13, 137.82, 141.02; HRMS Found: m/z 472.1262. Calcd for C$_{27}$H$_{18}$OF$_6$: 472.1262.

2,2-Dibutyl-3-(1-naphthylmethyl)oxirane (3e): IR (neat) 3046, 2932, 2861, 1598, 1511, 1460, 1397, 961, 791, 776 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 0.86 (t, J = 7.5 Hz, 3H), 0.97 (t, J = 7.0 Hz, 3H), 1.22–1.54 (m, 9H), 1.61–1.79 (m, 3H), 3.08 (t, J = 5.5 Hz, 1H), 3.33 (d, J = 5.5 Hz, 2H), 7.39–7.45 (m, 2H), 7.48–7.52 (m, 1H), 7.53–7.57 (m, 1H), 7.75–7.78 (m, 1H), 7.85–7.89 (m, 1H), 8.08–8.11 (m, 1H); 13C NMR (CDCl$_3$) δ 14.21, 14.31, 23.05, 23.39, 27.13, 27.69, 30.33, 32.33, 35.18, 63.63, 64.32, 124.14, 125.78, 125.89, 126.29, 126.56, 127.46, 128.94, 132.35, 134.08, 135.09; Found: C, 84.85; H, 9.28%. Calcd for C$_{27}$H$_{18}$OF$_6$: C, 85.08; H, 9.52%.

2-Ethyl-2-(1-naphthylmethyl)-3,3-diphenyloxirane (3f): IR (nujol) 3070, 2954, 2854, 1664, 1558, 1502, 1457, 1374, 1023, 933, 790, 774, 706 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 0.85 (t, J = 7.0 Hz, 3H), 1.20 (dq, J = 14.0, 7.0 Hz, 1H), 1.49 (dq, J = 14.0, 7.0 Hz, 1H), 3.02 (d, J = 15.5 Hz, 1H), 3.39 (d, J = 15.5 Hz, 1H), 7.23–7.30 (m, 2H), 7.31–7.36 (m, 2H), 7.37–7.56 (m, 6H), 7.58–7.63 (m, 2H), 7.68–7.72 (m, 2H), 7.73–7.77 (m, 1H), 7.82–7.86 (m, 1H), 8.12–8.16 (m, 1H); 13C NMR (CDCl$_3$) δ 9.71, 24.07, 35.37, 71.77, 71.87, 125.08, 125.45, 125.74, 126.07, 127.30, 127.37, 127.39, 127.50, 127.61, 128.82, 128.30, 128.60, 128.73, 132.98, 134.10, 134.58, 140.24, 140.56; Found: C, 88.85; H, 6.77%. Calcd for C$_{27}$H$_{24}$O: C, 88.97; H, 6.64%. m.p. 123.5–123.9 °C.

2-(1-Naphthylmethyl)-2,3,3-triphenyloxirane (3g): IR (nujol) 2923, 2854, 1654, 1559, 1507, 1457, 1448, 1374, 1023, 933, 790, 774, 706 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 3.25 (d, J = 15.0 Hz, 1H), 3.86 (d, J = 15.0 Hz, 1H), 6.90–7.01 (m, 4H), 7.02–7.09 (m, 5H), 7.17–7.21 (m, 1H), 7.24–7.28 (m, 2H), 7.34–7.43 (m, 3H), 7.46–7.50 (m, 2H), 7.58–7.62 (m, 1H), 7.73–7.76 (m, 1H), 7.77–7.81 (m, 2H), 7.88–7.92 (m, 1H); 13C NMR (CDCl$_3$) δ 38.09, 72.85 (two peaks merge), 124.91, 125.23, 125.42, 125.69, 126.86, 126.94, 127.10, 127.47, 127.58, 127.60, 127.70 (two peaks merge), 127.91, 128.38, 128.54, 128.80, 132.90, 133.66, 133.82, 137.87, 139.24, 139.95; HRMS Found: m/z 412.1829. Calcd for C$_{31}$H$_{24}$O: 412.1827. m.p. 151.0–152.0 °C.
2-Methyl-3-(1-naphthylmethyl)-2-phenyloxirane (3h, diastereomer ratio = 60:40): IR (neat) 3048, 2967, 1598, 1496, 1446, 1396, 1380, 1067, 1027, 788, 775, 700 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.69 (s, 0.40 × 3H), 1.88 (s, 0.60 × 3H), 2.87 (dd, \(J = 15.0, 6.0\) Hz, 0.40 × 1H), 3.09 (dd, \(J = 15.0, 6.0\) Hz, 0.40 × 1H), 3.21 (t, \(J = 6.0\) Hz, 0.60 × 1H), 3.44 (t, \(J = 6.0\) Hz, 0.40 × 1H), 3.46 (dd, \(J = 15.0, 6.0\) Hz, 0.60 × 1H), 3.54 (dd, \(J = 15.0, 6.0\) Hz, 0.60 × 1H), 7.14–7.17 (m, 0.40 × 1H), 7.24–7.28 (m, 1H), 7.30–7.51 (m, 0.60 × 6H, 0.40 × 7H), 7.51–7.54 (m, 0.60 × 1H), 7.54–7.59 (m, 0.60 × 1H), 7.73–7.76 (m, 0.40 × 1H), 7.76–7.81 (m, 0.60 × 1H), 7.83–7.87 (m, 0.40 × 1H), 7.87–7.92 (m, 1H), 8.10–8.14 (m, 0.60 × 1H); \(^{13}\)C NMR (CDCl\(_3\), The peaks of the major diastereomer were underlined.) \(\delta\) 18.11, 24.61, 32.46, 32.97, 61.25, 63.38, 65.54, 66.72, 123.98, 124.04, 124.25, 125.73, 125.82, 125.84, 125.97, 126.19, 126.42, 126.51, 126.79, 126.91, 127.43, 127.55, 127.64, 127.68, 128.44, 128.57, 128.88, 129.00, 132.29 (two peaks merge), 133.99, 134.08, 134.31, 134.34, 139.61, 142.82; Found: C, 87.76; H, 6.72%. Calcd for C\(_{20}\)H\(_{18}\)O: C, 87.55; H, 6.61%.

2-Methyl-2-(1-naphthyl)-3-(1-naphthylmethyl)oxirane (3i, diastereomer ratio = 72:28): IR (neat) 3047, 2962, 2926, 1597, 1511, 1444, 1396, 1377, 1249, 109, 862, 777 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.94 (s, 0.72 × 3H), 2.71 (dd, \(J = 15.0, 7.5\) Hz, 0.28 × 1H), 3.04 (dd, \(J = 15.0, 4.5\) Hz, 0.28 × 1H), 3.44 (t, \(J = 6.0\) Hz, 0.72 × 1H), 3.63 (dd, \(J = 15.0, 6.5\) Hz, 0.72 × 1H), 3.66–3.72 (m, 0.72 × 1H, 0.28 × 1H), 7.06–7.09 (m, 0.28 × 1H), 7.27–7.33 (m, 0.72 × 1H, 0.28 × 1H), 7.38–7.58 (m, 0.72 × 5H, 0.28 × 8H), 7.58–7.61 (m, 0.72 × 1H), 7.69–7.79 (m, 0.72 × 2H, 0.28 × 1H), 7.79–8.00 (m, 0.72 × 4H, 0.28 × 3H), 8.16–8.20 (m, 0.72 × 1H); \(^{13}\)C NMR (CDCl\(_3\), unable to assign all peaks completely) \(\delta\) 20.47, 25.34, 32.84, 33.40, 62.55, 63.16, 64.05, 65.80, 123.89, 124.01, 124.15, 124.25, 124.58, 125.43, 125.60, 125.67, 125.74, 125.78, 125.84, 125.96, 126.00 (two peaks merge), 126.10, 126.22, 126.31, 126.48, 126.91, 127.25, 127.43, 127.83, 128.10, 128.21, 128.83 (two peaks merge), 129.04, 129.05, 130.30, 130.40, 132.31, 132.35, 133.61, 133.77, 133.99, 134.17, 134.22, 134.42, 136.78, 139.56; HRMS Found: m/z 324.1512. Calcd for C\(_{24}\)H\(_{20}\)O: 324.1514.

2-Isopropyl-3-(1-naphthylmethyl)-2-phenyloxirane (3j, diastereomer ratio = 88:12): IR (neat) 3047, 1598, 1511, 1446, 1397, 941, 788, 775, 761 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.90 (d, \(J = 7.0\) Hz, 0.88 × 3H), 0.98 (d, \(J = 7.0\) Hz, 0.88 × 3H), 1.04 (d, \(J = 7.0\) Hz, 0.12 × 3H), 1.09 (d, \(J = 7.0\) Hz, 0.12 × 3H), 1.99 (sept, \(J = 7.0\) Hz, 0.88 × 1H), 2.15 (sept, \(J = 7.0\) Hz, 0.12 ×
1H), 2.82 (dd, J = 15.0, 6.5 Hz, 0.88 × 1H), 2.97 (dd, J = 15.0, 5.0 Hz, 0.88 × 1H), 3.36 (dd, J = 6.5, 5.0 Hz, 0.12 × 1H), 3.48 (dd, J = 6.5, 5.0 Hz, 0.88 × 1H), 3.51 (dd, J = 15.0, 6.5 Hz, 0.12 × 1H), 3.59 (dd, J = 15.0, 5.0 Hz, 0.12 × 1H), 7.26–7.36 (m, 2H), 7.37–7.53 (m, 0.88 × 7H, 0.12 × 6H), 7.53–7.57 (m, 0.12 × 1H), 7.71–7.76 (m, 0.88 × 1H), 7.76–7.80 (m, 0.12 × 1H), 7.82–7.89 (m, 1H), 7.91–7.95 (m, 0.88 × 1H), 8.11–8.14 (m, 0.12 × 1H); 13C NMR (CDCl3 for the major isomer) δ 17.69, 19.12, 33.30, 35.04, 63.18, 69.94, 124.12, 125.73, 125.81, 126.17, 126.55, 127.37, 127.60, 128.10, 128.19, 128.86, 132.32, 134.00, 134.80, 137.50; Found: C, 87.60; H, 7.49%. Calcd for C22H22O: C, 87.38; H, 7.33%.

2-tert-butyl-3-(1-naphthylmethyl)-2-phenyloxirane (3k): IR (nujol) 2924, 2854, 1596, 1558, 1456, 1364, 1317, 908, 806, 788, 775, 756, 705 cm⁻¹; 1H NMR (CDCl3) δ 0.99 (s, 9H), 2.62 (dd, J = 15.5, 7.5 Hz, 1H), 3.03 (dd, J = 15.5, 4.0 Hz, 1H), 3.59 (dd, J = 7.5, 4.0 Hz, 1H), 7.28–7.34 (m, 3H), 7.34–7.37 (m, 1H), 7.40–7.45 (m, 2H), 7.45–7.52 (m, 2H), 7.54–7.58 (m, 1H), 7.72–7.76 (m, 1H), 7.82–7.86 (m, 1H), 7.89–7.93 (m, 1H); 13C NMR (CDCl3) δ 26.74, 34.10, 34.77, 60.33, 71.39, 124.20, 125.73, 125.80, 126.15, 126.42, 126.98, 127.35, 127.47, 128.36, 128.56, 128.84, 130.04, 132.38, 134.03, 135.19, 137.60; HRMS Found: m/z 316.1815. Calcd for C23H24O: 316.1827. m.p. 64.5–64.9 °C.

2-(1,1-Dimethylethyl)-2-methyl-3-(1-naphthylmethyl)oxirane (3l): IR (neat) 3046, 2966, 1598, 1511, 1466, 1379, 1166, 1078, 792, 781 cm⁻¹; 1H NMR (CDCl3) δ 0.94 (s, 9H), 1.46 (s, 3H), 3.26–3.58 (m, 3H), 7.38–7.46 (m, 2H), 7.48–7.53 (m, 1H), 7.53–7.58 (m, 1H), 7.75–7.79 (m, 1H), 7.86–7.90 (m, 1H), 8.06–8.11 (m, 1H); 13C NMR (CDCl3) δ 14.48, 26.12, 32.78, 34.60, 60.13, 66.14, 124.15, 125.79, 125.91, 126.33, 126.43, 127.45, 128.95, 132.37, 134.07, 135.29; Found: C, 84.93; H, 8.71%. Calcd for C18H22O: C, 84.99; H, 8.72%. HPLC conditions: Daicel CHRALCEL OD-H, hexane/2-propanol = 99/1, 0.7 mL/min, retention time: 11.53 min ((S,S), major); 13.80 min ((R,R), minor).

3-(2-Ethylphenyl)methyl-2-(1,1-dimethylethyl)-2-methyloxirane (3m): IR (neat) 2966, 2934, 1605, 1454,1379, 1364, 1165, 1076, 756 cm⁻¹; 1H NMR (CDCl3) δ 0.94 (s, 9H), 1.23 (t, J = 7.5 Hz, 3H), 1.37 (s, 3H), 2.70 (qd, J = 7.5, 4.5 Hz, 2H), 2.85 (dd, J = 15.0, 6.0 Hz, 1H), 2.93 (dd, J = 15.0, 6.0 Hz, 1H), 3.15 (t, J = 6.0 Hz, 1H), 7.14–7.24 (m, 4H); 13C NMR (CDCl3) δ 14.40, 15.37, 26.12 (two peaks merge), 31.97, 34.55, 60.29, 65.92, 126.27, 126.93, 128.75, 129.34, 136.53, 142.48; Found: C, 82.69; H, 10.50%. Calcd for
C_{16}H_{24}O: C, 82.70; H, 10.41%.

Stereochemical Assignment of 3h and 3i

The relative stereochemistry of diastereomers of 3i was assigned based on NOE experiments. The major diastereomer showed a correlation between the benzylic protons and the protons of the methyl group. In contrast, a correlation was observed between the proton attached to the oxygenated carbon and the protons of the methyl group in the minor diastereomer. The NOE experiments of the diastereomeric mixture of 3h failed because all the expected correlations were too weak. The relative stereochemistry of diastereomers 3h was assigned based on the structural analogy of 3i. Both diastereomers showed similar 1H NMR spectrum.

Stereochemical Assignment of 3j

The relative stereochemistry of diastereomers 3j was also assigned based on NOE experiments. In the case of the major diastereomer, a correlation between the proton attached to the oxygenated carbon and the protons of the isopropyl group (both C–H and CH(CH$_3$)$_2$) was observed. On the other hand, the minor diastereomer showed a correlation between the benzylic protons and the methyne proton of the isopropyl group.

Stereochemical Assignment of (R*,S*)-3k

The stereochemistry of 3k was assigned based on a correlation between the proton at the oxygenated carbon and the protons of the tert-butyl group. The similarity of the 1H NMR spectrum of 3k to that of the major diastereomer of 3j also supports the stereochemistry of 3k.
Stereochemical Assignment of (S*,S*)-3l

The relative stereochemistry of 3l was determined based on the structural analogy of 3m. Oxirane 3m was prepared by the reaction of 1l with 1-bromo-2-ethylbenzene (59% yield). The trans stereochemistry was assigned based on a correlation between the benzylic protons and the protons of the methyl group. A NOE correlation was also observed between the proton attached to the oxygenated carbon and the protons of the tert-butyl group.
References and Notes

(5) It is possible that other undesired reactions might proceed under the reaction conditions such as β-vinyl elimination from palladium alkoxide. These reactions would be suppressed by the proper choice of the ligand. Reviews for palladium-catalyzed reactions with tertiary alcohols: (a) Muzart, J. *Tetrahedron* 2005, 61, 9423–9463. (b) Satoh, T.; Miura, M. *J. Synth. Org. Chem. Jpn.* 2006, 64, 1199–1207.

(6) The possibility that the insertion reaction proceeds through an anti-oxypalladation pathway cannot be excluded at this stage. See Chapter 5.

Chapter 5

Synthesis of Aziridines by Palladium-Catalyzed Reaction of Allylamines with Aryl and Alkenyl Halides: Evidence of a syn-Carboamination Pathway

Treatment of N-arylallylamine with aryl or alkenyl halide under palladium catalysis resulted in intramolecular cyclization to form the arylmethyl-substituted aziridine with concomitant C–C bond formation. The deuterium-labeling experiments for the elucidation of the reaction mechanism revealed that the reaction proceeded through syn-carboamination.
Introduction

Palladium-catalyzed intramolecular carboetherification or carboamination reaction of alkenes with organic halides emerged as an attractive method to construct heterocycles, forming both carbon-heteroatom and carbon-carbon bonds in a single operation.\(^1\) A number of five-membered heterocycles have been synthesized by the methodology.\(^2,3\) Meanwhile, the preparation of strained three-membered heterocycles has remained a challenge. In Chapter 4, the author has reported palladium-catalyzed carboetherification reactions of tertiary allyl alcohols with aryl or alkenyl halides, which provide multisubstituted epoxides.\(^4\) She then expected that the reaction would be extended to carboamination for the synthesis of aziridines starting from allylamines (Scheme 1). In Chapter 5, she presents the results of the carboamination along with evidence for a plausible reaction mechanism.

Scheme 1.

\[
\begin{align*}
\text{allyl alcohol} & \quad \xrightarrow{\text{Ar–X, Pd cat., base}} \quad \text{epoxide (Chapter 4)} \\
\text{N-arylallylamine} & \quad \xrightarrow{\text{Ar–X, Pd cat., base}} \quad \text{aziridine (This Chapter)}
\end{align*}
\]

Results and Discussion

Her investigation began with a reaction of \(N\)-phenylallylamine \(1a\) bearing two phenyl groups at the allylic position. Treatment of \(1a\) with bromobenzene in the presence of sodium tert-butoxide under palladium catalysis led to aziridination and C–C bond formation, providing the corresponding arylated aziridine \(2a\) in 98% yield (Table 1, entry 1). In contrast to her
previous epoxidation reactions, the aziridination reaction did not suffer from a competitive Mizoroki-Heck reaction. A wide range of aryl bromides and chlorides were incorporated to the corresponding aziridines 2a–2h in excellent yields (entries 2–9). Alkenyl chlorides also proved to be suitable substrates for the aziridination reactions (entries 10 and 11).

Table 1. Scope of Aryl and Alkenyl Halides in Palladium-Catalyzed Aziridination/Arylation or Alkenylation with 1a

<table>
<thead>
<tr>
<th>entry</th>
<th>R–X</th>
<th>2, yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C₆H₅Br</td>
<td>2a, 98</td>
</tr>
<tr>
<td>2</td>
<td>C₆H₅Cl</td>
<td>2a, 98</td>
</tr>
<tr>
<td>3</td>
<td>1-C₁₀H₇Br</td>
<td>2b, 90</td>
</tr>
<tr>
<td>4</td>
<td>2-MeOC₆H₄Br</td>
<td>2c, 83</td>
</tr>
<tr>
<td>5</td>
<td>4-MeOC₆H₄Br</td>
<td>2d, 97</td>
</tr>
<tr>
<td>6</td>
<td>4-Me₂NC₆H₄Br</td>
<td>2e, 88</td>
</tr>
<tr>
<td>7</td>
<td>4-F₃CC₆H₄Cl</td>
<td>2f, 99</td>
</tr>
<tr>
<td>8</td>
<td>4-(t-BuO₂C)C₆H₄Cl</td>
<td>2g, 81</td>
</tr>
<tr>
<td>9</td>
<td>4-(Et₂NOC)C₆H₄Cl</td>
<td>2h, 81</td>
</tr>
<tr>
<td>10</td>
<td>(CH₃)₂C=CHCl</td>
<td>2i, 94</td>
</tr>
<tr>
<td>11</td>
<td>(E)-n-C₆H₁₁CH=CHCl</td>
<td>2j, 90</td>
</tr>
</tbody>
</table>

The reactions of several N-arylallylamines with bromobenzene were then examined (Table 2). The electronic nature of aryl substituents on the nitrogen atom as well as at the allylic position did not affect the reaction efficiency (entries 1–4). Gratifyingly, alkyl-substituted allylamines 1f and 1g also underwent the reaction in satisfactory yields (entries 5 and 6).
Next, the author turned her attention to reactions of allylamines bearing a stereogenic center at the aminated carbon, in which two diastereomers could be obtained (Table 3). It was found that the larger substituent R_L and the benzyl moiety were oriented in a cis configuration in the major diastereomer. Interestingly, the major diastereomer obtained in the aziridination reaction possessed configuration opposite of the epoxides. For instance, the reaction with N-aryl-2-phenylbutenamines 1h and 1i afforded 4a and 4b as a single diastereomer in 90% and 73% yields, respectively (entries 1 and 2). Moreover, allylamine 1j bearing a trifluoromethyl group also took part in the reaction with high diastereoselectivity (entry 3). Dialkyl-substituted allylamines were then subjected to the aziridination reaction. Allylamine 1k having an isopropyl group at the allylic position was converted to 4d with slightly lower diastereoselectivity (entry 4). Surprisingly, both yield and diastereoselectivity diminished when the more bulky tert-butyl-substituted allylamine 1m was used as a substrate (entry 5).
A mechanism of the reaction based on related precedent1,2,4 is proposed as shown in Scheme 2. Initial oxidative addition of aryl halide to zerovalent palladium occurs to provide arylpalladium halide A. Subsequent ligand exchange between A and allylamine in the presence of sodium \textit{tert}-butoxide affords palladium amide B. It seems likely that B would undergo reductive elimination to give N-arylated product under the reaction conditions.5 However, intramolecular coordination of the alkene moiety of B to the palladium center would prevent such reductive elimination. The coordination followed by \textit{syn}-aminopalladation then furnishes alkylpalladium intermediate C.6 Finally, reductive elimination from C takes place to give the corresponding aziridine and to regenerate Pd(0).

\textbf{Table 3. Diastereoselective Synthesis of Aziridines}

<table>
<thead>
<tr>
<th>entry</th>
<th>RL</th>
<th>RS</th>
<th>Ar</th>
<th>4, yield (%)</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>Me</td>
<td>Ph</td>
<td>4a, 90</td>
<td>>99:1</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Me</td>
<td>4-MeOC\textsubscript{6}H\textsubscript{4}</td>
<td>(1i)</td>
<td>4b, 73</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>CF\textsubscript{3}</td>
<td>Ph</td>
<td>(1j)</td>
<td>4c, 90</td>
</tr>
<tr>
<td>4</td>
<td>\textit{i}-Pr</td>
<td>Me</td>
<td>Ph</td>
<td>(1k)</td>
<td>4d, 83</td>
</tr>
<tr>
<td>5a</td>
<td>t-Bu</td>
<td>Me</td>
<td>Ph</td>
<td>(1l)</td>
<td>4e, 42</td>
</tr>
</tbody>
</table>

a Xylene was used instead of toluene. An amount of 47% of 1l was recovered.
The observed diastereoselectivity in Table 3 would be explained as follows (Scheme 3). There are two presumable chair-like transition states **TS1** and **TS2** in the aminopalladation step, in which diastereoselectivity would be determined. Two sets of steric interactions should be considered in both transition states: one is 1,3-allylic interaction between the pseudoaxial substituent, R^L or R^S, and the hydrogen at the alkene terminus, and the other is 1,2-pseudoequatorial repulsion between the aryl group attached to nitrogen and R^L or R^S. Generally, **TS1** would be more favorable due to its smaller repulsion energy than that of **TS2**, which involves a larger repulsive interaction between R^L and the aryl group (Table 3, entries 1–3). However, as R^L becomes much bulkier (entries 4 and 5), 1,3-allylic interaction could not be negligible in **TS1**. As a result, the difference of the energy between the two transition states would be smaller, leading to the lower diastereoselectivity in the case of the reaction with **1k** and **1l**.
As described above, the author hypothesizes that the reaction proceeds through syn-aminopalladation of palladium amide intermediate B. However, an intermolecular anti-aminopalladation pathway is also conceivable. To confirm syn-aminopalladation, she performed the reaction of (Z)-deuterio-1i with 1,2-dichlorobenzene (Scheme 4). As a consequence, aziridine deuterio-5 bearing three stereogenic centers was obtained as a single diastereomer. The relative configuration of 5 on the aziridine ring would be erythro, the same as 4b. The other relative configuration between the secondary aminated carbon and the deuterium-substituted one (2,3-position) was not known at this stage and should be determined after further derivatization. Oxidative removal of the 4-methoxyphenyl group followed by intramolecular amination of the aryl chloride gave an azabicyclo[3.1.0]hexane derivative deuterio-6. The corresponding nondeuterated analog 6 was prepared in the same manner. The rigid conformation of 6 gave the characteristic coupling constants in the \(^1\)H NMR spectrum, allowing the assignment of the signals corresponding to \(H_A\), \(H_B\), and \(H_C\) (Figure 1, left). On the other hand, the \(H_B\) signal was not observed in the \(^1\)H NMR spectrum of deuterio-6 (Figure 1, right). Thus, the relative stereochemistry of the newly created stereogenic centers of deuterio-6 was assigned to erythro. Thereby, deuterio-5 should have 1,2-erythro, 2,3-erythro configuration.
Scheme 4. Validation of the Reaction Mechanism

Figure 1. 1H NMR coupling constant analysis of 6 and deuterio-6

Suppose that the aminopalladation reaction proceeds in a syn fashion, (1,2-erythro, 2,3-erythro)-deuterio-5 would be produced (eq 1). In contrast, anti-aminopalladation pathway would result in the formation of (1,2-erythro, 2,3-threo)-deuterio-5 (eq 2). Therefore, the experimental result is consistent with her hypothesis.
In addition, the reaction of 1m bearing a benzyl moiety on nitrogen provided a mixture of the aziridinated product 3g and imine 7, which would be generated from β-hydride elimination from the palladium amide intermediate corresponding to B in Scheme 2 (eq 3). Moreover, the reaction of 1n gave aziridine 3h along with N-arylated allylamine 8 (eq 4). The results are also suggestive of the existence of the palladium amide intermediate.

Conclusion

The author has found a new synthetic method for the preparation of aziridines by palladium-catalyzed reactions of allylamines with aryl or alkenyl halides. The reaction proceeds through *syn*-aminopalladation, producing carbon-nitrogen bond with concomitant carbon-carbon bond formation.
Chapter 5

Experimental Section
Instrumentation and Chemicals

All experiments were conducted using the same instruments described in Chapter 1. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Toluene was purchased from Wako Pure Chemical Co. and stored over slices of sodium. Sodium tert-butoxide was purchased from Wako Pure Chemical Co. 2-Dicyclohexyphosphino-2’,6’-dimethoxybiphenyl (SPhos) and tris(dibenzylideneacetone)dipalladium were purchased from Aldrich. All reactions were carried out under argon atmosphere. Preparation of allylamines 1a–1n was shown below.

Experimental Procedure for the Synthesis of Starting Materials

The reaction conditions for the preparation of allylamines were not optimized completely.

Preparation of allylamines (Method 1)

Allylamines 1a–1e and 1h–1j were synthesized as described in method 1. Preparation of 1a is representative. Benzophenone (9.11 g, 50.0 mmol) and activated molecular sieves 5A (20.0 g) were placed in a 100–mL reaction flask equipped with a Dimroth condenser. Under argon atmosphere, benzene (20.0 mL) and aniline (5.47 mL, 60 mmol) were added, and the mixture was heated under reflux overnight. After being cooled, the resulting mixture was filtered through a filter paper to remove the molecular sieves. The filtrate was evaporated, and the resulting pale yellow solid was recrystallized from ethanol. N-(Diphenylmethylene)aniline\(^9\) was obtained as a yellow plate (9.35 g, 36.3 mmol, 73%).

Trimethylsilylacetylene (3.53 mL, 25.0 mmol) and THF (15 mL) were added to a 100–mL reaction flask filled with argon. At 0 °C, butyllithium (1.60 M in hexane solution, 15.0 mL, 24.0 mmol) was added dropwise via a syringe, and the mixture was stirred for 30 min at the same temperature. Hexamethylphosphoramide (20.0 mL) and N-(diphenylmethylene)aniline (5.15 g, 20.0 mmol) were sequentially added, and the resulting brown mixture was allowed to warm to room temperature. After being stirred for 2 h, the mixture was poured into saturated ammonium chloride solution (40 mL). The mixture was extracted three times (hexane/EtOAc = 5/1), and the combined organic layer was dried over sodium sulfate and concentrated in vacuo. A residue, which contained N-(1,1-diphenyl-3-trimethylsilyl-2-propynyl)aniline and N-(1,1-diphenyl-2-propynyl)aniline, was used in the following reaction without further purification.

The residue was dissolved in methanol (50.0 mL) under air. Four teaspooons of potassium carbonate (6.6 g, 48 mmol) was added to the solution at room temperature. The suspension was stirred until consumption of N-(1,1-diphenyl-3-trimethylsilyl-2-propynyl)aniline was observed by thin layer chromatography. After the reaction was completed, brine (50 mL) was added. Extraction, evaporation, and purification on silica gel afforded
N-(1,1-diphenyl-2-propynyl)aniline as a white solid (5.66 g, 20.0 mmol, quantitative yield in two steps).

Lithium aluminum hydride (2.28 g, 60 mmol) was placed in a reaction flask equipped with a Dimroth condenser under argon, and THF (40.0 mL) was added to the flask. A solution of N-(1,1-diphenyl-2-propynyl)aniline (5.66 g, 20.0 mmol) dissolved in THF (40.0 mL) was added to the slurry at room temperature. The mixture was heated at reflux overnight. After the mixture was cooled to room temperature, methanol (42.0 mL) was carefully added dropwise at 0 °C. The mixture was stirred vigorously until the generation of hydrogen gas ceased. A 30 wt% Rochelle salt solution (72.0 mL) was added, and the mixture was stirred for another 30 min at room temperature. The resulting colloidal mixture was filtered through a Buchner funnel. The filtrate was washed with brine and extracted three times (hexane:AcOEt = 5/1), and the combined organic layer was dried over sodium sulfate. Evaporation under reduced pressure generated a pale-yellow solid. N-(1,1-Diphenyl-2-propenyl)aniline 1a was obtained as a white solid (4.46 g, 15.6 mmol, 78%). In the case that an oily residue was obtained, it was purified by silica gel column chromatography.

Preparation of allylamines (Method 2)

Allylamines 1f, 1g, 1k, 1l, and 1n were synthesized as outlined in method 2. Preparation of 1g is representative. Sodium hydride (60 wt% in oil, 3.28 g, 82.0 mmol) was placed in a flask. Under argon atmosphere, sodium hydride was washed with hexane (15 mL) three times. THF (60.0 mL) and ethyl (diethoxyphosphoryl)acetate (18.2 mL, 81.0 mmol) were added to the flask at room temperature. After 30 min, cyclohexanone (8.29 mL, 80.0 mmol) was added, and the resulting mixture was stirred at ambient temperature for 8 h. Water (200 mL) was then added to the flask to quench the reaction. Extraction and evaporation followed by distillation under reduced pressure (84 °C/4–5 Torr) provided ethyl 2-cyclohexylideneacetate as a colorless liquid (11.7 g, 69.4 mmol, 87%).

A suspension of lithium aluminum hydride (5.27 g, 139 mmol) in Et₂O (220 mL) was placed in a reaction flask. After the flask was cooled to −78 °C, a solution of ethyl 2-cyclohexylideneacetate (11.7 g, 69.4 mmol) in Et₂O (50 mL) was added through a dropping funnel. The bath temperature was kept at −78 °C during the addition of the ester. The flask was then allowed to warm to room temperature. After 10 min, the flask was cooled to −78 °C, and ethyl acetate (153 mL) and water (153 mL) was subsequently added to the mixture. The resulting colloidal mixture was filtered through a Buchner funnel. The solid on the funnel was washed three times with ethyl acetate, and the bilayer filtrate was extracted three times with ethyl acetate. Evaporation followed by purification on silica gel gave 2-cyclohexylideneethanol (4.36
Chapter 5

g, 25.9 mmol, 37%) with the recovery of the starting material (4.56 g, 36.1 mmol, 52%).

A solution of 2-cyclohexylideneethanol (1.01 g, 8.0 mmol) in THF (11.0 mL) was placed in a flask. Under argon atmosphere, butyllithium (1.60 M in hexane solution, 5.50 mL, 8.8 mmol) was added at –78 ºC, and the resulting reddish brown mixture was stirred for 30 min at the same temperature. 2,2,2-Trifluoromethyl-N-phenylacetimidoyl chloride10 (2.28 g, 9.6 mmol) dissolved in THF (5.0 mL) was added at –78 ºC, and the mixture was warmed to 0 ºC. After being stirred for 3 h, the mixture was poured into saturated ammonium chloride solution (20 mL). Extraction, evaporation, and purification afforded 2-cyclohexylideneethyl 2,2,2-trifluoro-N-phenylacetimidate along with unidentified byproduct (yield could not be calculated at the current step).

Palladium-mediated rearrangement of allylic trifluoroacetimidates was performed according to the literature procedure.11 Bis(benzonitrile)dichloropalladium (0.15 g, 0.40 mmol) was placed in a 50 mL reaction flask. A solution of 2-cyclohexylideneethyl 2,2,2-trifluoro-N-phenylacetimidate (ca. 8 mmol) in benzene (24 mL) was added under argon at room temperature. After the mixture was stirred for 10 h, water (20 mL) was added to the flask. Extractive workup followed by purification on silica gel provided 2,2,2-trifluoro-N-phenyl-N-(1-vinylcyclohexyl)acetamide (1.84 g, 6.2 mmol, 77% in 2 steps) as a colorless liquid.

A reaction flask containing a solution of 2,2,2-trifluoro-N-phenyl-N-(1-vinylcyclohexyl)acetamide (1.84 g, 6.2 mmol) in ethanol (13.0 mL) was cooled to 0 ºC. With vigorous stirring, sodium tetrahydroborate (1.18 g, 31.0 mmol) was added to the flask in five parts every 10 minutes. After the addition of sodium tetrahydroborate was finished, the mixture was gradually warmed to room temperature over 2 h and stirred at ambient temperature for 12 h. The mixture was then concentrated to remove ethanol, and water was added to the residue. Extraction, evaporation and purification on silica gel furnished N-(1-vinylcyclohexyl)aniline 1g as a colorless oil (1.09 g, 5.4 mmol, 87%).

Preparation of 1m

A solution of benzophenone imine (3.62 g, 20.0 mmol) in toluene (10 mL) was placed in a flask under argon. Triethylamine (5.58 mL, 40.0 mmol) and benzoyl chloride (2.38 mL, 21.0 mmol) were sequentially added to the flask at room temperature. The ammonium salt was precipitated immediately. The resulting mixture was stirred for 2 h at 90 ºC. After the flask was cooled to room temperature, saturated ammonium chloride solution was added to the flask. The mixture was extracted with dichloromethane three times, and combined organic layer was evaporated in vacuo. The resulting white solid was washed with cold hexane to afford
N-(diphenylmethylene)benzamide as a white solid (5.13 g, 18.0 mmol, 90%).

Under argon atmosphere, vinylmagnesium bromide (1.00 M in THF solution, 15.0 mL, 15.0 mmol), prepared from Mg and vinyl bromide in THF, was placed in a flask. A solution of N-(diphenylmethylene)benzamide (2.85 g, 10.0 mmol) in THF (10 mL) was added to the flask at 0 ºC. The mixture was allowed to warm up to room temperature and stirred for 3 h. The reaction was quenched with saturated ammonium chloride solution (30 mL). Extractive workup followed by silica gel column purification provided N-(1,1-diphenyl-2-propenyl)benzamide (3.04 g, 9.70 mmol, 97%) as a white solid.

Diisobutylaluminum hydride (1.0 M in hexane solution, 4.0 mL, 4.0 mmol) was placed in a flask under argon. Toluene (4.0 mL) and N-(1,1-diphenyl-2-propenyl)benzamide (0.63 g, 2.0 mmol) were added to the flask at room temperature. The mixture was refluxed for 1 h. After the flask was cooled to room temperature, methanol (2.8 mL) and 30 wt% Rochell salt solution (5.0 mL) were sequentially added to the mixture to quench the reaction. Extraction, evaporation, and purification by silica gel column gave the mixture of N-benzyl-1,1-diphenyl-2-propenamine (1m) (0.58 mmol, 29%) and N-benzyldiene-1,1-diphenyl-2-propenamine (0.87 mmol, 44%). The mixture dissolved in toluene (3.0 mL) was treated again with diisobutylaluminum hydride (2.32 mL, 2.32 mmol) at 0 ºC for 1 h. Extractive workup followed by silica gel column purification provided pure 1m (0.390 g, 1.30 mmol, 65% in 2 steps) as a colorless liquid.

Preparation of (Z)-deuterio-1i

A 100–mL reaction flask was filled with argon. A solution of 4-methoxy-N-(2-phenyl-3-buten-2-yl)aniline (1.31 g, 5.21 mmol), prepared by the method described in method 1, in THF (20.0 mL) and diisobutylaluminum hydride (1.0 M in hexane solution, 31.2 mL, 31.2 mmol) were added to the flask at room temperature. The mixture was heated at reflux overnight. After the flask was cooled to 0 ºC with an ice bath, methanol-d (21.8 mL) was carefully added, and the mixture was stirred at room temperature for 30 min. At ambient temperature, 30 wt% Rochell salt solution (37.4 mL) was added to the resulting colloidal mixture, and the mixture was extracted with diethyl ether three times. Evaporation and purification through a silica gel column provided (Z)-deuterio-4-methoxy-N-(2-phenyl-3-buten-2-yl)aniline [(Z)-deuterio-1i] (1.24 g, 4.88 mmol, 94%) as a pale yellow liquid. The deuteration degree was 91% estimated from 2H NMR spectra.

Typical procedure for palladium-catalyzed reactions of allylamines with aryl or alkenyl halides

The reaction of N-(1,1-diphenyl-2-propenyl)aniline (1a) with bromobenzene (Table 1, entry 1) is representative. Sodium tert-butoxide (0.058 g, 0.60 mmol) was added to a 30–mL
two-necked reaction flask equipped with a Dimroth condenser and was dried in vacuo with heating by a hair dryer for 1 min. (Trisdibenzylideneacetone)dipalladium (6.9 mg, 0.0075 mmol) and 2-dicyclohexylphosphino-2', 6'-dimethoxybiphenyl (SPhos, 6.2 mg, 0.015 mmol) were added to the flask, and the flask was filled with argon by using the standard Schlenck technique. Toluene (1.0 mL) was then added at room temperature. After the suspension was stirred for 10 min, 1a (0.0856 g 0.30 mmol) and bromobenzene (0.0942 g, 0.60 mmol) dissolved in toluene (2.0 mL) were added to the flask at ambient temperature. The mixture was heated at reflux for 15 h with an oil bath. After the flask was cooled to room temperature, water (20 mL) was added to quench the reaction. The mixture was extracted with hexane:AcOEt = 5/1 three times. The combined organic layer was dried over sodium sulfate and concentrated under reduced pressure. The resulting brown residue was purified by silica gel column chromatography under basic conditions (silica gel 60N was used with an eluent (hexane:AcOEt:triethylamine = 30/1/0.1)) to provide 3-benzyl-1,2,2-triphenylaziridine 2a (0.106 g, 0.294 mmol, 98%).

Stereochemical Assignment of 4a

The relative stereochemistry of 4a was assigned based on NOE experiments. A correlation between the protons of the methyl group and the proton attached to the aminated carbon was observed.

The author performed the reaction of 1i with tert-butyl 2-chlorobenzoate to afford the corresponding aziridine 10, which would possess a similar structure of 4a, as a single diastereomer. The X-ray crystallographic structure of 10 also supports the relative stereochemistry of 4a (Figure 2).

![Diagram of reaction and stereochemistry](image-url)
Figure 2. ORTEP Diagram of 10. Hydrogen atoms are omitted for clarity.

Stereochemical Assignment of 4c

The NOE experiments of 4c did not show any characteristic correlations between the protons of the substituents at the aminated carbon. The author assumed the relative stereochemistry of the major diastereomer of 4c on the basis of A value, which indicates that the phenyl group would be larger than the trifluoromethyl group.
The relative stereochemistry of the both diastereomers of 4\(e\) was also determined based on NOE experiments. In the case of the major diastereomer, the correlation between the protons of the methyl group and the protons at the aminated carbon was observed. Moreover, the protons of the tert-butyl group and the benzylic protons showed the correlation. On the other hand, the minor diastereomer showed the correlation between the protons of the methyl group and the benzylic protons along with that between the methyl protons of the tert-butyl group and the proton at the aminated carbon.

Stereochemical Assignment of (erythro, erythro)-deuterio-5

The relative stereochemistry of deuterio-5 was assigned by further transformation (Scheme 5). The experimental procedure is as follows. Acetonitrile (2.8 mL) and water (2.0 mL) were added to a 50–mL flask containing deuterio-5 (0.0875 g, 0.240 mmol). After the flask was cooled to 0 °C, diammonium cerium(IV) nitrate (0.329 g, 0.60 mmol) was added in one portion. The mixture immediately turned brown. The mixture was stirred at 0 °C for 3 h, and then saturated sodium hydrogen carbonate solution and saturated sodium thiosulfate solution were added to quench the reaction. Extractive workup followed by silica gel column purification yielded secondary amine deuterio-9 (0.0412 g, 0.155 mmol, 65%).

The procedure of palladium-catalyzed intramolecular amination reaction was similar to that of carboamination reaction described in main text, in which sodium tert-butoxide was used instead of potassium phosphate. The resulting crude mixture involved deuterio-6 along with deuterio-9 and some unidentified products. After purification on neutral silica gel 60N using hexane:AcOEt = 3:1 as an eluent, deuterio-6 was obtained in 28 % yield.
In the 1H NMR spectrum of nondeuterated 6, the two benzylic protons showed characteristic signals. One signal appeared at 3.27 ppm with coupling constants of 7.5 Hz and 17.0 Hz, while the other appeared at 3.13 ppm with coupling constants of 1.5 Hz and 17.0 Hz. On the basis of the conventional coupling constant analysis proposed by Karplus,12,13 we were able to assign each signal to each benzylic proton since 6 is conformationally restricted. The proton H$_A$ on the convex face should correspond to the signal with the larger coupling constant of 7.5 Hz since H$_A$ and H$_C$ are nearly eclipsed. Meanwhile, the signal with the smaller coupling constant of 1.5 Hz should be assigned to H$_B$ on the concave face because the relevant dihedral angle of H$_C$-C-C and H$_B$-C-C is almost orthogonal.

In the 1H NMR spectrum of deuterated 6, the signal corresponding to H$_A$ remained at the same position while the signal corresponding to H$_B$ disappeared almost completely. Thus deuterium must be on the concave face, and the relative stereochemistry at 2,3-position was assigned to be erythro. Thereby, deuterio-5 should have erythro, erythro configuration.
Chapter 5

Characterization Data

N-(1,1-Diphenyl-2-propenyl)aniline (1a): IR (nujol) 3418, 2923, 2853, 1599, 1490, 1445, 1320, 931, 763, 747 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 4.59 (s, 1H), 5.28 (dd, \(J = 17.0, 1.0\) Hz, 1H), 5.43 (dd, \(J = 10.5, 1.0\) Hz, 1H), 6.43 (dd, \(J = 8.5, 1.5\) Hz, 2H), 6.57 (dd, \(J = 17.0, 10.5\) Hz, 1H), 6.62 (tt, \(J = 7.5, 1.5\) Hz, 1H), 7.01 (dd, \(J = 8.5, 7.5\) Hz, 2H), 7.24 (tt, \(J = 7.5, 1.5\) Hz, 2H), 7.31 (t, \(J = 7.5\) Hz, 4H), 7.39 (dd, \(J = 7.5, 1.5\) Hz, 4H); 13C NMR (CDCl\(_3\)) \(\delta\) 68.19, 116.35, 117.21, 117.39, 127.28, 128.23, 128.51, 128.54, 139.52, 114.94, 145.79; Found: C, 88.15; H, 6.90%. Calcd for C\(_{21}\)H\(_{19}\)N: C, 88.38; H, 6.71%. m.p. 126.0–127.1 °C.

4-Methoxy-N-(1,1-diphenyl-2-propenyl)aniline (1b): IR (nujol) 3419, 2924, 2853, 2826, 1507, 1447, 1436, 1237, 1180, 1041, 1007, 928, 820, 805, 778, 763 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 3.68 (s, 3H), 4.35 (s, 1H), 5.27 (dd, \(J = 17.0, 1.0\) Hz, 1H), 5.42 (dd, \(J = 10.5, 1.0\) Hz, 1H), 6.39 (d, \(J = 9.0\) Hz, 2H), 6.54 (dd, \(J = 17.0, 10.5\) Hz, 1H), 6.61 (d, \(J = 9.0\) Hz, 2H), 7.24 (tt, \(J = 7.5, 1.5\) Hz, 2H), 7.31 (t, \(J = 7.5\) Hz, 4H), 7.43 (dd, \(J = 7.5, 1.5\) Hz, 4H); 13C NMR (CDCl\(_3\)) \(\delta\) 55.76, 68.36, 114.13, 117.07, 117.60, 127.18, 128.26, 128.46, 139.81, 140.12, 145.19, 152.00; Found: C, 83.93; H, 6.87%. Calcd for C\(_{22}\)H\(_{21}\)NO: C, 83.78; H, 6.71%. m.p. 84.2–85.5 °C.

N-(1,1-Diphenyl-2-propenyl)-4-fluoroaniline (1c): IR (nujol) 3425, 2923, 2854, 1490, 1447, 1225, 1101, 1009, 932, 818, 791, 759, 745 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 4.49 (s, 1H), 5.28 (dd, \(J = 17.0, 1.0\) Hz, 1H), 5.43 (dd, \(J = 10.5, 1.0\) Hz, 1H), 6.34–6.38 (m, 2H), 6.53 (dd, \(J = 17.0, 10.5\) Hz, 1H), 6.69–6.74 (m, 2H), 7.25 (tt, \(J = 7.0, 1.5\) Hz, 2H), 7.31 (t, \(J = 7.0\) Hz, 4H), 7.38 (dd, \(J = 7.0, 1.5\) Hz, 4H); 13C NMR (CDCl\(_3\)) \(\delta\) 68.37, 114.98 (d, \(J = 22.5\) Hz), 117.13 (d, \(J = 7.2\) Hz), 127.34, 128.21, 128.56, 139.61, 142.04, 142.05, 144.81, 155.82 (d, \(J = 235.1\) Hz); 19F NMR (CDCl\(_3\)) \(\delta\) –128.38—128.29 (m); Found: C, 83.32; H, 6.18%. Calcd for C\(_{21}\)H\(_{18}\)FN: C, 83.14; H, 5.98%. m.p. 124.2–125.5 °C.
Chapter 5

N-[1,1-Di(4-methoxyphenyl)-2-propenyl]aniline (1d): IR (nujol) 3406, 2926, 2854, 1602, 1578, 1505, 1452, 1444, 1306, 1247, 1184, 1166, 1033, 1017, 998, 919, 819, 752 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 3.79 (s, 6H), 4.51 (s, 1H), 5.24 (dd, \(J = 17.5, 1.0 \text{ Hz}, 1\)H), 5.38 (dd, \(J = 10.5, 1.0 \text{ Hz}, 1\)H), 6.43 (dd, \(J = 8.5, 1.0 \text{ Hz}, 2\)H), 6.53 (dd, \(J = 17.5, 10.5 \text{ Hz}, 1\)H), 6.61 (tt, \(J = 7.5, 1.0 \text{ Hz}, 1\)H), 6.83 (d, \(J = 9.0 \text{ Hz}, 4\)H), 7.01 (dd, \(J = 8.5, 7.5 \text{ Hz}, 2\)H), 7.28 (d, \(J = 9.0 \text{ Hz}, 4\)H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 55.45, 67.30, 113.77, 116.29, 116.49, 117.22, 128.51, 129.40, 137.23, 139.89, 145.94, 158.68; Found: C, 80.09%; H, 6.84%. Calcd for C\(_{23}\)H\(_{23}\)NO\(_2\): C, 79.97%; H, 6.71%. m.p. 121.0–122.5 °C.

N-[1,1-Di(4-fluorophenyl)-2-propenyl]aniline (1e): IR (nujol) 3419, 2924, 2854, 1599, 1505, 1430, 1320, 1230, 1160, 1013, 995, 925, 853, 833, 817, 751 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 4.48 (s, 1H), 5.24 (dd, \(J = 17.0, 1.0 \text{ Hz}, 1\)H), 5.44 (dd, \(J = 10.5, 1.0 \text{ Hz}, 1\)H), 6.39–6.47 (m, 2H), 6.50 (dd, \(J = 17.0, 10.5 \text{ Hz}, 1\)H), 6.65 (tt, \(J = 7.0, 1.0 \text{ Hz}, 1\)H), 6.97–7.04 (m, 6H), 7.31–7.35 (m, 4H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 67.41, 115.40 (d, \(J = 21.1 \text{ Hz}\), 116.39, 117.50, 117.79, 128.63, 129.94 (d, \(J = 7.7 \text{ Hz}\), 139.43, 140.39 (d, \(J = 3.3 \text{ Hz}\), 145.39, 162.00 (d, \(J = 246.7 \text{ Hz}\); \(^19\)F NMR (CDCl\(_3\)) \(\delta\) 46.05; Found: C, 78.74%; H, 5.43%. Calcd for C\(_{21}\)H\(_{17}\)F\(_2\)N: C, 78.49%; H, 5.33%. m.p. 65.9–66.5 °C.

N-(4-Vinyl-4-heptanyl)aniline (1f): IR (neat) 3412, 2934, 2872, 1602, 1497, 1458, 1320, 1258, 1153, 1002, 917, 747 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.87 (t, \(J = 7.5 \text{ Hz}, 6\)H), 1.21–1.34 (m, 4H), 1.51–1.60 (m, 2H), 1.69–1.76 (m, 2H), 3.63 (s, 1H), 5.15 (dd, \(J = 18.0, 1.0 \text{ Hz}, 1\)H), 5.19 (dd, \(J = 11.0, 1.0 \text{ Hz}, 1\)H), 5.89 (dd, \(J = 18.0, 11.0 \text{ Hz}, 1\)H), 6.65 (t, \(J = 7.0 \text{ Hz}, 1\)H), 6.68 (d, \(J = 8.5 \text{ Hz}, 2\)H), 7.09 (dd, \(J = 8.5, 7.0 \text{ Hz}, 2\)H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 14.70, 16.55, 39.15, 59.85, 113.99, 115.41, 117.13, 128.92, 145.12, 146.88; HRMS Found: m/z 217.1830. Calcd for C\(_{15}\)H\(_{23}\)N: 217.1830.

N-(1-Vinylcyclohexyl)aniline (1g): IR (neat) 3421, 2932, 2855, 1601, 1497, 1449, 1426, 1317, 1277, 1255, 1180, 1164, 998, 906, 745 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.26–1.34 (m, 1H), 1.45–1.63 (m, 7H), 1.89–1.96 (m, 2H), 3.77 (s, 1H), 5.14 (dd, \(J = 10.5, 1.0 \text{ Hz}, 1\)H), 5.22 (dd, \(J = 17.5, 1.0 \text{ Hz}, 1\)H), 5.95 (dd, \(J = 17.5, 10.5 \text{ Hz}, 1\)H), 6.67 (tt, \(J = 7.5, 1.0 \text{ Hz}, 1\)H), 6.70 (dd, \(J = 8.5, 1.0 \text{ Hz}, 2\)H), 7.11 (dd, \(J = 8.5, 7.5 \text{ Hz}, 2\)H); \(^{13}\)C NMR(CDCl\(_3\)) \(\delta\) 21.79, 25.80, 35.52, 56.46, 113.50, 115.95, 117.30, 128.84, 145.96, 146.33; Found: C, 83.74%; H, 9.69%. Calcd for C\(_{14}\)H\(_{19}\)N: C, 83.53%; H, 9.51%.

159
Chapter 5

\section*{N-(2-Phenyl-3-buten-2-yl)aniline (1h)}: IR (neat) 3414, 3054, 2982, 1601, 1498, 1446, 1411, 1317, 1258, 1216, 1181, 1028, 995, 923, 750 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.70 (s, 3H), 4.15 (s, 1H), 5.22 (dd, \(J = 10.5, 1.0\) Hz, 1H), 5.26 (dd, \(J = 17.5, 1.0\) Hz, 1H), 6.38 (dd, \(J = 17.5, 10.5\) Hz, 1H), 6.41 (dd, \(J = 7.5, 1.0\) Hz, 2H), 6.63 (tt, \(J = 7.0, 1.0\) Hz, 1H), 7.02 (dd, \(J = 7.5, 7.0\) Hz, 2H), 7.25 (tt, \(J = 7.5, 1.5\) Hz, 1H), 7.34 (t, \(J = 7.5\) Hz, 2H), 7.52 (dd, \(J = 7.5, 1.5\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 29.47, 60.46, 114.05, 115.96, 117.55, 126.47, 126.89, 128.73, 128.81, 143.09, 145.49, 145.91; Found: C, 86.14; H, 7.79%. Calcd for C\(_{16}\)H\(_{17}\)N: C, 86.05; H, 7.67%.

\section*{4-Methoxy-N-(2-phenyl-3-buten-2-yl)aniline (1i):} IR (neat) 3402, 2831, 1510, 1492, 1446, 1408, 1366, 1296, 1227, 1179, 1039, 922, 822, 760 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.66 (s, 3H), 3.69 (s, 3H), 3.84 (s, 1H), 5.20 (dd, \(J = 10.5, 1.0\) Hz, 1H), 5.24 (dd, \(J = 17.5, 1.0\) Hz, 1H), 6.32 (dd, \(J = 17.5, 10.5\) Hz, 1H), 6.39 (d, \(J = 8.5\) Hz, 2H), 6.63 (d, \(J = 8.5\) Hz, 2H), 7.25 (tt, \(J = 7.5, 1.5\) Hz, 1H), 7.34 (t, \(J = 7.5\) Hz, 2H), 7.53 (dd, \(J = 7.5, 1.5\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 28.99, 55.79, 60.74, 113.80, 114.42, 117.85, 126.61, 126.86, 128.66, 139.86, 143.69, 145.87, 152.45; Found: C, 80.47; H, 7.54%. Calcd for C\(_{17}\)H\(_{19}\)NO: C, 80.60; H, 7.56%.

\section*{(Z)-4-Methoxy-N-(4-deuterio-2-phenyl-3-buten-2-yl)aniline ((Z)-deutero-1i):} IR (neat) 3403, 2932, 2831, 1511, 1492, 1445, 1372, 1295, 1236, 1179, 1039, 820, 760 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.66 (s, 3H), 3.69 (s, 3H), 3.83 (s, 1H), 5.19 (d, \(J = 10.5\) Hz, 1H), 6.32 (dt, \(J = 10.5, 2.5\) Hz, 1H), 6.39 (d, \(J = 9.0\) Hz, 2H), 6.63 (d, \(J = 9.0\) Hz, 2H), 7.25 (tt, \(J = 7.5, 1.5\) Hz, 1H), 7.34 (d, \(J = 8.5\) Hz, 2H), 7.53 (dd, \(J = 8.5, 1.5\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 28.99, 55.79, 60.73, 113.54 (t, \(J = 23.5\) Hz), 114.41, 117.85, 126.60, 126.86, 128.65, 139.86, 143.60, 145.87, 152.45; HRMS Found: m/z 254.1528. Calcd for C\(_{17}\)H\(_{18}\)DNO: 254.1529.

\section*{N-(1,1,1-Trifluoro-2-phenyl-3-buten-2-yl)aniline (1j):} IR (nujol) 3410, 3064, 3031, 1600, 1496, 1455, 1318, 1242, 1172, 1142, 962, 939, 766 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 4.55 (s, 1H), 5.56 (d, \(J = 17.0\) Hz, 1H), 5.57 (d, \(J = 10.5\) Hz, 1H), 6.36 (d, \(J = 8.5\) Hz, 2H), 6.47 (dd, \(J = 17.0, 10.5\) Hz, 1H), 6.69 (t, 7.5 Hz, 1H), 7.01 (dd, \(J = 8.5, 7.5\) Hz, 2H), 7.36–7.41 (m, 3H), 7.61–7.66 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 67.26 (q, \(J = 26.4\) Hz), 116.83, 118.83, 121.47, 125.48 (q, \(J = 286.5\) Hz), 128.71, 128.76, 128.86 (two peaks merge, 131.81, 134.90, 143.68; \(^{19}\)F NMR (CDCl\(_3\)) \(\delta\) –76.44; HRMS Found: m/z 277.1082. Calcd for C\(_{16}\)H\(_{14}\)F\(_3\)N: 277.1078. m.p. 76.7–77.0°C.
Chapter 5

N-(3,4-Dimethyl-1-penten-3-yl)aniline (1k): IR (neat) 3424, 2965, 2877, 1602, 1500, 1459, 1388, 1372, 1257, 1173, 917, 747 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.95 (d, \(J = 6.5\) Hz, 3H), 0.97 (d, \(J = 6.5\) Hz, 3H), 1.33 (s, 3H), 1.83 (sept, \(J = 6.5\) Hz, 1H), 3.67 (s, 1H), 5.16 (dd, \(J = 17.5, 1.5\) Hz, 1H), 5.24 (dd, \(J = 11.0, 1.5\) Hz, 1H), 5.94 (dd, \(J = 17.5, 11.0\) Hz, 1H), 6.67 (tt, \(J = 7.5, 1.0\) Hz, 1H), 6.71 (dd, \(J = 8.5, 1.0\) Hz, 2H), 7.10 (dd, \(J = 8.5, 7.5\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 17.30, 17.60, 20.24, 38.30, 60.19, 115.04, 116.00, 117.39, 128.91, 143.32, 147.05; Found: C, 82.48; H, 10.38%. Calcd for C\(_{13}\)H\(_{19}\)N: C, 82.48; H, 10.12%.

N-(3,4,4-Trimethyl-1-penten-3-yl)aniline (1l): IR (neat) 3441, 2971, 2875, 1602, 1500, 1397, 1374, 1316, 1255, 1107, 746 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.02 (s, 9H), 1.36 (s, 3H), 3.86 (s, 1H), 5.14 (dd, \(J = 17.5, 1.5\) Hz, 1H), 5.28 (dd, \(J = 11.0, 1.5\) Hz, 1H), 6.00 (dd, \(J = 17.5, 11.0\) Hz, 1H), 6.66 (tt, \(J = 7.5, 1.0\) Hz, 1H), 6.73 (dd, \(J = 8.5, 1.0\) Hz, 2H), 7.09 (dd, \(J = 8.5, 7.5\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 17.24, 25.48, 38.05, 62.18, 115.92, 116.16, 117.34, 128.86, 143.13, 147.27; HRMS Found: m/z 203.1674. Calcd for C\(_{14}\)H\(_{21}\)N: 203.1674.

N-Benzyl-1,1-diphenylallylamine (1m): IR (neat) 3321, 3060, 3028, 2850, 1599, 1492, 1452, 1029, 924, 760 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.84 (s, 1H), 3.51 (s, 2H), 5.27 (dd, \(J = 17.5, 1.5\) Hz, 1H), 5.33 (dd, \(J = 10.5, 1.0\) Hz, 1H), 6.47 (dd, \(J = 17.5, 10.5\) Hz, 1H), 7.22–7.25 (m, 3H), 7.30–7.35 (m, 6H), 7.39–7.42 (m, 2H), 7.43–7.47 (m, 4H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 47.85, 68.26, 114.62, 126.81, 127.01, 128.20, 128.23, 128.27, 128.54, 141.38, 142.89, 145.69; HRMS Found: m/z 299.1673. Calcd for C\(_{22}\)H\(_{21}\)N: 299.1674.

N-(2-Methyl-3-buten-2-yl)aniline (1n): IR (neat) 3407, 3052, 2981, 2930, 1603, 1498, 1411, 1317, 1261, 1180, 996, 917, 748 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.40 (s, 6H), 3.70 (s, 1H), 5.11 (dd, \(J = 11.0, 1.0\) Hz, 1H), 5.19 (dd, \(J = 17.5, 1.0\) Hz, 1H), 6.02 (dd, \(J = 17.5, 11.0\) Hz, 1H), 6.67–6.72 (m, 3H), 7.09–7.14 (m, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 28.53, 54.82, 112.90, 115.94, 117.65, 128.94, 146.63, 146.86; HRMS Found: m/z 161.1207. Calcd for C\(_{11}\)H\(_{15}\)N: 161.1204.

161
3-Benzyl-1,2,2-triphenylaziridine (2a): IR (nujol) 3060, 3026, 2917, 1596, 1494, 1446, 1405, 1309, 1266, 1233, 1077, 1029, 770, 753, 733 cm⁻¹; ¹H NMR (CDCl₃) δ 2.53 (dd, J = 14.5, 7.5 Hz, 1H), 2.74 (dd, J = 14.5, 5.0 Hz, 1H), 3.54 (dd, J = 7.5, 5.0 Hz, 1H), 6.57 (dd, J = 8.5, 1.0 Hz, 2H), 6.75 (tt, J = 7.5, 1.0 Hz, 1H), 6.94–6.98 (m, 4H), 7.06–7.09 (m, 3H), 7.22–7.28 (m, 3H), 7.30–7.36 (m, 3H), 7.39–7.42 (m, 2H), 7.56–7.58 (m, 2H); ¹³C NMR (CDCl₃) δ 36.46, 49.94, 57.05, 121.00, 121.87, 126.55, 127.37, 127.51, 127.89, 128.24, 128.44, 128.77, 129.17, 129.72, 130.18, 137.56, 139.79, 140.81, 149.46; HRMS Found: m/z 360.1741. Calcd for [C₂₇H₂₃N-H]: 360.1747.

3-(1-Naphthalenyl)methyl-1,2,2-triphenylaziridine (2b): IR (nujol) 2965, 2870, 1597, 1490, 1457, 1379, 1364, 1339, 1249, 1076, 760, 732 cm⁻¹; ¹H NMR (CDCl₃) δ 2.96 (dd, J = 15.0, 7.5 Hz, 1H), 3.21 (dd, J = 15.0, 5.0 Hz, 1H), 3.63 (dd, J = 7.5, 5.0 Hz, 1H), 6.42 (dd, J = 8.5, 1.0 Hz, 2H), 6.69 (tt, J = 7.5, 1.0 Hz, 1H), 6.87 (dd, J = 8.5, 7.5 Hz, 2H), 6.92–6.94 (m, 2H), 7.05–7.08 (m, 3H), 7.34–7.46 (m, 5H), 7.49–7.55 (m, 2H), 7.65–7.67 (m, 2H), 7.77–7.79 (m, 1H), 7.89–7.91 (m, 1H), 8.17–8.18 (m, 1H); ¹³C NMR (CDCl₃) δ 33.73, 49.42, 57.21, 120.90, 121.80, 124.32, 125.82, 125.93, 126.31, 127.13, 127.36, 127.47, 127.52, 127.89, 128.35, 128.37, 128.96, 129.77, 130.13, 132.29, 134.16, 136.07, 137.52, 140.80, 149.27; Found: C, 90.67; H, 6.24%. Calcd for C₃₁H₂₅N: C, 90.47; H, 6.12%. m.p. 51.5–52.2 °C.

3-(2-Methoxyphenyl)methyl-1,2,2-triphenylaziridine (2c): IR (neat) 3025, 3002, 2935, 2834, 1594, 1489, 1447, 1404, 1241, 1173, 1119, 1077, 1029, 753, 728 cm⁻¹; ¹H NMR (CDCl₃) δ 2.52 (dd, J = 14.5, 7.0 Hz, 1H), 2.81 (dd, J = 14.5, 5.0 Hz, 1H), 3.67 (dd, J = 7.0, 5.0 Hz, 1H), 3.92 (s, 3H), 6.58 (dd, J = 8.5, 1.0 Hz, 2H), 6.74 (tt, J = 7.5, 1.0 Hz, 1H), 6.83–6.86 (m, 1H), 6.92–6.98 (m, 5H), 7.00–7.01 (m, 1H), 7.06–7.10 (m, 3H), 7.21–7.25 (m, 1H), 7.32–7.35 (m, 1H), 7.38–7.41 (m, 2H), 7.54–7.58 (m, 2H); ¹³C NMR (CDCl₃) δ 31.08, 48.59, 55.64, 57.17, 110.46, 120.85, 120.99, 121.67, 127.24, 127.38, 127.82 (two peaks merge), 128.03, 128.15, 128.39, 129.87, 130.25, 131.09, 137.90, 140.97, 149.84, 157.74; Found: C, 85.74; H, 6.67%. Calcd for C₂₈H₂₅NO: C, 85.90; H, 6.44%.
3-(4-Methoxyphenyl)methyl-1,2,2-triphenylaziridine (2d): IR (nujol) 2924, 2854, 1652, 1595, 1558, 1507, 1447, 1247, 1177, 1036, 768, 708 cm⁻¹; ¹H NMR (CDCl₃) δ 2.47 (dd, J = 14.5, 7.5 Hz, 1H), 2.69 (dd, J = 14.5, 5.0 Hz, 1H), 3.51 (dd, J = 7.5, 5.0 Hz, 1H), 3.81 (s, 3H), 6.59 (dd, J = 8.5, 1.0 Hz, 2H), 6.76 (tt, J = 7.5, 1.0 Hz, 1H), 6.86 (d, J = 8.5 Hz, 2H), 6.94–6.99 (m, 4H), 7.07–7.10 (m, 3H), 7.19 (d, J = 8.5 Hz, 2H), 7.32–7.36 (m, 1H), 7.38–7.42 (m, 2H); ¹³C NMR (CDCl₃) δ 35.55, 50.12, 55.46, 57.04, 114.17, 121.02, 121.84, 127.32, 127.48, 127.88, 128.22, 128.45, 129.71, 130.15, 130.18, 131.81, 137.61, 140.86, 149.53, 158.37; Found: C, 85.90; H, 6.49%. Calcd for C₂₈H₂₅NO: C, 85.90; H, 6.44%. m.p. 77.5–79.0 °C.

3-(4-Dimethylaminophenyl)methyl-1,2,2-triphenylaziridine (2e): IR (nujol) 2925, 1613, 1596, 1521, 1490, 1410, 1227, 763, 708 cm⁻¹; ¹H NMR (CDCl₃) δ 2.47 (dd, J = 14.5, 7.5 Hz, 1H), 2.63 (dd, J = 14.5, 5.5 Hz, 1H), 2.93 (s, 6H), 3.51 (dd, J = 7.5, 5.5 Hz, 1H), 6.62 (dd, J = 8.5, 1.0 Hz, 2H), 6.72 (d, J = 8.5 Hz, 2H), 6.75 (tt, J = 7.5, 1.0 Hz, 1H), 6.94–6.99 (m, 4H), 7.05–7.08 (m, 3H), 7.14 (d, J = 8.5 Hz, 2H), 7.31–7.34 (m, 1H), 7.37–7.41 (m, 2H), 7.54–7.58 (m, 2H); ¹³C NMR (CDCl₃) δ 35.55, 50.12, 55.46, 57.04, 114.17, 121.02, 121.84, 127.32, 127.48, 127.78, 128.18, 128.43, 129.77, 129.80, 130.23, 137.79, 140.98, 149.57, 149.67; Found: C, 86.00; H, 6.94%. Calcd for C₂₉H₂₈N₂: C, 86.10; H, 6.98%. m.p. 114.0–114.3 °C.

3-(4-Trifluoromethylphenyl)methyl-1,2,2-triphenylaziridine (2f): IR (neat) 3027, 2923, 1618, 1596, 1489, 1447, 1405, 1323, 1233, 1111, 1067, 1019, 853, 820, 770, 730 cm⁻¹; ¹H NMR (CDCl₃) δ 2.58 (dd, J = 14.5, 8.0 Hz, 1H), 2.81 (dd, J = 14.5, 5.0 Hz, 1H), 3.55 (dd, J = 8.0, 5.0 Hz, 1H), 6.57 (dd, J = 8.5, 1.0 Hz, 2H), 6.78 (td, J = 7.5, 1.0 Hz, 1H), 6.95–7.00 (m, 4H), 7.08–7.11 (m, 3H), 7.34–7.44 (m, 5H), 7.55–7.60 (m, 4H); ¹³C NMR (CDCl₃) δ 36.34, 49.23, 57.15, 120.92, 122.11, 124.55 (q, J = 271.7 Hz), 125.67 (q, J = 3.8 Hz), 127.54, 127.66, 127.98, 128.34, 128.55, 128.97 (q, J = 32.2 Hz), 129.55, 129.65, 130.15, 137.25, 140.59, 143.96, 149.13; ¹⁹F NMR (CDCl₃) δ –62.84; HRMS Found: m/z 428.1630. Calcd for [C₂₈H₂₂F₃N–H]⁺: 428.1621.
tert-Butyl 4-[(1,3,3-triphenyl-2-aziridinyl)methyl]benzoate (2g): IR (nujol) 2853, 1717, 1596, 1447, 1367, 1258, 1162, 1113, 1077, 1020, 850, 758 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.60 (s, 9H), 2.56 (dd, \(J = 14.5, 7.5\) Hz, 1H), 2.77 (dd, \(J = 14.5, 5.0\) Hz, 1H), 3.54 (dd, \(J = 7.5, 5.0\) Hz, 1H), 6.57 (dd, \(J = 8.5, 1.0\) Hz, 2H), 6.76 (tt, \(J = 7.5, 1.0\) Hz, 1H), 6.93–6.99 (m, 4H), 7.06–7.10 (m, 3H), 7.31 (d, \(J = 8.5\) Hz, 2H), 7.32–7.36 (m, 1H), 7.38–7.42 (m, 2H), 7.54–7.58 (m, 2H), 7.93 (d, \(J = 8.5\) Hz, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 28.45, 36.52, 49.39, 57.09, 81.09, 120.98, 122.02, 127.48, 127.60, 127.95, 128.31, 128.99, 129.69, 129.95, 130.18, 130.44, 137.36, 140.68, 144.71, 149.24, 166.08; HRMS Found: m/z 461.2352. Calcd for C\(_{32}\)H\(_{31}\)NO\(_2\): 461.2355. m.p. 56.9–58.0 °C.

N,N-Diethyl-4-[(1,3,3-triphenyl-2-aziridinyl)methyl]benzamide (2h): IR (nujol) 2923, 2853, 1717, 1684, 1595, 1558, 1507, 1490, 1420, 1363, 1287, 1077, 1022, 758 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.05–1.17 (bs, 3H), 1.18–1.30 (bs, 3H), 2.53 (dd, \(J = 14.5, 7.5\) Hz, 1H), 2.77 (dd, \(J = 14.5, 5.0\) Hz, 1H), 3.20–3.34 (bs, 2H), 3.48–3.62 (bs, 2H), 3.54 (dd, \(J = 7.5, 5.0\) Hz, 1H), 6.56 (dd, \(J = 8.5, 1.0\) Hz, 2H), 6.75 (tt, \(J = 7.5, 1.0\) Hz, 1H), 6.93–6.98 (m, 4H), 7.07–7.10 (m, 3H), 7.31 (d, \(J = 8.5\) Hz, 2H), 7.32–7.37 (m, 1H), 7.34 (d, \(J = 8.5\) Hz, 2H), 7.38–7.43 (m, 2H), 7.54–7.59 (m, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 13.14, 14.43, 36.31, 39.46, 43.50, 49.68, 57.06, 120.92, 121.94, 126.84, 127.41, 127.56, 127.91, 128.26, 128.44, 129.20, 129.65, 130.12, 135.51, 137.33, 140.67, 140.97, 149.28, 171.55; HRMS Found: m/z 459.2440. Calcd for [C\(_{32}\)H\(_{32}\)N\(_2\)O–H]\(^+\): 459.2431. m.p. 52.0–53.1 °C.

3-(3-Methyl-2-butenyl)-1,2,2-triphenylaziridine (2i): IR (neat) 3060, 2978, 2913, 2855, 1597, 1492, 1446, 1310, 1234, 769 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.53 (s, 3H), 1.74 (s, 3H), 1.96–2.04 (m, 1H), 2.05–2.13 (m, 1H), 3.30 (dd, \(J = 7.0, 6.0\) Hz, 1H), 5.33 (t, \(J = 7.0\) Hz, 1H), 6.76–6.81 (m, 3H), 6.94–6.99 (m, 2H), 7.01–7.07 (m, 2H), 7.07–7.12 (m, 3H), 7.28–7.33 (m, 1H), 7.34–7.39 (m, 2H), 7.49–7.54 (m, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 18.17, 26.08, 28.95, 48.63, 56.95, 120.82, 121.06, 121.82, 127.16, 127.41, 127.85, 128.16, 128.50, 129.63, 130.16, 134.04, 137.81, 140.92, 149.77; HRMS Found: m/z 339.1982. Calcd for C\(_{25}\)H\(_{25}\)N: 339.1987.
3-(E)-(2-Octenyl)-1,2,2-triphenylaziridine (2j): IR (neat) 3026, 2957, 2926, 2855, 1597, 1493, 1446, 1409, 1311, 1232, 971, 769, 759 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (s, 3H), 1.25–1.41 (m, 6H), 1.98–2.12 (m, 4H), 3.33 (dd, J = 7.0, 6.0 Hz, 1H), 5.51 (dt, J = 15.5, 6.0 Hz, 1H), 5.56 (dt, J = 15.5, 6.0 Hz, 1H), 6.78–6.81 (m, 3H), 6.96–6.99 (m, 2H), 7.02–7.06 (m, 2H), 7.07–7.12 (m, 3H), 7.29–7.33 (m, 1H), 7.34–7.38 (m, 2H), 7.49–7.53 (m, 2H); ¹³C NMR (CDCl₃) δ 14.30, 22.77, 29.35, 31.60, 32.89, 33.43, 48.49, 57.01, 121.12, 121.88, 126.54, 127.21, 127.44, 127.87, 128.12, 128.49, 129.67, 130.15, 133.41, 137.74, 140.82, 149.69; Found: C, 88.13; H, 8.08%. Calcd for C₂₈H₃₁N: C, 88.14; H, 8.19%.

3-Benzyl-1-(4-methoxyphenyl)-2,2-diphenylaziridine (3a): IR (nujol) 2924, 2852, 1602, 1506, 1496, 1447, 1239, 1180, 1036, 826, 760 cm⁻¹; ¹H NMR (CDCl₃) δ 2.53 (dd, J = 14.5, 7.5 Hz, 1H), 2.72 (dd, J = 14.5, 5.0 Hz, 1H), 3.49 (dd, J = 7.5, 5.0 Hz, 1H), 6.51–6.53 (m, 4H), 6.95–6.98 (m, 2H), 7.07–7.11 (m, 3H), 7.22–7.26 (m, 1H), 7.26–7.35 (m, 5H), 7.37–7.41 (m, 2H), 7.54–7.59 (m, 2H); ¹³C NMR (CDCl₃) δ 36.40, 49.90, 55.52, 57.17, 113.84, 121.85, 126.52, 127.27, 127.45, 127.91, 128.20, 128.75, 129.20, 129.69, 130.34, 137.73, 139.88, 141.02, 142.68, 154.81; Found: C, 85.61; H, 6.48%. Calcd for C₂₈H₂₅NO: C, 85.90; H, 6.44%.

3-Benzyl-1-(4-fluorophenyl)-2,2-diphenylaziridine (3b): IR (neat) 3028, 1602, 1505, 1446, 1312, 1212, 1153, 1094, 1030, 831, 818, 763, 739 cm⁻¹; ¹H NMR (CDCl₃) δ 2.51 (dd, J = 14.5, 8.0 Hz, 1H), 2.74 (dd, J = 14.5, 5.0 Hz, 1H), 3.51 (dd, J = 8.0, 5.0 Hz, 1H), 6.49 (dd, J = 9.0, 5.0 Hz, 2H), 6.65 (t, J = 9.0 Hz, 2H), 6.93–6.98 (m, 2H), 7.08–7.12 (m, 3H), 7.21–7.28 (m, 3H), 7.29–7.36 (m, 3H), 7.38–7.42 (m, 2H), 7.54–7.58 (m, 2H); ¹³C NMR (CDCl₃) δ 36.32, 50.18, 57.29, 115.06 (d, J = 22.5 Hz), 121.98 (d, J = 8.2 Hz), 126.62, 127.44, 127.66, 128.01, 128.28, 128.81, 129.17, 129.62, 130.20, 137.35, 139.69, 140.63, 145.50, 158.35 (d, J = 239.5 Hz); Found: C, 85.19; H, 5.75%. Calcd for C₂₇H₂₂FN: C, 85.46; H, 5.84%.
3-Benzyl-2,2-di(4-methoxyphenyl)-1-phenylaziridine (3c): IR (nujol) 2839, 1583, 1507, 1490, 1443, 1246, 1171, 1107, 1033, 833, 752, 734, 717 cm⁻¹; ¹H NMR (CDCl₃) δ 2.56 (dd, J = 14.5, 7.5 Hz, 1H), 2.71 (dd, J = 14.5, 5.0 Hz, 1H), 3.44 (dd, J = 7.5, 5.0 Hz, 1H), 3.68 (s, 3H), 3.85 (s, 3H), 6.56 (d, J = 9.0 Hz, 2H), 6.61 (d, J = 9.0 Hz, 2H), 6.75 (tt, J = 7.5, 1.0 Hz, 1H), 6.87 (d, J = 9.0 Hz, 2H), 6.92 (d, J = 9.0 Hz, 2H), 6.97 (dd, J = 8.5, 7.5 Hz, 2H), 7.21–7.29 (m, 3H), 7.29–7.33 (m, 2H), 7.43–7.48 (m, 2H); ¹³C NMR (CDCl₃) δ 36.36, 50.14, 55.26, 55.50, 56.26, 113.23, 113.56, 121.03, 121.72, 126.49, 128.47, 128.75, 129.21, 130.01, 130.67, 131.28, 133.28, 139.93, 149.74, 158.77, 158.86; Found: C, 82.51; H, 6.58%. Calcd for C₂₉H₂₇NO₂: C, 82.63; H, 6.46%. m.p. 43.0–44.2 °C.

3-Benzyl-2,2-di(4-fluorophenyl)-1-phenylaziridine (3d): IR (nujol) 2360, 2333, 1597, 1512, 1222, 1153, 1094, 1075, 1014, 893, 795, 749 cm⁻¹; ¹H NMR (CDCl₃) δ 2.55 (dd, J = 14.5, 7.5 Hz, 1H), 2.70 (dd, J = 14.5, 5.0 Hz, 1H), 3.49 (dd, J = 7.5, 5.0 Hz, 1H), 6.53–6.59 (m, 2H), 6.75–6.82 (m, 3H), 6.90–6.95 (m, 2H), 6.96–7.02 (m, 2H), 7.07–7.13 (m, 2H), 7.23–7.29 (m, 3H), 7.29–7.35 (m, 2H), 7.48–7.56 (m, 2H); ¹³C NMR (CDCl₃) δ 36.24, 49.94, 55.92, 114.97 (d, J = 21.1 Hz), 115.24 (d, J = 21.6 Hz), 120.97, 122.22, 126.69, 128.62, 128.85, 129.13, 131.14 (d, J = 8.2 Hz), 131.75 (d, J = 8.2 Hz), 133.30, 136.44, 139.39, 149.04, 162.13 (d, J = 247.7 Hz), 162.30 (d, J = 245.7 Hz); ¹⁹F NMR (CDCl₃) δ –115.41—115.31 (m), –114.69—114.60 (m); Found: C, 81.55; H, 5.50%. Calcd for C₂₇H₂₁F₂N: C, 81.59; H, 5.33%. m.p. 111.4–112.0 °C.

3-Benzyl-1-phenyl-2,2-dipropylaziridine (3e): IR (neat) 3062, 3029, 2959, 2932, 2872, 1598, 1492, 1453, 1424, 1277, 1258, 766, 749, 735 cm⁻¹; ¹H NMR (CDCl₃) δ 0.28 (ddd, J = 13.5, 11.0, 6.0 Hz, 1H), 0.76 (t, J = 7.5 Hz, 3H), 1.07 (t, J = 7.5 Hz, 3H), 1.16–1.27 (m, 1H), 1.37–1.51 (m, 2H), 1.65–1.85 (m, 4H), 2.19 (t, J = 7.0 Hz, 1H), 2.94 (d, J = 7.0 Hz, 2H), 6.65 (d, J = 7.5 Hz, 2H), 6.89 (t, J = 7.5 Hz, 1H), 7.13 (t, J = 7.5 Hz, 2H), 7.24–7.28 (m, 1H), 7.33–7.35 (m, 4H); ¹³C NMR (CDCl₃) δ 14.33, 14.92, 19.59, 20.05, 33.48, 34.97, 35.77, 49.59, 52.28, 120.60, 121.65, 126.51, 128.79, 128.81, 129.17, 140.24, 150.66; Found: C, 85.70; H, 9.39%. Calcd for C₂₁H₂₇N: C, 85.95; H, 9.27%.

166
2-Benzyl-1-phenyl-1-azaspiro[2.5]octane (3f): IR (neat) 3062, 3028, 2929, 2853, 1597, 1491, 1451, 1428, 1274, 766 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta 0.74-0.81\) (m, 1H), 1.30-1.49 (m, 3H), 1.49-1.56 (m, 1H), 1.64-1.72 (m, 1H), 1.72-1.90 (m, 4H), 2.23 (dd, \(J = 8.0, 4.5\) Hz, 1H), 2.87 (dd, \(J = 14.5, 8.0\) Hz, 1H), 3.02 (dd, \(J = 14.5, 4.5\) Hz, 1H), 6.65 (dd, \(J = 8.5, 1.0\) Hz, 2H), 6.88 (tt, \(J = 7.5, 1.0\) Hz, 1H), 7.11 (dd, \(J = 8.5, 7.5\) Hz, 2H), 7.24-7.28 (m, 1H), 7.32-7.39 (m, 4H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta 25.75, 25.85, 26.12, 32.65, 33.46, 35.80, 48.81, 51.48, 120.80, 121.79, 126.50, 128.68, 128.82, 129.15, 140.43, 150.67\); Found: C, 86.29; H, 8.36%. Calcd for C\(_{20}\)H\(_{23}\)N: C, 86.59; H, 8.36%.

1,3-Dibenzyl-2,2-diphenylaziridine (3g): IR (nujol) 3025, 2922, 2853, 1644, 1602, 1495, 1446, 1357, 1118, 1027, 753, 733 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta 2.46\) (dd, \(J = 14.5, 6.5\) Hz, 1H), 2.60 (dd, \(J = 14.5, 6.5\) Hz, 1H), 2.72 (t, \(J = 6.5\) Hz, 1H), 3.22 (d, \(J = 14.5\) Hz, 1H), 3.44 (d, \(J = 14.5\) Hz, 1H), 7.02-7.05 (m, 2H), 7.14-7.36 (m, 15H), 7.42-7.46 (m, 3H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta 35.44, 50.99, 55.83, 58.40, 126.15, 126.75, 126.80, 127.74, 127.89, 128.17, 128.27, 128.37, 128.46, 128.97, 129.33, 131.57, 139.11, 140.02, 140.33, 142.12; HRMS Found: m/z 375.1987. Calcd for C\(_{28}\)H\(_{25}\)N: 375.1987. m.p. 90.9-91.8°C.

3-Benzyl-2,2-dimethyl-1-phenylaziridine (3h): IR (neat) 3061, 3029, 2955, 2921, 1597, 1493, 1453, 1412, 1376, 1319, 1259, 1113, 768, 750, 725 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta 1.01\) (s, 3H), 1.46 (s, 3H), 2.20 (dd, \(J = 7.0, 6.0\) Hz, 1H), 2.93 (dd, \(J = 16.5, 7.0\) Hz, 1H), 2.96 (dd, \(J = 16.5, 6.0\) Hz, 1H), 6.66 (dd, \(J = 8.5, 1.0\) Hz, 2H), 6.90 (tt, \(J = 7.5, 1.0\) Hz, 1H), 7.14 (dd, \(J = 8.5, 7.5\) Hz, 2H), 7.24-7.29 (m, 1H), 7.32-7.37 (m, 4H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta 21.81, 21.84, 36.18, 42.90, 51.63, 120.64, 121.84, 126.52, 128.81, 128.85, 129.03, 140.17, 150.97; Found: C, 85.88; H, 8.08%. Calcd for C\(_{17}\)H\(_{19}\)N: C, 86.03; H, 8.07%.
3-Benzyl-2-methyl-1,2-diphenylaziridine (4a, <i>erythro/threo >99:1</i>): IR (neat) 3027, 3061, 2963, 2923, 1599, 1495, 1454, 1411, 1330, 1268, 767, 754 cm⁻¹; ¹H NMR (CDCl₃) δ 1.36 (s, 3H), 2.41 (dd, <i>J</i> = 14.0, 7.5 Hz, 1H), 2.52 (dd, <i>J</i> = 7.5, 5.0 Hz, 1H), 2.62 (dd, <i>J</i> = 14.0, 5.0 Hz, 1H), 6.75 (dd, <i>J</i> = 8.5, 1.0 Hz, 2H), 2.10 (t, <i>J</i> = 7.5, 1.0 Hz, 1H), 7.19 (dd, <i>J</i> = 8.5, 7.5 Hz, 2H), 7.21–7.25 (m, 3H), 7.27–7.33 (m, 3H), 7.38–7.43 (m, 2H), 7.57–7.60 (m, 2H); ¹³C NMR (CDCl₃) δ 21.50, 36.45, 49.16, 53.12, 120.43, 121.96, 126.43, 127.16, 128.04, 128.41, 128.69, 128.96, 129.15, 140.00, 141.83, 150.56; HRMS Found: m/z 298.1590. Calcd for [C₂₂H₂₁N–H]+: 298.1590.

3-Benzyl-1-methoxyphenyl-2-methyl-2-phenylaziridine (4b, <i>erythro/threo >99:1</i>): IR (neat) 3059, 3027, 2960, 2925, 2832, 1603, 1505, 1496, 1454, 1443, 1241, 1224, 1040, 832, 767, 752 cm⁻¹; ¹H NMR (CDCl₃) δ 1.33 (s, 3H), 2.39 (dd, <i>J</i> = 13.5, 7.5 Hz, 1H), 2.47 (dd, <i>J</i> = 7.5, 4.5 Hz, 1H), 3.75 (s, 3H), 6.68 (d, <i>J</i> = 9.0 Hz, 2H), 6.76 (d, <i>J</i> = 9.0 Hz, 2H), 7.20–7.25 (m, 3H), 7.27–7.32 (m, 3H), 7.38–7.42 (m, 2H), 7.56–7.60 (m, 2H); ¹³C NMR (CDCl₃) δ 21.31, 36.47, 49.11, 53.17, 55.72, 114.37, 121.20, 126.39, 127.09, 128.07, 128.38, 128.66, 129.13, 140.10, 141.99, 143.81, 155.06.

3-Benzyl-2-trifluoromethyl-1,2-diphenylaziridine (4c, <i>erythro/threo 7:93</i>): IR (neat) 3064, 3030, 1600, 1495, 1455, 1318, 1240, 1174, 1141, 765, 755 cm⁻¹; ¹H NMR (CDCl₃) major diastereomer δ 2.27 (dd, <i>J</i> = 14.5, 8.0 Hz, 1H), 2.81 (dd, <i>J</i> = 14.5, 4.0 Hz, 1H), 3.17 (dd, <i>J</i> = 8.0, 4.0 Hz, 1H), 6.80 (dd, <i>J</i> = 8.5, 1.0 Hz, 2H), 6.98 (tt, <i>J</i> = 7.5, 1.0 Hz, 1H), 7.19 (dd, <i>J</i> = 8.5, 7.5 Hz, 2H), 7.22–7.29 (m, 3H), 7.30–7.34 (m, 2H), 7.44–7.49 (m, 3H), 7.67–7.72 (m, 2H); Signals corresponding to the minor diastereomer were so weak that only the protons located at aminated and benzylic carbon were detected clearly. δ 3.22–3.26 (m, 1H), 3.29–3.33 (m, 2H); ¹³C NMR (CDCl₃) major diastereomer δ 36.27, 46.14, 52.04 (q, <i>J</i> = 31.3 Hz), 119.02, 122.84, 124.72 (q, <i>J</i> = 282.2 Hz), 126.99, 128.67, 128.97, 129.15 (two peaks merge), 129.17, 130.25, 132.20, 138.40, 148.14; ¹⁹F NMR (CDCl₃) δ −64.79 (major), −66.57 (minor); Found: C, 74.86; H, 5.15%. Calcd for C₂₂H₁₈F₃N: C, 74.77; H, 5.15%.
3-Benzyl-2-isopropyl-2-methyl-1-phenylaziridine (4d, erythro/threo = 79:21): major
diastereomer: IR (neat) 3029, 2963, 2932, 2871, 1599, 1492, 1454, 1420, 1296, 1234, 1066, 768, 754, 731 cm\(^{-1}\); \(^1\)H
NMR (CDCl\(_3\)) \(\delta\) 0.85 (s, 3H), 1.03 (d, \(J = 7.0\) Hz, 3H), 1.25 (d, \(J = 7.0\) Hz, 3H),
1.83 (sept, \(J = 7.0\) Hz, 1H), 2.20 (dd, \(J = 8.5, 4.5\) Hz, 1H), 2.87 (dd, \(J = 14.0, 8.5\)
Hz, 1H), 3.05 (dd, \(J = 14.0, 4.5\) Hz, 1H), 6.57 (dd, \(J = 8.5, 1.5\) Hz, 2H), 6.88 (tt, \(J = 7.5, 1.5\) Hz,
1H), 7.10 (dd, \(J = 8.5, 7.5\) Hz, 2H), 7.24–7.28 (m, 1H), 7.32–7.38 (m, 4H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\)
13.70, 19.09, 19.14, 32.30, 35.30, 50.31, 53.58, 120.56, 121.72, 126.50, 128.75, 128.83, 129.23,
140.50, 150.76; HRMS Found: m/z 265.1832. Calcd for C\(_{19}\)H\(_{23}\)N: 265.1830. m.p.
37.8–39.9°C.

minor diastereomer: IR (neat) 3026, 2962, 2931, 2875, 1601, 1494, 1453, 1319, 1254, 1089, 747
\(\text{cm}^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.84 (d, \(J = 6.5\) Hz, 3H), 0.98 (d, \(J = 5.0\) Hz, 3H), 0.96–1.05 (m,
1H), 1.33 (s, 3H), 2.26 (t, \(J = 6.5\) Hz, 1H), 2.82 (dd, \(J = 14.0, 6.5\) Hz, 1H), 2.97 (dd, \(J = 14.0, 6.5\)
Hz, 1H), 6.80 (dd, \(J = 8.5, 1.5\) Hz, 2H), 6.91 (tt, \(J = 7.5, 1.5\) Hz, 1H), 7.16 (dd, \(J = 8.5, 7.5\) Hz,
2H), 7.22–7.26 (m, 1H), 7.29–7.35 (m, 4H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 13.18, 17.86, 21.18, 33.08,
35.35, 49.50, 51.08, 121.53, 121.86, 126.49, 128.78 (two peaks merge), 129.05, 140.10, 149.75;
HRMS Found: m/z 265.1835. Calcd for C\(_{19}\)H\(_{23}\)N: 265.1830.

3-Benzyl-2-tert-butyl-2-methyl-1-phenylaziridine (4e, erythro/threo = 59:41): IR (neat) 2965,
2870, 1654, 1597, 1559, 1507, 1490, 1457, 1379, 1362, 1339, 1249, 1076,
760, 732 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.91 (s, 0.59 × 3H), 0.96 (s, 0.41 × 9H), 1.14 (s, \(0.41 \times 3\)H), 1.17 (s, \(0.59 \times 9\)H), 2.10 (dd, \(J = 7.5, 5.5\)
Hz, 0.59 × 1H), 2.40 (dd, \(J = 15.0, 9.0\) Hz, 0.41 × 1H), 2.93 (dd, \(J = 9.0, 5.0\) Hz, 0.41 × 1H), 3.13–3.18 (m, 0.59 × 2H), 3.18 (dd, \(J = 15.0, 5.0\) Hz, 0.41 × 1H), 6.50 (dd, \(J = 8.5, 1.0\) Hz, 0.59 × 2H), 6.79 (dd, \(J = 8.5, 1.0\) Hz, 0.41 × 2H), 6.86 (tt, \(J = 7.5, 1.0\) Hz, 0.59 × 1H), 6.90 (tt, \(J = 7.5, 1.0\) Hz, 0.41 × 1H), 7.09 (dd, \(J = 8.5, 7.5\) Hz, 0.59 × 2H), 7.21–7.38 (m, 0.59 × 5H, 0.41 × 7H); \(^{13}\)C
NMR (CDCl\(_3\)) \(\delta\) 11.63, 18.70, 26.61, 28.72, 31.47, 34.78, 36.81, 43.56, 49.63, 51.85, 54.59
(two peaks merge), 120.37, 120.40, 120.57, 121.46, 126.39, 126.50, 128.68, 128.71 (two peaks
merge), 128.88, 128.98, 129.21, 139.77, 141.34, 147.99, 151.34; HRMS Found: m/z 279.1977.

169
erythro-3-(2-Chlorophenyl)methyl-1-(4-methoxyphenyl)-2-methyl-2-phenylaziridine

*(erythro-5): IR (neat) 2928, 2832, 1505, 1444, 1330, 1289, 1241, 1223, 1039, 832, 767, 753 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.33 (s, 3H), 2.45 (dd, \(J = 14.0, 7.5\) Hz, 1H), 2.60 (dd, \(J = 7.5, 5.0\) Hz, 1H), 2.82 (dd, \(J = 14.0, 5.0\) Hz, 1H), 3.75 (s, 3H), 6.66 (d, \(J = 8.5\) Hz, 2H), 6.75 (d, \(J = 8.5\) Hz, 2H), 7.06 (dd, \(J = 7.5, 1.5\) Hz, 1H), 7.13 (td, \(J = 7.5, 1.5\) Hz, 1H), 7.17 (td, \(J = 7.5, 1.5\) Hz, 1H), 7.32 (tt, \(J = 7.5, 1.5\) Hz, 1H), 7.38–7.43 (m, 3H), 7.57–7.61 (m, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 21.23, 34.03, 49.44, 51.20, 55.72, 114.40, 121.11, 127.13, 127.18, 127.97, 128.12, 128.42, 129.53, 131.60, 134.04, 137.70, 141.85, 143.71, 155.08; HRMS Found: m/z 363.1396. Calcd for C\(_{23}\)H\(_{22}\)ClNO: 363.1390.

*(erythro,erythro)-3-(2-Chlorophenyl)deuteriomethyl-1-(4-methoxyphenyl)-2-methyl-2-phenylaziridine ((erythro,erythro)-deutero-5): IR (neat) 2959, 2928, 1505, 1472, 1442, 1327, 1289, 1240, 1221, 1180, 1110, 1039, 832, 766, 751 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.33 (s, 3H), 2.60 (d, \(J = 5.5\) Hz, 1H), 2.80 (d, \(J = 5.5\) Hz, 1H), 3.74 (s, 3H), 6.65 (d, \(J = 9.0\) Hz, 2H), 6.74 (d, \(J = 9.0\) Hz, 2H), 7.06 (dd, \(J = 7.5, 1.5\) Hz, 1H), 7.13 (td, \(J = 7.5, 1.5\) Hz, 1H), 7.17 (td, \(J = 7.5, 1.5\) Hz, 1H), 7.31 (tt, \(J = 7.0, 1.5\) Hz, 1H), 7.37–7.43 (m, 3H), 7.57–7.61 (m, 2H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 21.23, 34.03, 49.44, 51.20, 55.72, 114.40, 121.10, 127.13, 127.18, 127.97, 128.12, 128.42, 129.54, 131.61, 134.05, 137.70, 141.85, 143.71, 155.08; HRMS Found: m/z 364.1449. Calcd for C\(_{23}\)H\(_{21}\)ClDNO: 364.1453.

erythro-1,2-[(1-Methyl-1-phenyl)methylene]indoline (erythro-6): IR (nujol) 1602, 1579, 1498, 1320, 1243, 1159, 1108, 1083, 1062, 1039, 1016, 943, 926, 862, 790, 762 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.62 (s, 3H), 3.13 (dd, \(J = 17.0, 1.5\) Hz, 1H), 3.18 (dd, \(J = 7.5, 1.5\) Hz, 1H), 3.27 (dd, \(J = 17.0, 7.5\) Hz, 1H), 6.73–6.78 (m, 2H), 7.00–7.12 (m, 6H), 7.29–7.32 (m, 1H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 29.74, 31.76, 52.04, 52.09, 121.66, 124.32, 124.67, 126.73, 126.91, 128.03, 129.71, 137.43, 137.69, 153.55; HRMS Found: m/z 221.1203. Calcd for C\(_{16}\)H\(_{15}\)N: 221.1204. m.p. 101.5–102.0 °C.
Chapter 5

(erythro,erythro)-3-deuterio-1,2-[(1-Methyl-1-phenyl)methylene]indoline

((erythro,erythro)-deuterio-6): IR (nujol) 1602, 1498, 1457, 1442, 1373, 1287, 1242, 1054, 906, 790, 761, 707 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.62 (s, 3H), 3.18 (d, \(J = 7.5\) Hz, 1H), 3.25 (d, \(J = 7.5\) Hz, 1H), 6.73–6.78 (m, 2H), 7.00–7.11 (m, 6H), 7.29–7.32 (m, 1H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 29.73, 31.46 (t, \(J = 19.6\) Hz), 52.02, 52.08, 121.65, 124.33, 124.69, 126.74, 126.92, 128.03, 129.71, 137.43, 137.65, 153.56; HRMS Found: m/z 222.1262. Calcd for C\(_{16}\)H\(_{14}\)DN: 222.1267. m.p. 102.5–103.0 °C.

tert-Butyl 2-[1-(4-methoxyphenyl)-3-methyl-3-phenyl-2-aziridinylmethyl]benzoate (10, erythro/threo >99:1): IR (nujol) 2924, 2854, 1712, 1506, 1442, 1369, 1296, 1238, 1224, 1177, 1139, 1079, 1038, 837, 723 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 1.32 (s, 3H), 1.62 (s, 9H), 2.39 (dd, \(J = 13.5, 8.0\) Hz, 1H), 2.63 (dd, \(J = 8.0, 4.0\) Hz, 1H), 3.17 (dd, \(J = 13.5, 4.0\) Hz, 1H), 3.73 (s, 3H), 6.60 (d, \(J = 9.0\) Hz, 2H), 6.71 (d, \(J = 9.0\) Hz, 2H), 7.10 (dd, \(J = 7.5, 1.5\) Hz, 1H), 7.25 (td, \(J = 7.5, 1.5\) Hz, 1H), 7.30 (tt, \(J = 7.5, 1.5\) Hz, 1H), 7.32 (td, \(J = 7.5, 1.5\) Hz, 1H), 7.38–7.42 (m, 2H), 7.57–7.61 (m, 2H), 7.83 (dd, \(J = 7.5, 1.5\) Hz, 1H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 21.40, 28.51, 34.89, 49.36, 53.14, 55.72, 81.48, 114.31, 121.15, 126.36, 127.04, 128.13, 128.38, 130.46, 131.68, 131.93, 131.99, 141.00, 142.25, 144.11, 154.95, 167.52; HRMS Found: m/z 429.2292. Calcd for C\(_{28}\)H\(_{31}\)NO\(_3\) : 429.2304. m.p. 104.6–106.0 °C.
References and Notes

(6) We cannot exclude another possibility that the reaction proceeds through syn-carbopalladation, yielding azapalladacyclobutane C'. However, examples of reductive elimination to form sp^3-C–N bond are rare. On the other hand, syn-aminopalladation and subsequent reductive elimination from C is a prevailing pathway as shown in ref. 1.

(7) Although anti-aminopalladation of olefin has been well studied, the reactions of amines tend to suffer from catalyst deactivation by the strong coordination of amine to the palladium center except for the reaction of substrate bearing a electron-withdrawing group on nitrogen. For leading reviews: (a) Hegedus, L. S. Tetrahedron 1984, 40, 2415–2434. (b) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675–704.

Publication List

I. Parts of the present thesis have been published in the following journals.

Chapter 1 Palladium-Catalyzed Stereo- and Regioselective Allylation of Aryl Halides with Homoallyl Alcohols via Retro-Allylation: Selective Generation and Use of \(\sigma \)-Allylpalladium.
Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu, and Koichiro Oshima

Pd(OAc)_2/P(\(\text{C}_6\text{H}_{11} \))_3-Catalyzed Allylation of Aryl Halides with Homoallyl Alcohols via Retro-Allylation.
Masayuki Iwasaki, Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu, and Koichiro Oshima

Chapter 2 Synthesis of (Arylalkenyl)silanes by Palladium-Catalyzed Regiospecific and Stereoselective Allyl Transfer from Silyl-Substituted Homoallyl Alcohols to Aryl Halides.
Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu, and Koichiro Oshima

Chapter 3 Synthesis of Arylallenes by Palladium-Catalyzed Retro-Propargylation of Homopropargyl Alcohols.
Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu, and Koichiro Oshima
Chapter 4 Synthesis of Epoxides by Palladium-Catalyzed Reactions of Tertiary Allyl Alcohols with Aryl or Alkenyl Halides.
Sayuri Hayashi, Hideki Yorimitsu, and Koichiro Oshima

Chapter 5 Synthesis of Aziridines by Palladium-Catalyzed Reactions of Allylamines with Aryl or Alkenyl Halides: Evidence of Intramolecular *syn*-Carboamination Pathway.
Sayuri Hayashi, Hideki Yorimitsu, and Koichiro Oshima

II. Other Publications not included in this thesis.

Gallium-Mediated Allyl Transfer from Bulky Homoallylic Alcohol to Aldehydes via Retro-allylation: Stereoselective Synthesis of Both erythro- and threo-Homoallylic Alcohols.

Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu, and Koichiro Oshima

(1) Rhodium-Catalyzed Allyl Transfer from Homoallyl Alcohols to Aldehydes via Retro-allylation Followed by Isomerization into Ketones.
Yuko Takada, Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu, and Koichiro Oshima

(2) Gallium-Mediated Allyl Transfer from Bulky Homoallyl Alcohol to Aldehydes or Alkynes: Control of Dynamic σ-Allylgalliums based on Retro-Allylation Reaction.
Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu, and Koichiro Oshima

(3) Microwave-Assisted Palladium-Catalyzed Allylation of Aryl Halides with Homoallyl Alcohols via Retro-Allylation.
Masayuki Iwasaki, Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu, and Koichiro Oshima

(4) Rhodium-Catalyzed Allyl Transfer from Homoallyl Alcohols to Acrylate Esters via Retro-Allylation.
Minsul Jang, Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu, and Koichiro Oshima

(5) Rhodium-Catalyzed Allylation of Aldehydes with Homoallyl Alcohols via Retro-Allylation Followed by Isomerization into Saturated Ketones with Conventional or Microwave Heating.
Yuto Sumida, Yuko Takada, Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu, and Koichiro Oshima

(6) Nickel-Catalyzed Allylation of Allyl Carbonates with Homoallyl Alcohols via Retro-Allylation Providing 1,5-Hexadienes.
Yuto Sumida, Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu, and Koichiro Oshima

Junichi Imoto, Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu, and Koichiro Oshima

(8) Palladium-Catalysed Arylative Cyclisation of N-Allylacetamides with Aryl Halides Yielding Benzyl-Substituted Oxazolines.
Daishi Fujino, Sayuri Hayashi, Hideki Yorimitsu, and Koichiro Oshima
Acknowledgment

The studies described in this thesis have been carried out under the direction of Professor Koichiro Oshima at Kyoto University from April, 2004 to March, 2010.

The author wishes to express her deepest gratitude to Professor Oshima for his kind guidance, constant encouragement, and valuable discussions throughout the course of this work. She is extremely grateful to Associate Professor Dr. Hideki Yorimitsu for his practical guidance, fruitful discussions and considerate advice.

The author would like to extend her appreciation to Professor Tamejiro Hiyama and Professor Seijiro Matsubara for their helpful discussions and suggestions. She is thankful to Associate Professor Masaki Shimizu, Dr. Yoshiaki Nakao, and Dr. Takuya Kurahashi for their generous help.

The author would like to express her acknowledgment to Dr. Koji Hirano for teaching basic experimental techniques and giving so many helpful advices to her. She is thankful to Dr. Akinori Sato, Dr. Takashi Niwa, Dr. Suguru Yoshida, Mr. Azusa Kondoh, Mr. Yuto Sumida, and Mr. Shigeo Yasuda for their nice guidance and valuable discussions during the course of this study. She extends her appreciation to Mr. Masayuki Iwasaki, Ms. Yuko Takada, Mr. Minsul Jang, Mr. Junichi Imoto, and Mr. Daishi Fujino for their collaboration. She is deeply indebted to all the members of the Oshima group for their energetic and constructive discussions.

Financial support from JSPS, Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists, was indispensable, and the author acknowledges the support.

Finally, the author would like to express her sincere appreciation to her father, Mototsugi, her mother, Hisayo, and her sister, Mayuko for their hearty encouragement and continuous assistance.

Sayuri Hayashi