Title

Synthesis of Heterocycles Based on Transition Metal-catalyzed Cycloisomerization Reactions of Nitriles Having Multifunctionalities

Author(s)

Murai, Masahito

Citation

Kyoto University (京都大学)

Issue Date

2010-03-23

URL

https://doi.org/10.14989/doctor.k15391

Right

許諾条件により要旨・本文は 2010-10-01 に公開

Type

Thesis or Dissertation

Textversion

author
Synthesis of Heterocycles Based on Transition Metal-catalyzed Cycloisomerization Reactions of Nitriles Having Multifunctionalities

Masahito Murai

Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University

2010
Contents

General Introduction 1

Chapter 1 Copper-catalyzed Synthesis of $1H$-Pyrrolin-2($5H$)-ones from Carbonyl-ene-nitrile Compounds with Various Nucleophiles 11

Chapter 2 Copper-catalyzed Mannich-type Reactions of 2-Aza-2,4-cyclopentadienone Generated from Cycloisomerization of Carbonyl-ene-nitrile Compound with Ketones 43

Chapter 3 Platinum-catalyzed Synthesis of α-Alkylidene-N-furylimines via Catalytic Vinylcarbene-transfer Reactions to Carbonyl-ene-nitrile Compounds 55

Chapter 4 Gallium-catalyzed Bromocyanation of Alkynes with Cyanogen Bromide: Regio- and Stereoselective Synthesis of Functionalized Nitriles 79

Chapter 5 Palladium-catalyzed Cycloisomerization of 2-(Cyanomethyl)phenyl Esters: A New Route to 3-Acyl-2-aminobenzofurans 107

Chapter 6 Palladium-catalyzed Three-component Coupling Reactions of 2-(Cyanomethyl)phenol, Aryl Halides, and CO 137
General Introduction

The occurrence of nitrogen-containing organic compounds in nature is widespread, and a vast number of them have found applications as pharmaceutical and functional material chemistry. In this respect, transition metal-catalyzed addition reactions to nitriles have received considerable attention as facile methods for the preparation of various amines and amides.\(^1\) Nickel- or cobalt-catalyzed hydrogenation of adiponitrile is an important industrial process to obtain hexamethylenediamine or \(\varepsilon\)-caprolactam, which are precursors of Nylon 6,6 and Nylon 6, respectively (Scheme 1).\(^2\) Hydration of acrylonitrile is also an important process in the industrial manufacture of acrylamide (Scheme 2).\(^2-4\)

Catalytic synthesis of pyridine derivatives via \([2+2+2]\) cycloaddition reactions of two alkynes (or a tethered diyne) with a nitrile using various transition metal complexes including cobalt, ruthenium, rhodium, and nickel has also been well investigated (Scheme 3).\(^5\) Although catalytic addition reactions to nitriles are one of the most important and highly
atom-efficient transformation methods, stoichiometric amounts of transition metal complexes are often required for the activation of nitriles to achieve their transformations except for extensively studied above examples.6

In general, nitriles are prone to coordinate with transition metal complexes. In fact, acetonitrile and benzonitrile are one of the most commonly used solvents in a range of catalytic reactions, and various metal complexes having nitrile ligands, i.e., PdCl\textsubscript{2}(RCN)\textsubscript{2}, are widely used as precatalysts in the transition metal-catalyzed reactions.1 Considering the fact that development of pharmaceuticals and functional materials requires ready access to a diverse range of heterocycles, the discovery of transition metal-catalyzed methods to construct them with high efficiency using readily accessible building blocks are still needed.

Recently, transition metal-catalyzed cycloisomerization reactions have emerged as extremely efficient and powerful tools for the synthesis of various types of heterocycles. They now provide various heterocycles atom-efficiently with excellent functional group compatibility.7 While cycloisomerization of alkynes, alkenes, and allenes have been extensively studied (Scheme 4), cycloisomerization of nitriles analogous have been received
The cycloisomerization of nitriles can be classified into two types as shown in Scheme 5, i.e., (a) *Endo* cyclization by the nucleophilic attack of a nitrile nitrogen and (b) *Exo* cyclization by the electrophilic attack of a nitrile carbon.

The latter *exo* cyclization mode can be classified into further two types as shown in Scheme 6: (a) Cycloisomerization via the activation of the cyano moiety by the transition metal complex and (b) Cycloisomerization via the activation of functional group that adds to cyano moiety by the transition metal complex.

Since reaction modes of Scheme 5 and 6 give different cyclization products, it is important to control these modes precisely on the basis of both starting substrate structures and reaction conditions. Taking these considerations into account, the author started his study, aiming at establishing novel synthetic routes toward heterocycles through the cycloisomerization of nitriles. In this thesis, several new reactions were disclosed to demonstrate the synthetic value of cycloisomerization of nitriles. The benefit of these reaction systems is that highly useful heterocycles are obtained directly from readily...
accessible starting materials in a single chemical operation with complete atom-efficiency under neutral reaction conditions.

In Chapters 1, 2, and 3, cycloisomerization of carbonyl-ene-nitrile compounds, i.e., nitriles having conjugated enone moieties, are described. Choosing appropriate reaction conditions, the author succeeded in controlling two different types of cyclization modes as shown in Scheme 5. Chapter 4 deals with new synthetic methods of carbonyl-ene-nitrile compounds through catalytic bromocyanation of alkynes. Using gallium chloride as a catalyst, regio- and stereoselective introduction of both bromo and cyano groups was achieved. In Chapters 5 and 6, palladium-catalyzed formation of 3-acyl-2-amino-benzofurans via the cycloisomerization of 2-(cyanomethyl)phenyl esters are described. Activating the ester group that adds to a cyano group by palladium catalysts, the author demonstrated unprecedented cycloisomerization of nitriles (Scheme 6b). Summary of this thesis is given below.

Overview of This Thesis

In Chapter 1, the author describes cycloisomerization of carbonyl-ene-nitrile compounds to 2-aza-2,4-cyclopentadienones using Cu(OTf)$_2$ as a catalyst (eq 1). The reaction proceeds via hydration of cyano group activated by the copper complex followed by dehydrative cyclization,4 which is formally classified into the *endo* type cycloisomerization (Scheme 5). The resulting 2-aza-2,4-cyclopentadienones undergo the electrophilic attack of various compounds such as alkenes, aromatics, arylacetylenes, and alcohols to afford the corresponding pyrrolin-2-ones (γ-lactam) in the presence of the copper catalyst.

$$\begin{align*}
\text{eq 1}:
\text{N} & \quad \text{O} \\
\text{Ar} & \quad \text{Nu} \\
\text{cat. [Cu]} & \quad \text{[Cu]} \\
\text{H}_2\text{N} & \quad \text{NuH} \\
\text{O} & \quad \text{O}
\end{align*}$$
Chapter 2 deals with copper-catalyzed Mannich-type reactions of ketimine moiety of 2-aza-2,4-cyclopentadienone generated from cycloisomerization of carbonyl-ene-nitrile compound with ketones, leading to pyrrolin-2-one derivatives having acetylonyl groups. Synthetic utility of this method is demonstrated by a rapid synthesis of azabicyclo-[4.3.0]nonanone (indolizidine), which has received considerable attention in view of its wide range of biological activities (eq 2).8

In Chapter 3, the author discloses platinum-catalyzed coupling reactions of carbonyl-ene-nitrile compounds with vinylcarbene complexes generated in situ from propargyl carboxylates (eq 3).9 By simply changing reaction partners and catalysts, the formal exo type cyclization mode can be controlled (Scheme 5), and α-alkylidene-N-furylimines are obtained in moderate to good yields.

As demonstrated in Chapters 1, 2, and 3, carbonyl-ene-nitrile compounds are highly useful precursors for the cycloisomerization reactions. However, there have been only a few general methods to prepare their backbones stereoselectively.10 Therefore, the author examined the synthesis of properly functionalized nitrile compounds, and found gallium-catalyzed regio- and stereoselective bromocyanation of alkynes with cyanogen bromide (Chapter 4). Since the carbon-bromine bonds can be further converted into various
carbon-carbon bonds stereospecifically by cross-coupling reactions, these two-step transformations serve as a useful method for regio-, stereo-, and chemoselective introduction of two different functional groups to a carbon-carbon triple bond (eq 4). Cycloisomerization of a carbonyl-ene-nitrile compound, which was obtained from the palladium-catalyzed cross-coupling reaction of a (Z)-β-bromoacrylonitrile with benzoyltributylstannane, was also examined.

\[
\text{R} = \text{R'} + \text{BrCN} \quad \text{cat. [Ga]} \quad \text{cat. [Pd]} \quad \text{Ph-Sn(n-Bu)₃}
\]

> 90% stereoselectivity

As described above, the author succeeded in the development of cycloisomerization reactions using carbonyl-ene-nitrile compounds. These results stimulated him to investigate new types of cyclization reactions of properly functionalized nitriles. In Chapter 5, the author discloses palladium-catalyzed cycloisomerization reactions of 2-(cyanomethyl)phenyl esters leading to 3-acyl-2-aminobenzofuran (eq 5). The reactions were dramatically accelerated by using the combination of Pd(PCy₃)₂ and Zn(OAc)₂ as catalysts. The reaction proceeded via cleavage of an acyl-oxygen bond with palladium catalyst and oxy-palladation of a cyano moiety followed by isomerization and reductive elimination. In this reaction, cycloisomerization proceeded through the activation of the ester group that adds to the cyano
group by the palladium catalyst (Scheme 6b). Usefulness of the reaction was demonstrated by the synthesis of Elbfluorene, which is known as CDK inhibitor.11

Since the resulting benzofurans have both an amino and a carbonyl group, they are useful building blocks for the synthesis of various benzofuran-fused heterocycles. To show the further utilities, Chapter 6 deals with palladium-catalyzed synthesis of 3-acyl-2-aminobenzofurans via three-component coupling reactions of 2-(cyanomethyl)phenol, aryl halides, and CO (eq 6).12,13 The combination of Pd(PC$_5$)$_2$ and Pd(PPh$_3$)$_4$ was found to be effective for the reaction, and various 3-acyl-2-aminobenzofurans were obtained.14

\[
\begin{align*}
&\text{OH} & \text{ArX} & \text{CO} & \xrightarrow{\text{cat. [Pd]}} & \text{Ar} & \text{NH}_2 \\
&\text{R} & & & & \text{R} & & \\
&\text{CN} & & & & \text{Ar} & & \\
\end{align*}
\]

(6)

References and Notes

(7) For selected examples of transition metal-catalyzed cycloisomerization leading to heterocycles, see: (a) Arcadi, A.; Cacchi, S.; Rosario, M. D.; Fabrizi, G.; Marinelli, F. J.
General Introduction

General Introduction

Chapter 1

Copper-catalyzed Synthesis of $1H$–Pyrrolin-2($5H$)-ones from Carbonyl-ene-nitrile Compounds with Various Nucleophiles

Abstract

The reaction of carbonyl-ene-nitrile compounds with nucleophiles in the presence of a catalytic amount of Cu(OTf)$_2$ gave pyrrolin-2-ones (γ-lactams). The result of 18O-labeling experiment indicates that the reactive intermediates 2-aza-2,4-cyclopentadienones might be generated from carbonyl-ene-nitrile compounds via cycloisomerization including hydration at a cyano moiety activated by a copper catalyst followed by dehydrative cyclization between the resulting amide and the original carbonyl moieties. Not only carbon-nucleophiles such as alkenes, aromatics, arylacetylenes, and allylsilanes but also oxygen-nucleophiles such as alcohols can participate in the reaction, affording pyrrolin-2-ones in good to excellent yields.
Chapter 1

Introduction

The in situ generation of transient electrophilic carbenoids from \(\alpha \)-diazocarbonyl compounds with various transition metal complexes have been well investigated to apply for various inter- or intramolecular carbene transfer reactions.\(^1,2\) The author’s group has continuously investigated several catalytic carbene transfer reactions via (2-furyl)carbene complexes in situ generated from carbonyl-ene-yne compounds leading to the formation of functionalized furan derivatives (Scheme 1a).\(^3\)

Scheme 1

![Scheme 1](image)

The transition metal-triggered intramolecular 5-exo-dig cycloisomerization of carbonyl-ene-yne compounds is proposed as the key step to form (2-furyl)carbene intermediates \(A \).\(^4\) In general, 2-furfuryldenenes generated from diazoalkanes by thermolysis or photolysis are well known to be converted to give carbonyl-ene-yne compounds via rapid rearrangement (Scheme 1b).\(^5-8\) Transition metal compounds as catalysts for (2-furyl)carbene transfer reactions are considered to act as a soft Lewis acid for activation of the alkyne moiety leading to stabilized (2-furyl)carbene complexes.

Recent studies have focused on nitrene intermediates in situ generated from azide derivatives by flash vacuum thermolysis or photolysis (Scheme 2a).\(^9\) The in situ generated nitrene intermediates are found to convert to more stable isomeric nitriles even though under
mild conditions.9b Considering the similarity of nitrene species with (2-furyl)carbene complexes, the author envisioned the nitrene transfer reactions of (2-furyl)nitrene complex B which is generated via cycloisomerization of carbonyl-ene-nitrile compounds (Scheme 2b).

\textbf{Scheme 2}

\[
\begin{align*}
\text{N}_5 \quad \text{Y} & \quad X \\
\text{R} & \quad \Delta \text{ or } h\nu \\
& \quad - \text{N}_2 \quad \rightarrow \quad \begin{array}{c}
\text{N} \\
\text{Y} \\
\text{X} \\
\text{R}
\end{array} \\
& \quad \rightarrow \quad \begin{array}{c}
\text{N} \\
\text{Y} \\
\text{X} \\
\text{R}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{N} \\
\text{Y} \\
\text{X} \\
\text{R}
\end{array} & \quad [\text{M}] \\
\text{O} & \quad \rightarrow \quad \begin{array}{c}
\text{N} \\
\text{Y} \\
\text{X} \\
\text{R}
\end{array} \\
\begin{array}{c}
\text{N} \\
\text{Y} \\
\text{X} \\
\text{R}
\end{array} & \quad \text{nitrene transfer}
\end{align*}
\]

Although the intermediary of the nitrene species have not yet been observed, the author found the unique copper-catalyzed formation of 1\textit{H}-pyrrolin-2(5\textit{H})-ones via cycloisomerization of carbonyl-ene-nitrile compounds followed by addition reactions of various nucleophiles.10,11

\textbf{Results and Discussion}

First, the reaction of carbonyl-ene-nitrile compound 1\textit{a} with styrene as a nitrene acceptor was carried out in the presence of 5 mol\% of Cu(OTf)\textsubscript{2} in ClCH\textsubscript{2}CH\textsubscript{2}Cl at 50 °C. Although the expected aziridine 3 was not observed, unexpected 1\textit{H}-pyrrolin-2(5\textit{H})-one 2\textit{a} was obtained in 50\% yield (59% conversion of 1\textit{a}) (Scheme 3). When carbonyl-ene-nitrile compound 1\textit{a} was treated with a catalytic amount of [Rh(OAc)\textsubscript{2}], which is one of the most efficient catalysts for carbene transfer reactions, no reaction took place, and the starting
material was recovered intact. The reactions of 1a with other several transition metal complexes, such as [RuCl₂(CO)₃]₂, PtCl₂, AuCl₃, PdCl₂, GaCl₃, Cu(OTf)-benzene, CuCl, and CuCl₂, did not afford the pyrrolin-2-one 2a at all.

The structure of pyrrolin-2-one 2a suggests that the reaction mechanism involving dehydrative cyclization as well as hydration of cyano moiety of 1a. As expected, the reaction in the presence of water slightly increased the yield of 2a up to 58% (Scheme 4).

The author next examined the vinylation reaction with various styrene derivatives. Selected results are summarized in Table 1. The reaction of 1a with 4-methylstyrene gave the corresponding pyrrolin-2-one 2b in 50% yield (entry 1), while the reactions with 4-chlorostyrene or 4-bromostyrene gave 2c and 2d in slightly lower yields, respectively (entries 2 and 3). No vinylated product was observed from the reaction with

Scheme 3

\[
\begin{align*}
\text{PhC=N-Ph} + \text{PhCH=CH}_2 & \xrightarrow{5 \text{ mol}\% \text{ Cu(OTf)}_2} \text{PhC(N=Ph)}_2 \\
\text{PhC=N-Ph} & \xrightarrow{50 ^\circ\text{C}, 18 \text{ h}} \text{PhC(N=Ph)}_2
\end{align*}
\]

Scheme 4

\[
\begin{align*}
\text{PhC=N-Ph} + \text{PhCH=CH}_2 & \xrightarrow{5 \text{ mol}\% \text{ Cu(OTf)}_2} \text{PhC(N=Ph)}_2 \\
\text{PhC=N-Ph} & \xrightarrow{50 ^\circ\text{C}, 18 \text{ h}} \text{PhC(N=Ph)}_2
\end{align*}
\]
4-methoxystyrene, because polymerization of 4-methoxystyrene occurred quickly under the identical conditions (entry 4). The reaction of 1a with 2-vinylnaphthalene also gave the corresponding product 2e in 53% yield (entry 5). It is noteworthy that the reaction proceeded regioselectively to afford single isomer in all cases. On the other hand, when reactions with 2,3-dihydrofuran, 3,4-dihydro-2H-pyran, and methyl vinyl ketone were carried out, the corresponding pyrrolin-2-ones were not obtained.

Table 1. Cu-catalyzed vinylation of 1a with styrene derivatives

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>time (h)</th>
<th>product</th>
<th>yield (%)^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-MeC₆H₄</td>
<td>9</td>
<td>2b</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>4-ClC₆H₄</td>
<td>9</td>
<td>2c</td>
<td>41</td>
</tr>
<tr>
<td>3^c</td>
<td>4-BrC₆H₄</td>
<td>24</td>
<td>2d</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>4-MeOc₆H₄</td>
<td>24</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>2-Naph</td>
<td>15</td>
<td>2e</td>
<td>53</td>
</tr>
</tbody>
</table>

^a Reaction conditions: 1a (0.40 mmol), alkene (2.0 mmol), Cu(OTf)₂ (0.020 mmol), H₂O (0.80 mmol) in ClCH₂CH₂Cl (1.6 mL) at 70 °C. ^b Isolated yields. ^c 80 °C. ^d Complex mixture.

Most plausible reaction mechanism of the pyrrolin-2-ones formation from carbonyl-ene-nitrile compounds is shown in Scheme 5. First, hydration of a cyano moiety activated by a copper catalyst affords a carbonyl-ene-amide intermediate I. The subsequent dehydrative cyclization between a carbonyl and an amide moiety in the intermediate I takes place to afford the more reactive intermediate, 2-aza-2,4-cyclopentadienone II. While non-substituted 2-aza-2,4-cyclopentadienone reacts with both an enophile and a dienophile to give Diels-Alder adducts, the ketimine moiety in 2-aza-2,4-cyclopentadienone II undergoes
electrophilic addition of alkenes followed by deprotonation and protodemetalation to form pyrrolin-2-ones 2.

Since the reaction with styrene derivatives took place smoothly, the author next examined the reaction of 1a with various aromatics as nucleophiles (Table 2). As expected, the arylated pyrrolin-2-ones 5 were obtained in all cases. Electron-rich aromatics such as anisole (4a), phenol (4b), and 1,3-dimethoxybenzene (4c) reacted smoothly with 1a to afford the corresponding pyrrolin-2-ones 5a, 5b, and 5c in good to excellent yields (entries 1-3). In the case of N,N-dimethylaniline (4d), the corresponding arylated product 5d was obtained in 77% yield, although a prolonged reaction time and higher reaction temperature were required (entry 4). It is noteworthy that reactions occurred selectively at para-positions of these electron-rich aromatics, although a mixture of 5a and 5a' was obtained from the reaction with anisole in a ratio of 16:1 (entry 1). When reactions of 1a with several heteroaromatics such as furan (4e), 2-methylfuran (4f), thiophene (4g), 2-methylthiophene (4h), and benzofuran (4i) were carried out, the corresponding products 5e-5i were obtained in excellent yields with high regioselectivities (entries 5-10). In all cases, reactions occurred selectively at the carbon next to hetero atoms, except for the reaction with benzofuran. In addition, the reaction with furan successfully proceeded even when the catalyst loading was decreased to 1...
mol% (entry 6). When reactions with other aromatics such as acetanilide, toluene, 2-methoxyfuran, pyrrole, N-methylpyrrole, N-tosylpyrrole, and indol were carried out, the corresponding arylated products were not observed due to the weak nucleophilicity of these aromatics or low stability of the products under the reaction conditions.

Table 2. Cu-catalyzed arylation of 1a with aromatic compounds

<table>
<thead>
<tr>
<th>entry</th>
<th>ArH</th>
<th>time (h)</th>
<th>product</th>
<th>yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4a</td>
<td>18</td>
<td>5a + 5a<sup>c</sup></td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>4b</td>
<td>3</td>
<td>5b</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>4c</td>
<td>8</td>
<td>5c</td>
<td>98</td>
</tr>
<tr>
<td>4<sup>d</sup></td>
<td>4d</td>
<td>24</td>
<td>5d</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>4e</td>
<td>3</td>
<td>5e</td>
<td>93</td>
</tr>
<tr>
<td>6<sup>e</sup></td>
<td>4e</td>
<td>6</td>
<td>5e</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>4f</td>
<td>3</td>
<td>5f</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>4g</td>
<td>12</td>
<td>5g</td>
<td>88</td>
</tr>
<tr>
<td>9</td>
<td>4h</td>
<td>3</td>
<td>5h</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>4i</td>
<td>3</td>
<td>5i + 5i<sup>f</sup></td>
<td>90</td>
</tr>
</tbody>
</table>

^a Reaction conditions: 1a (0.40 mmol), ArH (2.0 mmol), Cu(OTf)₂ (0.020 mmol), H₂O (0.040 mmol) in ClCH₂CH₂Cl (1.6 mL) at 70 °C. ^b Isolated yields. ^c 5a (X = OMe, Y = H) : 5a['] (X = H, Y = OMe) = 16 : 1. ^d In toluene at 110 °C. ^e 1 mol% of Cu(OTf)₂ was used. ^f 5i (3-) : 5i['] (2-) = 29 : 1.

To gain insight into the reaction mechanism, isotopic labeling experiment using the ¹⁸O-labeled water (98% ¹⁸O) was carried out (Scheme 6). Treatment of 1a with furan in the presence of 3 equiv of the ¹⁸O-labeled water under similar reaction condition afforded the ¹⁸O-enriched product 5e'. The high-resolution mass spectrum of the product 5e' showed two
sharp peaks at m/z = 304.1244 (100% intensity) and at m/z = 302.1168 (94% intensity), indicating 52% 18O incorporation in the product. This isotopic labeling experiment supports the hypothesis that the reaction proceeds via hydration of a cyano moiety and subsequent dehydrative cyclization between the resulting amide and the original carbonyl group. However, attempts to isolate 2-aza-2,4-cyclopentadienone intermediate failed, probably due to its high reactivity.

As shown above, the author proved the reaction mechanism involves addition reactions with ketimine moiety of the 2-aza-2,4-cyclopentadienone intermediate, which is formed via hydration of a cyano moiety followed by dehydrative cyclization. In contrast to the well studied addition reactions of carbon nucleophiles with aldimines, reactions with ketimines are limited because of their poor electrophilicity and steric hindrance. Therefore, most reported methods require strong nucleophiles such as organometallic reagents and trimethylsilyl cyanide. The direct addition reactions of C–H bonds of carbon nucleophiles appear to be even more difficult. To the best of his knowledge, the existing examples are limited to the reactions of electronically activated ketimines that have electron-withdrawing groups on the imine carbon, reactions mediated by stoichiometric Brønsted or Lewis acids, or intramolecular reactions.
Taking these facts into consideration, the author investigated the imino-ene reaction of intermediary 2-aza-2,4-cyclopentadienone leading to allylated pyrrolin-2-ones. Typical results are summarized in Table 3. When the reaction of 1a with α-methylstyrene was carried out under the identical reaction condition, allylated pyrrolin-2-one 6a was obtained in 67% yield (entry 1). 4-Methyl-, 4-chloro-, and 4-bromo-α-methylstyrene also reacted with 1a to afford the corresponding products 6b, 6c, and 6d in modest yields (entries 2-4). The structure of 6b was unambiguously determined by X-ray crystallography analysis (See Experimental section). 2-(2-Propanenyl)naphthalene was reacted with 1a to give the corresponding product 6e in 57% yield (entry 5). Carbonyl-ene-nitrile compound 1b (Ar = 4-MeC₆H₄) was also reacted with both of α-methylstyrene and 2-(2-propenyl)naphthalene to give the corresponding products 7a and 7e in 70% and 57% yields, respectively, although slight decreases of the reaction rates were observed (entries 6 and 7).

Table 3. Cu-catalyzed allylation of 1 with α-methylstyrene derivatives

<table>
<thead>
<tr>
<th>entry</th>
<th>Ar</th>
<th>R</th>
<th>time (h)</th>
<th>product</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>Ph</td>
<td>4</td>
<td>6a</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>4-MeC₆H₄</td>
<td>3</td>
<td>6b</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>4-ClC₆H₄</td>
<td>4</td>
<td>6c</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>4-BrC₆H₄</td>
<td>4</td>
<td>6d</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>2-Naphthyl</td>
<td>10</td>
<td>6e</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>4-MeC₆H₄</td>
<td>Ph</td>
<td>24</td>
<td>7a</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>4-MeC₆H₄</td>
<td>2-Naphthyl</td>
<td>40</td>
<td>7e</td>
<td>57</td>
</tr>
</tbody>
</table>

*a Reaction conditions: 1a or 1b (0.40 mmol), alkene (2.0 mmol), Cu(OTf)₂ (0.020 mmol), H₂O (0.80 mmol) in ClCH₂CH₂Cl (1.6 mL) at 70 °C. b Isolated yields.
Chapter 1

Allylation was also achieved using allylsilanes as nucleophiles (Scheme 7). When the reaction of 1a with methallyltrimethylsilane was carried out, the allylated pyrrolin-2-one 6f was obtained in 54% yield, whereas the reaction with either allyltrimethylsilane or allyltributylstannane gave the corresponding product 6g in low yields.

The present catalyst was also suitable for the alkynylation reaction of 2-aza-2,4-cyclopentadienone intermediate generated from 1a. When the reaction of 1a with phenylacetylene was carried out, 5-alkynylpyrrolin-2-one 8 was obtained in 58% yield (Scheme 8). However, reactions of 1a with other alkynes such as trimethylsilylacetylene, 1-hexyne, 4-octyne, and bis(trimethylsilyl)acetylene failed.

The reactions of several nitrile compounds containing carbonyl moieties with furan were next examined (Scheme 9). Cyclohexene-fused carbonyl-ene-nitrile compound 9 reacted with furan in toluene at reflux temperature to give the corresponding pyrrolin-2-one 10 in 72% yield. Furthermore, the present protocol was also extended to the reaction with 2-cyanobenzophenone 11, (2-furyl)isoindolin-1-one derivative 12 being obtained in 74%
yield.

On the other hand, the reaction of 13, which has no conjugation between the cyano and carbonyl moieties, did not proceed at all (Figure 1). Moreover, formyl-ene-nitrile compounds 14 and 15, alkoxy carbonyl-ene-nitrile compound 16, and carbamoyl-ene-nitrile compound 17 failed to afford the corresponding pyrrolin-2-ones. These results indicate that acyl moieties are essential in the reaction.

In addition to carbon-nucleophiles, oxygen-nucleophiles such as alcohols reacted with 1a to give 5-alkoxypyrroline-2-ones 18 (Scheme 10). The reactions of 1a with methanol and ethanol proceeded smoothly to give 5-alkoxypyrroline-2-ones 18a and 18b in 91% and 88%

Figure 1. Various nitrile compounds examined for Cu-catalyzed reactions.
yields, respectively. However, 2-propanol, propargyl alcohol, and allyl alcohol, as well as nitrogen-nucleophiles such as diethylamine did not afford the alkoxy- or aminopyrrolin-2-ones at all.

\[
\text{Scheme 10}
\]

In summary, the author has demonstrated the copper-catalyzed cycloisomerization of carbonyl-ene-nitrile compounds leading to 2-aza-2,4-cyclopentadienone intermediates. The ketimine moieties of the resulting 2-aza-2,4-cyclopentadienones efficiently underwent addition reactions with various nucleophiles including alkenes, aromatics, arylacetylenes, allylsilanes, and alcohols leading to a range of 5-substituted pyrrolin-2-ones. Multistep reactions, including hydration of a cyano moiety, dehydrative cyclization, and the carbon-carbon or carbon-oxygen bond formation with various nucleophiles were achieved by only single copper catalyst at once. Since the reaction proceeded under mild conditions with high atom-efficiency, the present reaction offers new accesses to synthetically useful pyrrolin-2-ones.\(^{24}\)

Experimental

General Method. Unless otherwise noted, chemicals obtained from commercial suppliers were used without further purification. Solvents were dried by the usual methods and distilled before use. Carbonyl-ene-nitrile compounds \(\text{1a,}^{11}\) \(\text{1b,}^{11}\) \(\text{11,}^{25}\) and \(\text{13}^{26}\) were
prepared according to the reported procedure. 18O-labeled water (98 atom% excess 18O) was purchased from TAIYO NIPPON SANSO Corporation. All reactions were carried out under nitrogen atmosphere. NMR spectra were measured for solutions in CDCl$_3$ or acetone-d$_6$ with tetramethylsilane as an internal standard (1H and 13C): the following abbreviations are used; br s: broad singlet, s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. IR spectra were recorded with an FT-IR spectrometer. Melting points (mp) are uncorrected. Element analyses were performed at Microanalytical Center of Kyoto University. High-resolution mass spectra (HRMS) was measured with JEOL JMX-SX 102A spectrometer.

General Procedure for Copper-catalyzed Transformation of Carboxyl-ene-nitrile Compounds. A flame dried Schlenk flask was charged with Cu(OTf)$_2$ (7.2 mg, 0.020 mmol), carboxyl-ene-nitrile compound 1 (0.40 mmol), and nucleophile (2.0 mmol) in ClCH$_2$CH$_2$Cl (2.0 mL). The solution was stirred at room temperature for 5 min and then water (0.040 or 0.80 mmol) was added dropwise. After stirring under the reaction conditions specified in Scheme 3-4, 6-10, and Tables 1-4, the reaction mixture was diluted with Et$_2$O and filtered through a short silica gel pad. Filtrate was concentrated under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 7/1-4/1) as eluents to afford the corresponding pyrrolin-2-ones. Regioisomers of 5a, and 5i were separated by column chromatography.

3,5-Diphenyl-5-[(1E)-2-phenylethenyl]-3-pyrrolin-2-one (2a): A white solid; mp 78.8-79.8 °C. IR (KBr): 693, 746, 794, 966, 1447, 1491, 1690 (C=O), 3027, 3060, 3203 (N-H) cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 6.51 (d, J = 16.0 Hz, 1H), 6.66 (d, J = 16.0 Hz, 1H), 7.23-7.48 (m, 14H), 7.55 (br s, 1H), 7.90 (d, J = 6.8 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$): δ 67.2, 126.3, 126.6, 127.2,
Chapter 1

128.0, 128.1, 128.4, 128.6, 128.7, 128.8, 128.9, 130.7, 130.9, 133.6, 135.9, 139.5, 145.3, 172.0. Anal. calcd for C$_{24}$H$_{19}$NO: C, 85.43; H, 5.68; N, 4.15. found: C, 85.44; H, 5.89; N, 3.85.

3,5-Diphenyl-5-[(1E)-2-(4-methylphenyl)ethenyl]-3-pyrrolin-2-one (2b): A white solid; mp 75.1-76.8 °C. IR (KBr): 695, 746, 795, 968, 1447, 1490, 1691 (C=O), 2920, 3024, 3057, 3211 (N-H) cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 2.33 (s, 3H), 6.46 (d, J = 16.0 Hz, 1H), 6.62 (d, J = 16.0 Hz, 1H), 6.95 (br s, 1H), 7.12 (d, J = 7.6 Hz, 2H), 7.34-7.48 (m, 9H), 7.46 (d, J = 7.6 Hz, 2H), 7.90 (d, J = 6.8 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$): δ 21.3, 67.1, 126.3, 126.5, 127.2, 127.7, 128.1, 128.4, 128.6, 128.7, 128.8, 129.3, 130.7, 130.9, 133.1, 138.1, 139.6, 145.5, 171.8. HRMS (FAB) calcd for M+H$^+$ of C$_{25}$H$_{21}$NO 352.1701, found 352.1707.

3,5-Diphenyl-5-[(1E)-2-(4-chlorophenyl)ethenyl]-3-pyrrolin-2-one (2c): A white solid; mp 180.3-181.9 °C. IR (KBr): 693, 745, 972, 1490, 1687 (C=O), 3031, 3060, 3214 (N-H) cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 6.49 (d, J = 16.0 Hz, 1H), 6.62 (d, J = 16.0 Hz, 1H), 6.84 (s, 1H), 7.26-7.46 (m, 13H), 7.91 (d, J = 8.0 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$): δ 68.0, 126.2, 127.2, 127.8, 128.2, 128.4, 128.8, 128.9, 129.0, 129.5, 129.6, 130.8, 133.7, 133.8, 134.4, 139.2, 145.1, 171.7. HRMS (FAB) calcd for M+H$^+$ of C$_{24}$H$_{18}$ClNO 372.1155, found 372.1151.

3,5-Diphenyl-5-[(1E)-2-(4-bromophenyl)ethenyl]-3-pyrrolin-2-one (2d): A white solid; mp 186.2-187.6 °C. IR (KBr): 695, 793, 1008, 1446, 1490, 1690 (C=O), 2926, 3027, 3060, 3209 (N-H) cm$^{-1}$.

24
Chapter 1

\[^1\text{H NMR} (400 \text{ MHz, CDCl}_3): \delta 6.50 (d, J = 16.0 \text{ Hz, } 1\text{H}), 6.60 (d, J = 16.0 \text{ Hz, } 1\text{H}), 7.22 (d, J = 8.0 \text{ Hz, } 2\text{H}), 7.35-7.46 (m, 12\text{H}), 7.91 (d, J = 8.0 \text{ Hz, } 2\text{H}). \]
\[^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3): \delta 67.1, 122.0, 126.3, 127.2, 128.1, 128.2, 128.4, 128.8, 128.9, 129.6, 129.7, 130.8, 131.7, 133.7, 134.8, 139.2, 145.0, 171.9. \]
\[\text{HRMS (FAB) calcd for M+H}^+ \text{ of C}_{24}\text{H}_{18}\text{BrNO 418.0633, found 418.0639.} \]

![3,5-Diphenyl-5-[(1E)-2-naphthalenylethenyl]-3-pyrrolin-2-one (2e)](image)

3,5-Diphenyl-5-[(1E)-2-naphthalenylethenyl]-3-pyrrolin-2-one (2e): A white solid; mp 88.9-90.3 °C. IR (KBr): 695, 745, 965, 1447, 1490, 1688 (C=O), 2872, 3055, 3211 (N-H) cm\(^{-1}\). \[^1\text{H NMR} (400 \text{ MHz, CDCl}_3): \delta 6.64 (d, J = 16.0 \text{ Hz, } 1\text{H}), 6.72 (br s, 1\text{H}), 6.82 (d, J = 16.0 \text{ Hz, } 1\text{H}), 7.36-7.51 (m, 11\text{H}), 7.59 (m, 1\text{H}), 7.73 (s, 1\text{H}), 7.79 (m, 3\text{H}), 7.93 (d, J = 6.8 \text{ Hz, } 2\text{H}). \]
\[^{13}\text{C NMR} (75 \text{ MHz, CDCl}_3): \delta 67.1, 123.4, 126.2, 126.4, 126.5, 127.0, 127.3, 127.7, 128.1, 128.3, 128.4, 128.5, 128.6, 128.9, 129.0, 129.1, 130.9, 131.1, 133.2, 133.4, 133.5, 139.5, 145.6, 171.8. \]
\[\text{HRMS (FAB) calcd for M+H}^+ \text{ of C}_{28}\text{H}_{21}\text{NO 388.1701, found 388.1708.} \]

![3,5-Diphenyl-5-(4-methoxyphenyl)-3-pyrrolin-2-one (5a)](image)

3,5-Diphenyl-5-(4-methoxyphenyl)-3-pyrrolin-2-one (5a): A white solid; mp 171.3-172.4 °C. IR (KBr): 696, 743, 795, 830, 1034, 1177, 1250, 1306, 1362, 1448, 1509, 1606, 1686 (C=O), 2834, 3056, 3154 (N-H) cm\(^{-1}\). \[^1\text{H NMR} (400 \text{ MHz, CDCl}_3): \delta 3.76 (s, 3\text{H}), 6.83 (d, J = 8.8 \text{ Hz, } 2\text{H}), 7.22 (d, J = 8.8 \text{ Hz, } 2\text{H}), 7.28-7.40 (m, 8\text{H}), 7.54 (s, 1\text{H}), 7.75 (br s, 1\text{H}), 7.90 (d, J = 8.0 \text{ Hz, } 2\text{H}). \]
\[^{13}\text{C NMR} (100 \text{ MHz, CDCl}_3): \delta 55.3, 68.8, 113.9, 126.8, 127.2, 127.7, 128.0, 128.1, 128.3, 128.5, 128.6, 131.0, 133.2, 141.4, 146.8, 159.0, 171.9. \]
\[\text{HRMS (FAB) calcd for M+H}^+ \text{ of C}_{23}\text{H}_{19}\text{NO}_2 342.1494, \text{found 342.1494.} \]
3,5-Diphenyl-5-(2-methoxyphenyl)-3-pyrrolin-2-one (5a’): A white solid; mp 167.2-168.4 °C. IR (KBr): 697, 747, 790, 829, 1029, 1178, 1252, 1293, 1331, 1450, 1509, 1606, 1701 (C=O), 2834, 3061, 3189 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.78 (s, 3H), 6.10 (d, J = 2.0 Hz, 1H), 6.85 (d, J = 8.8 Hz, 2H), 7.25-7.45 (m, 10H), 7.51 (d, J = 8.0 Hz, 2H), 8.20 (br s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 55.3, 63.1, 110.7, 113.9, 124.7, 127.1, 127.9, 128.5, 128.8, 128.9, 129.0, 129.2, 129.6, 133.1, 139.1, 141.3, 158.6, 181.1.

3,5-Diphenyl-5-(4-hydroxyphenyl)-3-pyrrolin-2-one (5b): A white solid; mp 138.2-139.4 °C. IR (KBr): 696, 748, 794, 830, 1167, 1223, 1362, 1446, 1490, 1514, 1597, 1611, 1672 (C=O), 2848, 3057, 3199 (N-H), 3354 (O-H) cm⁻¹. ¹H NMR (400 MHz, (CD₃)₂CO): δ 6.79 (s, 2H), 7.18-7.42 (m, 10H), 8.03 (s, 3H), 8.52 (br s, 1H), 8.85 (s, 1H). ¹³C NMR (100 MHz, (CD₃)₂CO): δ 69.0, 115.7, 127.4, 127.7, 127.9, 128.6, 128.7, 128.8, 128.9, 132.3, 133.1, 133.5, 143.2, 147.8, 157.3, 171.6. HRMS (FAB) calcd for M+H⁺ of C₂₂H₁₇NO₂ 328.1343, found 328.1338.

3,5-Diphenyl-5-(2,4-dimethoxyphenyl)-3-pyrrolin-2-one (5c): A white solid; mp 218.4-219.9 °C. IR (KBr): 690, 696, 746, 765, 793, 832, 862, 919, 923, 939, 1035, 1147, 1211, 1259, 1315, 1350, 1376, 1420, 1447, 1504, 1585, 1611, 1692 (C=O), 2838, 2935, 2961, 3021, 3054, 3276 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.57 (s, 3H), 3.80 (s, 3H), 6.48 (m, 2H), 7.18-7.25 (m, 5H), 7.32 (d, J = 8.0 Hz, 2H), 7.34-7.39 (m, 2H), 7.56 (br s, 1H), 7.59 (s, 1H), 7.89 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 55.3, 55.4, 67.2, 100.0, 103.7, 122.3, 125.2, 127.0, 127.2, 128.1, 128.2, 128.3, 128.5, 131.2, 133.2, 141.5, 146.1, 158.0, 1692 (C=O).
3,5-Diphenyl-5-(4-(N,N-dimethylamino)-phenyl)-3-pyrrolin-2-one (5d): A white solid; mp 189.8-191.2 °C. IR (KBr): 691, 740, 794, 817, 1163, 1233, 1352, 1446, 1520, 1609, 1687 (C=O), 2849, 3063, 3183 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.94 (s, 6H), 6.66 (d, J = 8.8 Hz, 3H), 7.25 (d, J = 8.8 Hz, 2H), 7.30-7.42 (m, 8H), 7.53 (d, J = 2.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 40.4, 68.7, 112.2, 126.9, 127.2, 127.7, 127.8, 128.2, 128.3, 128.4, 128.5, 131.1, 132.9, 141.6, 147.3, 150.0, 171.7. HRMS (FAB) calcd for M+H⁺ C₂₄H₂₁N₂O 355.1812, found 355.1810.

3,5-Diphenyl-5-(2-furyl)-3-pyrrolin-2-one (5e): A white solid; mp 141.3-142.5 °C. IR (KBr): 694, 746, 794, 894, 1076, 1153, 1236, 1361, 1446, 1491, 1599, 1687 (C=O), 2852, 3066, 3167 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.33 (s, 1H), 6.35 (s, 1H), 7.28-7.42 (m, 9H), 7.48 (s, 1H), 7.51 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 65.1, 107.7, 110.2, 126.1, 127.3, 128.2, 128.4, 128.7, 128.9, 130.7, 134.2, 138.8, 142.9, 143.7, 152.6, 171.8. HRMS (FAB) calcd for M+H⁺ C₂₀H₁₆NO₂ 302.1181, found 302.1181. Anal. calcd for C₂₀H₁₅NO₂: C, 79.72; H, 5.02. found: C, 80.00; H, 5.02.

3,5-Diphenyl-5-[2-(5-methylfuryl)]-3-pyrrolin-2-one (5f): A white solid; mp 146.0-147.8 °C. IR (KBr): 695, 746, 794, 896, 1032, 1157, 1218, 1238, 1365, 1447, 1492, 1548, 1685 (C=O), 2845, 3065, 3195 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.24 (s, 3H), 5.92 (s, 1H), 6.16 (d, J = 3.2 Hz, 1H), 7.28-7.46 (m, 10H), 7.89 (d, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 13.6,
Chapter 1

65.1, 106.1, 108.6, 126.1, 127.2, 128.1, 128.3, 128.6, 128.7, 130.8, 134.0, 139.0, 144.0, 150.5, 152.7, 171.8. HRMS (FAB) calcd for M+H⁺ of C₂₁H₁₇NO₂ 316.1338, found 316.1338.

3,5-Diphenyl-5-(2-thienyl)-3-pyrrolin-2-one (5g): A white solid; mp 135.7-136.9 °C. IR (KBr): 694, 746, 794, 892, 1075, 1155, 1235, 1361, 1447, 1491, 1592, 1687 (C=O), 2850, 3065, 3179 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.90 (s, 1H), 6.94 (t, J = 4.0 Hz, 1H), 7.23 (d, J = 4.8 Hz, 1H), 7.30-7.41 (m, 6H), 7.45 (d, J = 7.2 Hz, 2H), 7.53 (s, 1H), 7.69 (br s, 1H), 7.89 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 66.5, 125.4, 126.2, 126.4, 126.9, 127.3, 128.2, 128.4, 128.6, 128.8, 130.6, 133.4, 140.5, 145.4, 146.0, 171.5. HRMS (FAB) calcd for M+H⁺ of C₂₀H₁₅NOS 318.0944, found 318.0953.

3,5-Diphenyl-5-[2-(5-methylthienyl)]-3-pyrrolin-2-one (5h): A white solid; mp 158.2-159.1 °C. IR (KBr): 695, 747, 794, 890, 1185, 1235, 1361, 1447, 1490, 1619, 1687 (C=O), 2855, 3064, 3184 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.39 (s, 3H), 6.56 (d, J = 3.2 Hz, 1H), 6.66 (d, J = 3.2 Hz, 1H), 7.29-7.39 (m, 6H), 7.46 (d, J = 7.2 Hz, 2H), 7.50 (s, 1H), 7.88 (d, J = 7.2 Hz, 2H), 7.94 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 15.3, 66.6, 124.9, 125.9, 126.4, 127.3, 128.0, 128.3, 128.5, 128.7, 130.7, 133.2, 140.1, 140.4, 142.7, 146.1, 171.5. HRMS (FAB) calcd for M+H⁺ of C₂₁H₁₇NOS 332.1114, found 332.1109.

3,5-Diphenyl-5-(3-benzofuryl)-3-pyrrolin-2-one (5i): A white solid; mp 196.2-197.4 °C. IR (KBr): 699, 753, 795, 901, 1177, 1251, 1345, 1451, 1490, 1635, 1698 (C=O), 2838, 3065, 3160 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.74 (s, 1H), 7.20-7.29 (m, 2H), 7.31-7.42
(m, 9H), 7.54 (d, J = 6.8 Hz, 1H), 7.59 (s, 1H), 7.60 (br s, 1H), 7.91 (d, J = 6.8 Hz, 2H).

13C

NMR (100 MHz, CDCl3): δ 65.5, 104.6, 111.3, 121.2, 123.1, 124.6, 126.2, 126.3, 127.3, 127.5, 128.4, 128.9, 129.0, 130.5, 134.7, 138.2, 143.3, 155.0, 155.3, 171.7. HRMS (FAB) calcd for M+H+ of C24H17NO2 352.1330, found 352.1338.

3,5-Diphenyl-5-(2-benzofuryl)-3-pyrrolin-2-one (5i’): A white solid; mp 181.2-182.6 °C. IR (KBr): 693, 755, 791, 900, 1175, 1221, 1251, 1340, 1451, 1493, 1635, 1710 (C=O), 2858, 3061, 3182 (N-H) cm⁻¹.

1H NMR (400 MHz, CDCl3): δ 6.23 (s, 1H), 6.81 (s, 1H), 7.59 (m, 14H).

13C NMR (100 MHz, CDCl3): δ 59.9, 104.8, 107.1, 111.2, 121.0, 122.8, 124.1, 124.9, 127.2, 127.9, 128.0, 128.7, 128.9, 129.3, 129.5, 137.6, 141.0, 155.0, 155.1, 178.4.

3,5-Diphenyl-5-(2-phenyl-2-propenyl)-3-pyrrolin-2-one (6a): A white solid; mp 182.2-184.1 °C. IR (KBr): 699, 754, 793, 977, 1447, 1492, 1599, 1635, 1691 (C=O), 2872, 3028, 3061, 3142, 3181 (N-H) cm⁻¹.

1H NMR (400 MHz, CDCl3): δ 3.29 (d, J = 13.6 Hz, 1H) 3.40 (d, J = 13.6 Hz, 1H), 5.05 (s, 1H), 5.26 (s, 1H), 7.00 (br s, 1H), 7.21-7.35 (m, 12H), 7.39 (d, J = 7.2 Hz, 2H), 7.53 (d, J = 7.2 Hz, 2H).

13C NMR (100 MHz, CDCl3): δ 45.9, 66.3, 118.9, 125.5, 126.4, 127.1, 127.4, 127.5, 128.1, 128.3, 128.5, 128.6, 131.0, 133.5, 140.4, 141.7, 143.1, 146.6, 171.8. HRMS (FAB) calcd for M+H+ of C25H21NO 352.1701, found 352.1710.

3,5-Diphenyl-5-[2-(4-methylphenyl)-2-propenyl]-3-pyrrolin-2-one (6b): A colorless crystal; mp 146.5-147.9 °C. IR (KBr): 697, 749, 794, 915, 1447, 1492, 1514, 1623, 1692 (C=O), 2863, 2920, 3027, 3061, 3147, 3197 (N-H) cm⁻¹.

1H NMR (400 MHz, CDCl3): δ 2.30
Chapter 1

3,5-Diphenyl-5-[(2-(4-chlorophenyl)-2-propenyl]-3-pyrrolin-2-one (6c): A white solid; mp 127.3-128.8 °C. IR (KBr): 694, 748, 794, 919, 1447, 1491, 1597, 1625, 1689 (C=O), 2857, 2920, 3027, 3062, 3147, 3179 (N-H) cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 3.26 (d, \(J = 14.0\) Hz, 1H), 3.35 (d, \(J = 14.0\) Hz, 1H), 5.09 (s, 1H), 5.24 (s, 1H), 7.00 (s, 1H), 7.14 (d, \(J = 8.0\) Hz, 2H), 7.18 (d, \(J = 8.0\) Hz, 2H), 7.23-7.27 (m, 2H), 7.30-7.34 (m, 4H), 7.39 (d, \(J = 8.0\) Hz, 2H), 7.54-7.57 (m, 2H), 7.89 (br s, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 45.9, 66.3, 119.5, 125.5, 127.0, 127.5, 128.2, 128.5, 128.7, 129.7, 130.9, 133.2, 133.7, 134.9, 140.3, 142.1, 146.2, 172.0. HRMS (FAB) calcd for M+H\(^+\) of C\(_{25}\)H\(_{23}\)ClNO 386.1312, found 386.1313.

3,5-Diphenyl-5-[(2-(4-bromophenyl)-2-propenyl)-3-pyrrolin-2-one (6d): A white solid; mp 66.3-67.2 °C. IR (KBr): 695, 794, 909, 1489, 1625, 1691 (C=O), 2919, 3062, 3185 (N-H) cm\(^{-1}\). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 3.25 (d, \(J = 13.8\) Hz, 1H), 3.35 (d, \(J = 13.8\) Hz, 1H), 5.09 (s, 1H), 5.24 (s, 1H), 6.98 (s, 1H), 7.07 (d, \(J = 8.1\) Hz, 2H), 7.23-7.42 (m, 10H), 7.52-7.56 (m, 2H), 8.04 (br s, 1H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 45.8, 66.4, 119.6, 121.4, 125.6, 127.1, 127.6, 128.0 128.2, 128.5, 128.7, 130.9, 131.5, 133.8, 140.4, 140.9, 142.2, 146.3, 172.2. HRMS (FAB) calcd for M+H\(^+\) of C\(_{25}\)H\(_{20}\)BrNO 432.0790, found 432.0786.
Chapter 1

3,5-Diphenyl-5-[2-naphthalenyl-2-propenyl]-3-pyrrolin-2-one (6e): A white solid; mp 51.2-52.9 °C. IR (KBr): 695, 748, 794, 1220, 1446, 1491, 1597, 1626, 1691 (C=O), 2856, 3026, 3057, 3210 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.37 (d, J = 13.6 Hz, 1H), 3.51 (d, J = 13.6 Hz, 1H), 5.16 (s, 1H), 5.37 (s, 1H), 6.95 (s, 1H), 7.15-7.25 (m, 4H), 7.28-7.34 (m, 2H), 7.36-7.47 (m, 7H), 7.66 (br s, 1H), 7.68-7.95 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 46.0, 66.5, 119.4, 124.8, 125.1, 125.6, 125.9, 126.2, 127.1, 127.4, 127.5, 127.9, 128.0, 128.1, 128.3, 128.6, 130.9, 132.6, 133.2, 133.6, 139.2, 140.5, 143.0, 146.4, 172.0. HRMS (FAB) calcd for M+H⁺ of C₂₉H₂₃NO 402.1858, found 402.1852.

3-Phenyl-5-(2-methyl-2-propenyl)-5-phenyl-3-pyrrolin-2-one (6f): A white solid; mp 114.3-115.5 °C. IR (KBr): 697, 796, 900, 1225, 1364, 1448, 1492, 1599, 1685 (C=O), 2897, 2975, 3026, 3063, 3213 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.52 (s, 3H), 2.71 (d, J = 13.6 Hz, 1H), 2.93 (d, J = 13.6 Hz, 1H), 4.75 (s, 1H), 4.88 (s, 1H), 7.24-7.39 (m, 7H), 7.46 (d, J = 7.6 Hz, 2H), 7.69 (br s, 1H), 7.84 (d, J = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 24.3, 47.5, 65.9, 116.5, 125.5, 127.1, 127.5, 128.3, 128.5, 128.7, 128.8, 131.0, 133.4, 140.1, 147.0, 172.1. HRMS (FAB) calcd for M+H⁺ of C₂₀H₁₉NO 290.1548, found 290.1545.

3-phenyl-5-(2-propenyl)-5-phenyl-3-pyrrolin-2-one (6g): A white solid; mp 35.1-36.2 °C. IR (KBr): 694, 747, 795, 923, 1447, 1491, 1688 (C=O), 2923, 2979, 3060, 3197 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.71 (dd, J = 6.4, 13.6 Hz, 1H), 2.99 (dd, J = 7.6, 13.6 Hz, 1H), 5.10 (d, J = 10.4 Hz, 1H), 5.15 (d, J = 16.8 Hz, 1H), 5.57-5.67 (m, 1H), 7.25-7.38 (m, 8H), 7.44 (d, J = 8.0 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 43.6, 65.7, 120.0, 125.5, 127.1, 127.6, 128.3,
128.6, 128.8, 131.0, 131.8, 133.9, 139.7, 146.9, 172.0. HRMS (FAB) calcd for M+H⁺ of C₁₉H₁₇NO 276.1389, found 276.1388.

3-(4-Methylphenyl)-5-phenyl-5-(2-phenyl-2-propenyl)-3-pyrroline-2-one (7a): A white solid; mp 146.0-147.8 °C. IR (KBr): 698, 779, 911, 1446, 1495, 1509, 1625, 1687 (C=O), 2864, 2920, 3025, 3060, 3179 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.32 (s, 3H), 3.26 (d, J = 13.6 Hz, 1H), 3.38 (d, J = 13.6 Hz, 1H), 5.04 (s, 1H), 5.23 (s, 1H), 6.93 (s, 1H), 7.15 (d, J = 7.6 Hz, 2H), 7.21-7.25 (m, 5H), 7.31 (t, J = 7.6 Hz, 3H), 7.39 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.74 (br s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 21.4, 46.0, 66.3, 118.8, 125.6, 126.4, 127.0, 127.3, 128.2, 128.4, 128.5, 128.8, 133.4, 138.2, 140.5, 140.6, 141.8, 143.1, 145.5, 172.1. HRMS (FAB) calcd for M+H⁺ of C₂₆H₂₃NO 366.1858, found 366.1857.

3-(4-Methylphenyl)-5-phenyl-5-(2-naphthalenyl-2-propenyl)-3-pyrroline-2-one (7e): A white solid; mp 164.2-165.8 °C. IR (KBr): 697, 751, 822, 1507, 1689 (C=O), 2860, 2924, 3049, 3056, 3193 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.29 (s, 3H), 3.36 (d, J = 13.6 Hz, 1H), 3.42 (d, J = 13.6 Hz, 1H), 5.14 (s, 1H), 5.36 (s, 1H), 6.91 (s, 1H), 7.00 (d, J = 8.0 Hz, 2H), 7.20-7.46 (m, 10H), 7.64 (d, J = 9.6 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H), 7.76-7.79 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 21.3, 46.0, 66.4, 119.3, 124.8, 125.1, 125.6, 125.8, 126.1, 126.9, 127.4, 128.0, 128.1, 128.6, 128.7, 132.6, 133.2, 133.5, 138.1, 139.2, 140.6, 143.0, 145.5, 172.1. HRMS (FAB) calcd for M+H⁺ of C₃₀H₂₃NO 416.2014, found 416.2017.
3,5-Diphenyl-5-phenylethynyl-3-pyrrolin-2-one (8): A yellow solid; mp 98.4-99.9 °C. IR (KBr): 691, 761, 793, 957, 1063, 1223, 1254, 1354, 1446, 1490, 1596, 1696 (C=O), 2842, 3061, 3168 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.96 (s, 1H), 7.20 (d, J = 1.6 Hz, 1H), 7.32-7.42 (m, 9H), 7.49-7.52 (m, 2H), 6.85-7.68 (m, 2H), 7.88-7.91 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 60.6, 84.8, 86.2, 121.8, 125.8, 127.3, 128.3, 128.4, 128.6, 128.8, 128.9, 129.0, 130.4, 131.7, 132.9, 137.7, 144.7, 171.8. HRMS (FAB) calcd for M+H⁺ of C₂₄H₁₇NO₃ 336.1388, found 336.1381.

3-(2-Furyl)-3-phenyl-2,4,5,6,7-pentahydroisoindol-1-one (10): A white solid; mp 140.8-141.9 °C. IR (KBr): 701, 753, 865, 1015, 1154, 1232, 1310, 1448, 1504, 1688 (C=O), 2942, 3058, 3198 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.61-1.70 (m, 4H), 1.99-2.02 (m, 1H), 2.28-2.36 (m, 3H), 6.28 (d, J = 2.4 Hz, 1H), 6.38 (dd, J = 1.6, 2.4 Hz, 1H), 6.42 (br s, 1H), 7.15 (d, J = 6.8 Hz, 2H), 7.31-7.33 (m, 3H), 7.41 (d, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 20.2, 21.6, 22.2, 23.1, 68.1, 107.9, 110.2, 126.4, 128.2, 128.7, 131.1, 139.0, 142.8, 153.0, 158.0, 173.4. HRMS (FAB) calcd for M+H⁺ of C₁₈H₁₇NO₂ 280.1338, found 280.1332.

3-(2-Furyl)-3-phenylisoindolin-1-one (12): A white solid; mp 163.2-165.4 °C. IR (KBr): 699, 752, 801, 885, 1015, 1151, 1224, 1315, 1342, 1449, 1469, 1495, 1612, 1694 (C=O), 2834, 3066, 3188 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.26 (d, J = 2.8 Hz, 1H), 6.33 (dd, J = 1.6, 2.8 Hz, 1H), 7.20-7.25 (m, 2H), 7.26-7.33 (m, 3H), 7.42 (d, J = 1.6 Hz, 1H), 7.52-7.58 (m, 3H), 7.64 (br s, 1H), 7.88 (d, J = 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 66.4, 108.2, 110.0, 123.9, 124.1, 126.1, 128.2, 128.7, 128.8, 130.4, 132.3, 140.3, 143.2, 148.5, 153.4, 169.9.
Chapter 1

HRMS (FAB) calcd for M+H⁺ of C₁₈H₁₃NO₂ 276.1016, found 276.1025.

3,5-Diphenyl-5-methoxy-3-pyrrolin-2-one (18a): A colorless crystal; mp 78.2-79.4 °C. IR (KBr): 650, 693, 746, 764, 797, 885, 965, 1092, 1216, 1237, 1261, 1353, 1448, 1491, 1573, 1623, 1705 (C=O), 1814, 1891, 1960, 2826, 2931, 2950, 3067, 3211 (N-H) cm⁻¹. ^1^H NMR (400 MHz, CDCl₃): δ 3.34 (s, 3H), 6.96 (s, 1H), 7.29-7.35 (m, 6H), 7.46 (br s, 1H), 7.85 (d, J = 8.0 Hz, 2H). ^1^C NMR (100 MHz, CDCl₃): δ 50.6, 90.8, 125.6, 127.3, 128.3, 128.5, 128.6, 129.0, 130.0, 135.3, 138.2, 142.6, 171.7. HRMS (FAB) calcd for M+H⁺ of C₁₇H₁₅NO₂ 266.1176, found 266.1181.

3,5-Diphenyl-5-ethoxy-3-pyrrolin-2-one (18b): A colorless crystal; mp 39.8-40.8 °C. IR (KBr): 653, 693, 744, 769, 795, 880, 981, 1066, 1215, 1236, 1261, 1352, 1390, 1448, 1491, 1575, 1623, 1699 (C=O), 1806, 1897, 1958, 2886, 2929, 2976, 3065, 3223 (N-H) cm⁻¹. ^1^H NMR (400 MHz, CDCl₃): δ 1.26 (t, J = 7.2 Hz, 3H), 3.54 (dq, J = 7.2, 9.2 Hz, 1H), 3.65 (dq, J = 7.2, 9.2 Hz, 1H), 6.95 (br s, 1H), 7.00 (s, 1H), 7.32-7.40 (m, 6H), 7.57 (dd, J = 1.6, 7.6 Hz, 2H), 7.86 (dd, J = 1.6, 7.6 Hz, 2H). ^1^C NMR (100 MHz, CDCl₃): δ 15.6, 58. 8, 90.4, 125.6, 127.4, 128.4, 128.5, 128.6, 129.0, 130.2, 135.0, 138.6, 143.2, 171.5. HRMS (FAB) calcd for M+H⁺ of C₁₈H₁₇NO₂ 280.1342, found 280.1338.

Isotope Labeling Experiment

A flame dried Schlenk flask was charged with Cu(OTf)₂ (18 mg, 0.050 mmol), carbonyl-ene-nitrile 1a (233 mg, 1.0 mmol), ^1⁸^O-labeled water (98% ^1⁸^O) (60 μL, 3.0 mmol) and furan (340 mg, 5.0 mmol) in ClCH₂CH₂Cl (5.0 mL) and resulting reaction mixture was
stirred at 70 °C for 3 h. The mixture was diluted with Et₂O and filtered through a short silica gel pad. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 7/1-4/1) as eluents to afford 3,5-diphenyl-5-(2-furyl)-3-pyrrolin-2-one 5e as a white solid (196 mg, 0.65 mmol; 65% yield). ¹⁸O-incorporation was monitored by high resolution mass spectroscopy. HRMS (FAB) m/z: 302.1168 (94% intensity, C₂₀H₁₅N₁₆O₂), 304.1244 (100% intensity. C₂₀H₁₅N₁₆O₁₈O). The incorporation of ¹⁸O into the product 5e was not observed, when the isolated 5e was stirred under the reaction conditions involving ¹⁸O-labeled water, and Cu(OTf)₂ in ClCH₂CH₂Cl.

Synthesis of 2-cyano-4,5-dimethyl-1,4-cyclohexadiene-1-carboxaldehyde (15). To a solution of 1-hydroxy-3-cyano-2-propyne²⁷ (405 mg, 5.0 mmol) in CH₂Cl₂ (10 mL) was added Dess-Martin periodinane (2.12 g, 5.0 mmol) at 0 °C and the mixture was stirred for 30 min. Then 2,3-dimethyl-1,3-butadiene (4.11 g, 50 mmol) was added and the mixture was stirred at 0 °C for additional 30 min. After stirring at room temperature overnight, the solvent was removed under reduced pressure. The residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 7/1-4/1) as eluents to afford 2-cyano-4,5-dimethyl-1,4-cyclohexadiene-1-carboxaldehyde 15 as a pale yellow solid (459 mg, 2.85 mmol, 57% yield). mp 115.2-115.8 °C. IR (KBr): 633, 790, 1136, 1205, 1269, 1422, 1633, 1684 (C=O), 2216 (CN), 2864 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.71 (s, 6H), 2.90 (t, J = 8.0 Hz, 2H), 3.10 (t, J = 8.0 Hz, 2H), 10.1 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 18.0, 18.3, 30.1, 36.3, 115.3, 120.1, 122.2, 124.7, 147.0, 189.2. Anal. calcd for C₁₀H₁₁NO: C, 74.51; H, 6.88; N, 8.69. found C, 74.21; H, 6.90; N, 8.52.
Chapter 1

X-ray Crystallographic Studies of 6b. Colorless crystals of 6b suitable for X-ray analysis were obtained by recrystallization from CH$_2$Cl$_2$/n-pentane. The single crystal was sealed in a Pyrex glass capillary under N$_2$ atmosphere and used for data collection. All measurements were made on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo-K$_\alpha$ radiation. Details of crystal and data collection parameters are summarized in Table 4. The positions of non-hydrogen atoms were determined by direct methods (SIR92) and subsequent Fourier syntheses (DIRDIF PATTY). An ORTEP drawing of 6b is shown in Figure 2.

Figure 2. ORTEP drawing of 6b. Hydrogen atoms are omitted for clarity.
Empirical formula: C$_{26}$H$_{23}$NO
Formula weight: 365.47
Crystal system: monoclinic
Space group: P21/c (#14)
Crystal color: colorless
Lattice parameters:
\[a (\text{Å}) = 10.669(7), \quad b (\text{Å}) = 10.059(7), \quad c (\text{Å}) = 19.738(14), \]
\[V (\text{Å}^3) = 2110(3), \quad \beta = 94.978(6)^\circ \]
\[Z = 4 \]
\[D_{\text{calc}} \text{ (g cm}^{-3}\text{)}: 1.150 \]
\[\mu \text{ (Mo K} \alpha \text{) (cm}^{-1}\text{): 0.692} \]

Goodness of fit (GOF) = 1.039
\(F(000): 776 \)

Diffractometer: Rigaku RAXIS-RAPID
Radiation: MoK\(\alpha \) (\(\lambda = 0.71070 \text{ Å} \)), Graphite Monochromated
Temp (°C): -150
Scan type: \(\omega - 2\theta \)
Max. 2\(\theta \) (°): 55.0

No. of reflections measured total: 16059
No. of observations (\(I > 2.00 \sigma (I) \)): 7888
Structure solution: Direct Methods (SIR92)
Refinement: Full-Matrix Least-Squares on F
No. of variables: 324
Reflection/parameter ratio: 24.35
Residuals: \(R = 0.0921, \quad R_{\text{int}} = 0.052, \quad R_w = 0.0853 \)
Max Shift/Error in Final Cycle: 0.00
Maximum peak in Final Diff Map (e (Å$^{-3}$)): 1.64
Minimum peak in Final Diff Map (e (Å$^{-3}$)): -1.10

Table 4. Summary of crystallographic data of 6b

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula: C${26}$H${23}$NO</td>
<td></td>
</tr>
<tr>
<td>Formula weight:</td>
<td>365.47</td>
</tr>
<tr>
<td>Crystal system:</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group: P21/c (#14)</td>
<td></td>
</tr>
<tr>
<td>Crystal color:</td>
<td>colorless</td>
</tr>
<tr>
<td>Lattice parameters:</td>
<td></td>
</tr>
<tr>
<td>(a (\text{Å}))</td>
<td>10.669(7)</td>
</tr>
<tr>
<td>(b (\text{Å}))</td>
<td>10.059(7)</td>
</tr>
<tr>
<td>(c (\text{Å}))</td>
<td>19.738(14)</td>
</tr>
<tr>
<td>(V (\text{Å}^3))</td>
<td>2110(3)</td>
</tr>
<tr>
<td>(\beta) (°)</td>
<td>94.978(6)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>(D_{\text{calc}}) (g cm$^{-3}$):</td>
<td>1.150</td>
</tr>
<tr>
<td>(\mu) (Mo K(\alpha)) (cm$^{-1}$):</td>
<td>0.692</td>
</tr>
<tr>
<td>Goodness of fit (GOF)</td>
<td>1.039</td>
</tr>
<tr>
<td>(F(000))</td>
<td>776</td>
</tr>
<tr>
<td>Diffractometer:</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>Radiation: MoK(\alpha) ((\lambda = 0.71070 \text{ Å})), Graphite Monochromated</td>
<td></td>
</tr>
<tr>
<td>Temp (°C):</td>
<td>-150</td>
</tr>
<tr>
<td>Scan type: (\omega - 2\theta)</td>
<td></td>
</tr>
<tr>
<td>Max. 2(\theta) (°):</td>
<td>55.0</td>
</tr>
<tr>
<td>No. of reflections measured total:</td>
<td>16059</td>
</tr>
<tr>
<td>No. of observations ((I > 2.00 \sigma (I))):</td>
<td>7888</td>
</tr>
<tr>
<td>Structure solution:</td>
<td>Direct Methods (SIR92)</td>
</tr>
<tr>
<td>Refinement: Full-Matrix Least-Squares on F</td>
<td></td>
</tr>
<tr>
<td>No. of variables:</td>
<td>324</td>
</tr>
<tr>
<td>Reflection/parameter ratio:</td>
<td>24.35</td>
</tr>
<tr>
<td>Residuals: (R = 0.0921, \quad R_{\text{int}} = 0.052, \quad R_w = 0.0853)</td>
<td></td>
</tr>
<tr>
<td>Max Shift/Error in Final Cycle:</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum peak in Final Diff Map (e (Å$^{-3}$)):</td>
<td>1.64</td>
</tr>
<tr>
<td>Minimum peak in Final Diff Map (e (Å$^{-3}$)):</td>
<td>-1.10</td>
</tr>
</tbody>
</table>
References and Notes

(12) To avoid a polymerization of 4-methoxystyrene under protic conditions, the author attempted the reaction of 1a with 4-methoxystyrene without water, but the desired product was not obtained at all.

Chapter 1

(15) Theoretical percentage of 18O incorporation would be 75%, when 3 equiv of H$_2^{18}$O to 1a was employed.

Chapter 1

(22) Transition metal-catalyzed homoallylations of imines with allyltrialkylsilanes and allyltrialkylstannanes have been investigated. See: (a) Belluci, C.; Cozzi, P. G.; Umani-Ronchi, A. *Tetrahedron Lett.* 1995, 36, 7289. (b) Onishi, Y.; Ito, T.; Yasuda M.;
Chapter 1

Chapter 2

Copper-catalyzed Mannich-type Reactions of 2-Aza-2,4-cyclopentadienone Generated from Cycloisomerization of Carbonyl-ene-nitrile Compound with Ketones

Abstract

Copper-catalyzed Mannich-type reactions of a carbonyl-ene-nitrile compound with ketones gave corresponding acetylated pyrrolin-2-one derivatives in excellent yields. The reaction involves addition reactions of enolates or enols of ketones with a ketimine moiety of the 2-aza-2,4-cyclopentadienone intermediate which is formed via cycloisomerization of a carbonyl-ene-nitrile compound. The reaction proceeds under mild conditions and provides efficient access to synthetically useful pyrrolin-2-ones, which can be applied to the synthesis of azabicyclo[4.3.0]nonanone (indolizidine) derivatives.
Chapter 2

Introduction

Due to the importance of amino acid derivatives in pharmaceuticals and functional materials, much effort has been devoted to the development of new and effective methods to access these compounds. Among them, Mannich-type reactions represent one of the most powerful and direct methods for the synthesis of various β-amino carbonyl compounds through the formation of new carbon-carbon bonds.\(^1\) The reaction proceeds via addition reactions of the enolates generated from ketones to iminium ions which are formed by condensation of carbonyl compounds with amines (Scheme 1).\(^2\) Although addition reactions of enolates with aldmines have been well studied, there have been much less reports on the reactions with ketimines, leading to β,β-disubstituted amino carbonyl compounds directly.\(^3\)

![Scheme 1](image)

In Chapter 1, the author has demonstrated that copper-catalyzed reactions of carbonyl-ene-nitrile compounds with various nucleophiles including alkenes, aromatics, an alkyne, and alcohols afforded the corresponding 5-substituted pyrrolin-2-ones (γ-lactams).\(^4\) The reaction proceeds via addition reactions with ketimine moiety of the 2-aza-2,4-cyclopentadienone intermediate, which is formed via cycloisomerization of carbonyl-ene-nitrile compounds including hydration of a cyano moiety followed by dehydrative cyclization between the resulting amide and an original carbonyl moiety.\(^5\) These results stimulated him to make further efforts to investigate catalytic Mannich-type reactions of the ketimine moiety of 2-aza-2,4-cyclopentadienone.
Results and Discussion

First, the author attempted Mannich-type reactions of carbonyl-ene-nitrile compound 1 with silyl enol ethers (Scheme 2).\(^6\) When the reaction of 1 with 1-phenyl-1-trimethylsilyloxyethylene was examined in the presence of a catalytic amount of Cu(OTf)\(_2\) and water, the Mannich-type product 2a was obtained in 86% yield. In contrast, the reaction with 2-trimethylsiloxy-1-propene did not afford the corresponding product at all due to the low stability of the product in the presence of the reactive silyl enol ether.

\[
\begin{align*}
\text{Ph} & \quad \text{NC} \quad \text{Ph} \\
\text{1} & \quad \text{H}_2\text{O (0.1 equiv)} \\
(5.0 \text{ equiv}) & \quad \text{ClCH}_2\text{CH}_2\text{Cl} \\
70 \degree \text{C, 3 h} & \quad 86\% \text{ yield}
\end{align*}
\]

Scheme 2

During the course of these studies, the author was pleased to find direct Mannich-type reactions of 1 with ketones (Scheme 3). Selected results are summarized in Table 1. When the reaction of 1 with acetophenone was carried out, 2a was obtained in 95% yield (entry 1). Both 4-methoxy and 4-trifluoromethylacetophenone reacted with 1 to afford the corresponding products 2b and 2c in excellent yields, respectively (entries 2 and 3). Surprisingly, the aliphatic ketones such as acetone and tert-butyl methyl ketone also gave the Mannich-type products 2d and 2e in 92% and 93% yields, respectively (entries 4 and 5).

\[
\begin{align*}
\text{Ph} & \quad \text{NC} \quad \text{Ph} \\
\text{1} & \quad \text{cat. [Cu]} \\
\text{O} & \quad \text{R} \\
\text{2a} & \quad \text{O} \\
\text{Ph} & \quad \text{Ph} \\
\text{N} & \quad \text{H} \\
\text{O} & \quad \text{R}
\end{align*}
\]

Scheme 3
Carbonyl-ene-nitrile compound 1 also reacted with 2-butanone to give single constitutional isomer 2f quantitatively as a mixture of two diastereomers (dr = 66:34) (Scheme 4). The structure of 2f suggested that 2-aza-2,4-cyclopentadienone generated from 1 reacted selectively with a thermodynamically stable enol generated from 2-butanone.

Scheme 4

\[
1 + \begin{array}{c}
\text{(5.0 equiv)}
\end{array}
\xrightarrow{5 \text{ mol}\% \text{ Cu(OTf)}_2 \text{, H}_2\text{O (0.1 equiv)}}^\text{Ph}
2f
\begin{array}{c}
\text{ClCH}_2\text{CH}_2\text{Cl, 70 °C, 15 h}
\end{array}
\]

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>time (h)</th>
<th>product</th>
<th>yield (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>24</td>
<td>2a</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>4-MeOC(_6)H(_4)</td>
<td>3</td>
<td>2b</td>
<td>quant</td>
</tr>
<tr>
<td>3(^c)</td>
<td>4-CF(_3)C(_6)H(_4)</td>
<td>8</td>
<td>2c</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>6</td>
<td>2d</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>(^t)Bu</td>
<td>6</td>
<td>2e</td>
<td>93</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: 1 (0.40 mmol), ketone (2.0 mmol), Cu(OTf\(_2\)) (0.020 mmol), H\(_2\)O (0.04 mmol) in ClCH\(_2\)CH\(_2\)Cl (1.6 mL) at 70 °C. \(^b\) Isolated yields. \(^c\) 80 °C.

Carbonyl-ene-nitrile compound 1 also reacted with 2-butanone to give single constitutional isomer 2f quantitatively as a mixture of two diastereomers (dr = 66:34) (Scheme 4). The structure of 2f suggested that 2-aza-2,4-cyclopentadienone generated from 1 reacted selectively with a thermodynamically stable enol generated from 2-butanone.

As described above, the author established the Mannich-type reactions of a carbonyl-ene-nitrile compound with various ketones leading to corresponding 5-(2'-oxoalkyl)pyrrolin-2-ones. By utilizing this one step pyrrolin-2-one synthesis, he next decided to demonstrate the synthetic application to indolizidine alkaloids, which have received considerable attention due to their wide range of biological activities. A variety of applications in pharmaceutical uses have been reported to date. For an example, it has been
reported that (−)-swainsonine shows inhibitory characteristics with respect to tumor growth and metastasis (Figure 1).\(^8\)

![Image of various indolizidine alkaloids]

Figure 1. Various indolizidine alkaloids.

When the reaction of \(1\) with \(\beta\)-bromoketone in the presence of \(\text{Cu(OTf)}_2\) was carried out, the corresponding pyrrolin-2-one was obtained in 81% yield (Scheme 5). The subsequent intramolecular cyclization of \(2g\) using sodium hydride afforded azabicyclo[4.3.0]nonanone \(3\) (indolizidinone) in 81% yield. Furthermore, one-pot synthesis of \(3\) from \(1\) and \(\beta\)-bromoketone was examined in the presence of potassium carbonate as a base. The author was delighted to find that \(3\) was obtained in 74% yield from \(1\) and \(\beta\)-bromoketone in one pot.

Scheme 5

\[
1 + \text{Br}\text{-ketone (5.0 equiv)} \overset{5 \text{ mol\% Cu(OTf)}_2}{\xrightarrow{\text{H}_2\text{O (0.1 equiv)}, \text{ClCH}_2\text{CH}_2\text{Cl}, 70^\circ\text{C}, 20 \text{ h}}} \text{2g (81\% yield)} \\
\text{2g} \rightarrow \text{3 (81\% yield)} \\
\text{3} \leftarrow \text{NaH, DMF, 0}^\circ\text{C, 2 h} \text{ (81\% yield)}
\]

In conclusion, the author has described copper-catalyzed Mannich-type reactions of a carbonyl-ene-nitrile compound with ketones leading to acetylated pyrrolin-2-ones on the basis of the in situ generation of reactive 2-aza-2,4-cyclopentadienone intermediates.
Ketones as well as a silyl enol ether are applicable to the reaction to afford the corresponding Mannich-type products in excellent yields via addition reactions with a ketimine moiety of the 2-aza-2,4-cyclopentadienone. Furthermore, cascade reaction of copper-catalyzed pyrrolin-2-one formation with a β-bromoketone followed by intramolecular cyclization allows the one-pot synthesis of an indolizidinone. As demonstrated by this application, the present transformation of a carbonyl-ene-nitrile compound may open up new possibility for rapid synthesis of natural products containing indolizinone skeletons.

Experimental

General Method. Unless otherwise noted, chemicals obtained from commercial suppliers were used without further purification. Solvents were dried by the usual methods and distilled before use. All reactions were carried out under nitrogen atmosphere. NMR spectra were measured for solutions in CDCl₃ or acetone-d₆ with tetramethylsilane as an internal standard (¹H and ¹³C): the following abbreviations are used; br s: broad singlet, s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. IR spectra were recorded with an FT-IR spectrometer. Melting points (mp) are uncorrected. Element analyses were performed at Microanalytical Center of Kyoto University. High-resolution mass spectra (HRMS) was measured with JEOL JMX-SX 102A spectrometer.

General Procedure for Copper-catalyzed Mannich-type Reactions of Carbonyl-ene-nitrile Compound with Ketones. A flame dried Schlenk flask was charged with Cu(OTf)₂ (7.2 mg, 0.020 mmol), carbonyl-ene-nitrile compound 1 (0.40 mmol), and ketone (2.0 mmol) in CH₂Cl₂ (2.0 mL). The solution was stirred at room temperature
for 5 min and then water (0.040 mmol) was added dropwise. After stirring under the reaction conditions specified in Scheme 2-5 and Tables 1, the reaction mixture was diluted with Et₂O and filtered through a short silica gel pad. Filtrate was concentrated under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 7/1-4/1) as eluents to afford the corresponding acetonylated pyrrolin-2-ones 2. Diastereoisomers of 2f were separated by column chromatography.

3,5-Diphenyl-5-(2-oxo-2-phenylethyl)-3-pyrrolin-2-one (2a): A colorless solid; mp 141.3-142.5 °C. IR (KBr): 692, 763, 795, 867, 1184, 1217, 1360, 1448, 1491, 1595, 1684 (C=O), 3025, 3060, 3241 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.29 (d, J = 18.4 Hz, 1H), 4.38 (d, J = 18.4 Hz, 1H), 7.21-7.26 (m, 1H), 7.29-7.49 (m, 10H), 7.56-7.64 (m, 2H), 7.84-7.92 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 45.9, 63.7, 125.1, 127.2, 127.6, 128.0, 128.4, 128.7, 128.8, 128.9, 130.8, 133.7, 133.8, 136.4, 138.9, 146.5, 171.0, 196.6. HRMS (FAB) calcd for M+H⁺ of C₂₄H₁₉NO₂ 354.1495, found 354.1494.

3,5-Diphenyl-5-[2-(4-methoxyphenyl)-2-oxoethyl]-3-pyrrolin-2-one (2b): A pale yellow solid; mp 63.8-64.9 °C. IR (KBr): 695, 745, 793, 840, 1030, 1170, 1232, 1262, 1349, 1380, 1447, 1492, 1510, 1574, 1599, 1696 (C=O), 2932, 3059, 3429 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.20 (d, J = 18.0 Hz, 1H), 3.81 (s, 1H), 6.89 (d, J = 9.0 Hz, 2H), 7.15-7.42 (m, 10H), 7.78 (br s, 1H), 7.85 (s, 2H), 7.88 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 45.4, 55.4, 63.8, 113.8, 125.1, 127.1, 127.4, 128.3, 128.6, 128.7, 129.4, 130.3, 130.9, 133.6, 139.2, 146.7, 163.9, 171.1, 195.1. HRMS (FAB) calcd for M+H⁺ of C₂₅H₂₁NO₃ 384.1599, found 384.1600.
Chapter 2

3,5-Diphenyl-5-[2-oxo-2-(4-trifluoromethylphenyl)ethyl]-3-pyrrolin-2-one (2c): A white solid; mp 163.2-165.4 °C. IR (KBr): 697, 747, 791, 844, 877, 1065, 1110, 1126, 1168, 1213, 1328, 1410, 1447, 1493, 1599, 1692 (C=O), 3058, 3266 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.37 (d, J = 17.4 Hz, 1H), 4.32 (d, J = 17.4 Hz, 1H), 7.25-7.42 (m, 9H), 7.71 (m, 3H), 7.85 (d, J = 8.0 Hz, 2H), 7.98 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 46.5, 63.7, 123.3 (q, J = 273.1 Hz), 125.1, 125.8 (q, J = 4.0 Hz), 127.1, 127.7, 128.3, 128.4, 128.8, 128.9, 130.7, 133.9, 134.9 (q, J = 33.1 Hz), 138.7, 138.9, 146.1, 171.1, 195.8. HRMS (FAB) calcd for M+H⁺ of C₂₅H₁₈F₃NO₂ 422.1369, found 422.1368.

3,5-Diphenyl-5-(2-oxopropyl)-3-pyrrolin-2-one (2d): A white solid; mp 30.2-31.3 °C. IR (KBr): 696, 746, 794, 879, 1067, 1179, 1236, 1360, 1388, 1447, 1492, 1599, 1699 (C=O), 2975, 3062, 3243 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.07 (s, 1H), 2.81 (d, J = 17.4 Hz, 1H), 3.62 (d, J = 17.4 Hz, 1H), 7.25-7.39 (m, 10H), 7.73 (br s, 1H), 7.84 (d, J = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 31.0, 50.6, 63.5, 125.1, 127.1, 127.8, 128.3, 128.7, 128.8, 130.8, 133.7, 138.9, 146.1, 171.2, 205.5. HRMS (FAB) calcd for M+H⁺ of C₁₉H₁₇NO₂ 292.1338, found 292.1338.

3,5-Diphenyl-5-(3,3-dimethyl-2-oxobutyl)-3-pyrrolin-2-one (2e): A white solid; mp 47.5-48.8 °C. IR (KBr): 696, 746, 794, 874, 905, 1005, 1067, 1176, 1222, 1365, 1448, 1478, 1492, 1599, 1682 (C=O), 2871, 2968, 3063, 3274 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.95 (s, 9H), 2.65 (d, J = 16.8 Hz, 1H), 3.76 (d, J = 16.8 Hz, 1H), 7.12-7.32 (m, 9H), 7.65 (br s, 1H), 7.84 (d, J = 7.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 26.0, 44.3, 44.7, 63.6, 125.0, 127.0, 127.4, 128.2,
128.6, 130.8, 133.6, 139.0, 146.4, 170.9, 212.6. HRMS (FAB) calcd for M+H+ of C_{22}H_{23}NO_{2} 334.1812 found 334.1807.

3,5-Diphenyl-5-(1-methyl-2-oxopropyl)-3-pyrroline-2-one (2f): After the reaction was complete, 2f was obtained as a mixture of diastereoisomers (dr = 66:34) which could be separated by column chromatography on silica gel. The major isomer was eluted with hexane/AcOEt (v/v = 7/1), and the minor one was eluted with hexane/AcOEt (v/v = 3/1), respectively. Major diastereomer: A white solid; mp 138.9-139.8 °C. IR (KBr): 698, 748, 795, 883, 1033, 1112, 1178, 1227, 1357, 1414, 1447, 1491, 1597, 1683 (C=O), 2875, 2932, 2972, 3059, 3351 (N-H) cm\(^{-1}\). \(^{1}\)H NMR (400 MHz, CDCl\(_3\)): δ 1.13 (d, J = 7.6 Hz, 3H), 1.96 (s, 3H), 3.67 (q, J = 7.6 Hz, 1H), 7.13 (d, J = 2.0 Hz, 1H), 7.24-7.28 (m, 1H), 7.31-7.42 (m, 7H), 7.43 (br s, 1H), 7.84 (dd, J = 2.0, 8.4 Hz, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 11.7, 31.1, 51.9, 67.0, 125.2, 127.1, 127.6, 128.3, 128.7, 128.8, 130.8, 134.7, 139.7, 144.6, 171.6, 211.1. HRMS (FAB, M+H+): calcd for C\(_{20}\)H\(_{20}\)NO\(_2\) 306.1487, found 306.1494. Minor diastereomer: A white solid; mp 176.8-177.3 °C. IR (KBr): 698, 748, 795, 878, 1032, 1144, 1185, 1238, 1357, 1417, 1449, 1492, 1597, 1681 (C=O), 2873, 2932, 2974, 3067, 3210 (N-H) cm\(^{-1}\). \(^{1}\)H NMR (400 MHz, CDCl\(_3\)): δ 1.14 (d, J = 6.8 Hz, 3H), 1.91 (s, 3H), 3.45 (q, J = 6.8 Hz, 1H), 7.29 (d, J = 6.8 Hz, 1H), 7.36 (q, J = 6.8 Hz, 2H), 7.40-7.45 (m, 4H), 7.82 (d, J = 1.6 Hz, 1H), 7.92 (dd, J = 1.6, 8.8 Hz, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 12.4, 30.8, 55.2, 67.3, 126.2, 127.3, 127.8, 128.4, 128.7, 128.8, 131.0, 135.7, 139.6, 144.1, 171.9, 209.7. HRMS (FAB, M+H+): calcd for C\(_{20}\)H\(_{19}\)NO\(_2\) 306.1487, found 306.1489.
Chapter 2

3,5-Diphenyl-5-(4-bromo-3,3-dimethyl-2-oxobutyl)-3-pyrrolin-2-one (2g): A white solid; mp 42.8-43.2 °C. IR (KBr): 696, 745, 794, 870, 1032, 1178, 1241, 1365, 1386, 1447, 1468, 1492, 1599, 1696 (C=O), 2970, 3060, 3257 (N-H), 3395 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.14 (s, 3H), 1.17 (s, 3H), 2.85 (d, J = 18.0 Hz, 1H), 3.37 (s, 2H), 3.85 (d, J = 18.0 Hz, 1H), 7.21-7.40 (m, 9H), 7.66 (br s, 1H), 7.85 (d, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 23.4, 23.5, 40.2, 45.7, 48.7, 63.5, 125.1, 127.0, 127.5, 128.3, 128.6, 128.6, 130.7, 133.7, 138.7, 146.0, 170.9, 209.3. HRMS (FAB) calcd for M+H⁺ of C₂₂H₂₂BrNO₂ 412.0912, found 412.0912.

Synthesis of Azabicyclo[4,3,0]nonanone (6,6-Dimethyl-2,8a-diphenyl-5,6,7,8-tetrahydroindolizin-3,7-dione) (3): A solution of 3,5-diphenyl-5-(4-bromo-3,3-dimethyl-2-oxobutyl)-3-pyrrolin-2-one 2g (41.2 mg, 0.10 mmol) in DMF (10 mL) was added to sodium hydride (4.8 mg, 0.20 mmol, 60% in mineral oil) at 0 °C, and the resulting mixture was stirred for 2 h. The obtained yellow solution was carefully poured into water (10 mL), and extracted with Et₂O (20 mL × 3). The combined organic layer was dried over MgSO₄. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 7/1-4/1) as eluents to afford 6,6-dimethyl-2,8a-diphenyl-5,6,7,8-tetrahydroindolizin-3,7-dione 3 as a pale yellow viscous oil (26.8 mg, 0.080 mmol, 81% yield). IR (neat): 695, 789, 874, 1139, 1166, 1311, 1401, 1447, 1493, 1691 (C=O), 2867, 2929, 2969 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.02 (s, 3H), 1.22 (s, 3H), 2.71 (d, J = 13.6 Hz, 1H), 2.83 (d, J = 14.8 Hz, 1H), 3.40 (d, J = 14.8 Hz, 1H), 4.28 (d, J = 13.6 Hz, 1H), 7.21-7.28 (m, 3H), 7.30-7.44 (m, 7H), 7.98 (d, J = 6.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 20.8, 25.1, 44.1, 44.5, 46.9, 67.9, 126.3, 127.2, 128.5, 128.8, 129.0, 129.3, 130.9,
HRMS (FAB) calcd for M+H⁺ of C₂₂H₂₁NO₂ 332.1651, found 332.1657.

References and Notes

Chapter 2

Chapter 3

Platinum-catalyzed Synthesis of α-Alkylidene-N-furylimines via Catalytic Vinylcarbene-transfer Reactions to Carbonyl-ene-nitrile Compounds

Abstract

The reaction of carbonyl-ene-nitrile compounds with propargyl carboxylates in the presence of a catalytic amount of PtCl$_2$ afforded the α-alkylidene-N-furylimine derivatives with high stereoselectivities. Propargyl carboxylates and carbonyl-ene-nitrile compounds are considered to serve as equivalents of vinylcarbenes and 2-furlylnitrenes, respectively. The reaction proceeds in a complete atom-economical fashion and provides straightforward access to α-alkylidene-N-furylimines, which can be employed as building blocks for the synthesis of nitrogen-containing heterocycles.
Introduction

Catalytic carbene-transfer reactions have been well investigated, aimed at developing facile and efficient access to structurally complex molecules.\(^1\) Recently, the reaction between propargyl carboxylates 1 and transition metals has received considerable attention as a diazoalkane-free atom-efficient generation method of vinylcarbene complexes (Scheme 1).\(^2\) The author’s group has previously developed a wide range of catalytic vinylcarbene-transfer reactions including cyclopropanation reactions of alkenes, ring opening reactions of heterocycles, and carbene migration reactions using propargyl carboxylates.\(^3\) Based on these works, the author set out his investigation using propargyl carboxylates as carbene precursors and nitriles as carbene acceptors to seek for new reactions.\(^4\)\(^-\)\(^6\) He found that carbonyl-ene-nitrile compounds 2\(^7\) reacted with propargyl carboxylates 1 to afford \(\alpha\)-alkyldiene-\(N\)-furylimines 3 in the presence of a catalytic amount of platinum complexes atom-efficiently (Scheme 2).

![Scheme 1](image1.png)

![Scheme 2](image2.png)

While formal \textit{endo} type cycloisomerization of carbonyl-ene-nitrile compounds 2 leading to 2-aza-2,4-cyclopentadienone 4 was described in Chapters 1 and 2 (Scheme 3a), the proper
choice of the reaction conditions changed the cycloisomerization mode. In this chapter, carbonyl-ene-nitrile compounds \(2\) act as 2-furylnitrene equivalents \(5\) via formal \textit{exo} type cyclization to afford \(\alpha\)-alkylidene-\(N\)-furylimines \(3\) (Scheme 3b, and see also General Introduction).\(^8\)

Scheme 3

\[
\begin{align*}
\text{2} & \xrightarrow{[\text{M}]} \text{endo} \quad \text{H}_2\text{O} \quad \text{4} \\
\text{exo} & \quad \text{5}
\end{align*}
\]

Results and Discussion

When the reaction of 1-phenyl-2-propynyl acetate \(1\text{a}\) as a carbene precursor with carbonyl-ene-nitrile compound \(2\text{a}\) was carried out in the presence of a catalytic amount of \([\text{RuCl}_2(\text{CO})_3]_2\) (5 mol%) in \(\text{ClCH}_2\text{CH}_2\text{Cl}\) at 70 °C, \(\alpha\)-alkylidene-\(N\)-furylimine \(3\text{a}\) was obtained in 16% yield as a single stereoisomer (Scheme 4).

Scheme 4

\[
\text{1a} + \text{2a} \quad \xrightarrow{5 \text{ mol\% } [\text{RuCl}_2(\text{CO})_3]_2} \quad \text{ClCH}_2\text{CH}_2\text{Cl} \quad 70 \degree\text{C}, 17 \text{ h} \quad \text{3a (16\%)}
\]
Chapter 3

This unusual reaction of a nitrile encouraged the author to optimize the reaction conditions. First, reactions of 1a and 2a in the presence of several transition metal catalysts were examined. The results are summarized in Table 1. Among the catalysts screened, he found that PtCl₂ was superior to [RuCl₂(CO)₃]₂, giving 3a in 27% yield (entry 1). Although other platinum catalysts, such as PtCl₂(PPh₃)₂ and PtCl₄, exhibited marginal catalytic activity (entries 5 and 6), [Rh(OAc)₂]₂, GaCl₃, AuCl₃, AuCl(PPh₃), [RuCl₂(p-cymene)]₂, and PdCl₂(CH₃CN)₂ were almost ineffective for the present reaction, 2a being recovered intact (entries 7-9). This reaction was strongly influenced by the solvent used. Among the solvents examined, toluene was superior to ClCH₂CH₂Cl and THF, and 3a was obtained in 52% yield (entries 2 and 3). In all cases, 2a was not completely converted to 3a even with extended reaction time and a stoichiometric amount of platinum compounds (entry 4).

Table 1. Optimization of reaction conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>[M]</th>
<th>solvent</th>
<th>conv. of 2a (%)</th>
<th>yield of 3a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PtCl₂</td>
<td>ClCH₂CH₂Cl</td>
<td>32</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>PtCl₂</td>
<td>ClCH₂CH₂Cl</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PtCl₂</td>
<td>toluene</td>
<td>66</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>PtCl₂</td>
<td>toluene</td>
<td>69</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>PtCl₂(PPh₃)₂</td>
<td>ClCH₂CH₂Cl</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>PtCl₄</td>
<td>ClCH₂CH₂Cl</td>
<td>28</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>[Rh(OAc)₂]₂</td>
<td>ClCH₂CH₂Cl</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>GaCl₃</td>
<td>ClCH₂CH₂Cl</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>AuCl₃</td>
<td>ClCH₂CH₂Cl</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Reaction conditions: 1a (0.90 mmol), 2a (0.30 mmol), [M] (0.030 mmol) in solvent (1.2 mL). †Isolated yields. ‡For 48 h. §[Rh(OAc)₂]₂ (5 mol%).

Next, the author examined the substrate scope of the reaction using a variety of 1-aryl-2-propynyl carboxylates 1 as carbene precursors in the presence of PtCl₂ (Table 2). Reactions of propargyl pivalate 1b and benzoate 1c with 2a gave α-alkylidene-N-furylimines
3b and 3c, respectively, with slightly lower yields in comparison with propargyl acetate 1a (entries 1 and 2). The reaction was sensitive to the electronic features of the aryl group of 1. Propargyl acetates 1d, 1e, and 1f, which possess electron-withdrawing groups, reacted with 2a to give the corresponding α-alkylidene-N-furylimines 3d, 3e, and 3f, respectively, in good yields (entries 3-5). On the other hand, propargyl acetates 1g and 1h having electron-donating groups at the para-position of the aryl group produced α-alkylidene-N-furylimines in lower yields (entries 6 and 7). These results can be explained by assuming the resonance structures of vinylcarbene complex intermediates (Figure 1). The substrate scope could be expanded to tert-propargyl acetates. The reaction of 1i with 2a gave α-fluoren-9-ylidene-N-furylimine 3i in 80% yield (entry 8). The formation of Z- and anti-stereo regulated products reflects the intervention of Z-vinylcarbene complexes (Figure 1).

Table 2. Pt-catalyzed reactions of carbonyl-ene-nitrile compound 2a with 1-aryl-2-propynyl carboxylates

<table>
<thead>
<tr>
<th>entry</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>conv. of 2a (%)</th>
<th>product</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>H</td>
<td>Piv</td>
<td>61</td>
<td>3b</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>H</td>
<td>Bz</td>
<td>65</td>
<td>3c</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>4-BrC₆H₄</td>
<td>H</td>
<td>Ac</td>
<td>64</td>
<td>3d</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>4-CF₃C₆H₄</td>
<td>H</td>
<td>Ac</td>
<td>82</td>
<td>3e</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>C₆F₅</td>
<td>H</td>
<td>Ac</td>
<td>81</td>
<td>3f</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>4-MeC₆H₄</td>
<td>H</td>
<td>Ac</td>
<td>42</td>
<td>3g</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>4-MeOC₆H₄</td>
<td>H</td>
<td>Ac</td>
<td>38</td>
<td>3h</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Ac</td>
<td>1i</td>
<td>80</td>
<td>3i</td>
<td>80</td>
</tr>
</tbody>
</table>

*Reaction conditions: 1 (1.2 mmol), 2a (0.40 mmol), PtCl₂ (0.040 mmol) in toluene (1.2 mL). *Isolated yields.*
The structure of the product was confirmed by X-ray crystallographic analysis. An ORTEP drawing of the pentafluorobenzene derivative 3f unambiguously shows the anti configuration of the imine and Z-geometry of the alkenyl moiety (See Figure 2 in Experimental section).

N-Furylimines were produced by reactions with various carbonyl-ene-nitrile compounds 2 (Table 3). The reaction of 2b with propargyl acetate 1a gave the corresponding α-alkylidene-*N*-furylimine 3j in 48% yield. Interestingly, a cyano group and an ester group as an R1 in 2c and 2d can be tolerated under these reaction conditions, the corresponding α-alkylidene-*N*-furylimines 3k and 3l being obtained in good yields. Moreover, cyclohexene-fused carbonyl-ene-nitrile compounds 2e and 2f reacted with 1a to give 3m and 3n in 66% and 72% yields, respectively.

<table>
<thead>
<tr>
<th>entry</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>product</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-MeC6H4</td>
<td>H</td>
<td>Ph</td>
<td>3j</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>CN</td>
<td>H</td>
<td>Ph</td>
<td>3k</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>CO2Et</td>
<td>H</td>
<td>Ph</td>
<td>3l</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>-(CH2)4-</td>
<td>Ph</td>
<td>2e</td>
<td>3m</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>-(CH2)4-</td>
<td>4-CF3C6H4</td>
<td>2f</td>
<td>3n</td>
<td>72</td>
</tr>
</tbody>
</table>

*a*Reaction conditions: 1a (0.90 mmol), 2 (0.30 mmol), [M] (0.030 mmol) in toluene (1.2 mL). *b*Isolated yields.
The most plausible mechanism for the present reaction is illustrated in Scheme 5. First, platinum-vinylcarbene complex A is formed via the 1,2-migration of the acetate to an internal carbon atom of the alkyne.\(^2\) Platinum-vinylcarbene complex A then reacts with 2 through two possible pathways (path A or B). In path A, nucleophilic attack of a cyano moiety of 2 on the carbenoid carbon would afford metal-containing nitrile ylide intermediate B, which then converts to \(\alpha\)-alkylidene-\(N\)-furylimine via intramolecular cyclization followed by regeneration of the catalyst. In path B, [2+2] cycloaddition between A and 2 followed by ring cleavage generates iminocarbene complex D,\(^9\) which undergoes insertion of a carbonyl group to give the \(\alpha\)-alkylidene-\(N\)-furylimine 3 along with regeneration of the catalyst.\(^10\)

Since the \(\alpha\)-alkylidene-\(N\)-furylimines was obtained from the one-pot reaction, the author next demonstrated the synthetic application of them to \(N\)-furyl substituted nitrogen-containing heterocycles. When the reduction of 3a with LiAlH\(_4\) was carried out, \(N\)-(2-furyl)-\(\alpha\)-amino ketone 6 was obtained in 88% yield.\(^11\) The subsequent condensation and annulation with ethyl acetoacetate afforded \(N\)-(2-furyl)pyrrole 7 in 74% yield (Scheme 4). \(N\)-(2-Furyl)pyrroles are of biological interest as inhibitor of xanthine oxidase, antagonist on thromboxane A\(_2\) and prostaglandin D\(_2\) receptors.\(^12\)
In conclusion, the author has demonstrated catalytic carbene transfer reactions to carbonyl-ene-nitrile compounds on the basis of the in situ generation of vinylcarbene complexes from propargyl carboxylates leading to α-alkylidene-N-furylimines. α-Alkylidene-N-furylimines can be considered as coupling products of vinylcarbenes, which were generated from propargyl carboxylates, with carbonyl-ene-nitrile compounds as 2-furylnitrene equivalents. The reaction proceeds in a complete atom-economical fashion and provides straightforward access to α-alkylidene-N-furylimines, which can be employed as building blocks for the synthesis of nitrogen-containing heterocycles.

Experimental

General Method. Unless otherwise noted, chemicals obtained from commercial suppliers were used without further purification. Solvents were dried by the usual methods and distilled before use. Propargyl carboxylates 1 and carbonyl-ene-nitrile compounds 2a and 2b were prepared according to the reported procedure. All reactions were carried out under nitrogen atmosphere. NMR spectra were measured for solutions in CDCl$_3$ with tetramethylsilane as an internal standard (1H and 13C): the following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. IR spectra were recorded with an FT-IR spectrometer. Melting points (mp) are uncorrected. Element analyses were performed at
Microanalytical Center of Kyoto University. High-resolution mass spectra (HRMS) was measured with JEOL JMX-SX 102A spectrometer.

Preparation of Carbonyl-ene-nitrile Compounds 2c and 2d. To a solution of phenylglyoxal monohydrate\(^{16}\) (1.38 g, 10 mmol) and MS4A (2.0 g) in MeCN (20 mL) was added malononitrile (for 2c) or ethyl cyanoacetate (for 2d) (10 mmol), and the mixture was stirred overnight at 80 °C. The resulting mixture was filtered through short silica gel pad, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel with hexane/AcOEt (v/v = 7/1-4/1) as eluents to afford corresponding carbonyl-ene-nitrile compounds 2c or 2d as yellow solids, respectively. 2d was obtained as a single stereoisomer.

3,3-Dicyano-1-phenyl-2-propen-1-one (2c): A pale yellow solid; mp 115.1-115.6 °C. IR (KBr): 687, 778, 896, 1011, 1182, 1254, 1364, 1446, 1598, 1662 (C=O), 2211, 3428 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 7.59 (t, \(J = 7.7\) Hz, 2H), 7.74 (t, \(J = 7.7\) Hz, 1H), 7.98 (d, \(J = 7.7\) Hz, 2H), 8.20 (s, 1H). \(^1\)C NMR (100 MHz, CDCl\(_3\)): δ 96.7, 110.3, 111.9, 129.1, 129.5, 134.3, 135.7, 151.2, 184.0. HRMS (FAB) calcd for M+H\(^+\) of C\(_{11}\)H\(_6\)N\(_2\)O 183.0558, found 183.0555.

Ethyl (Z)-1-benzoyl-2-cyanoacrylate (2d): A yellow solid; mp 63.6-64.2 °C. IR (KBr): 693, 756, 1002, 1094, 1265, 1448, 1595, 1671 (C=O), 1740 (C=O), 2214, 3460 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 1.42 (t, \(J = 7.3\) Hz, 3H), 4.44 (q, \(J = 6.8\) Hz, 2H), 7.56 (t, \(J = 7.3\) Hz, 2H), 7.69 (tt, \(J = 1.5, 7.3\) Hz, 1H), 8.00 (dd, \(J = 1.5, 7.3\) Hz, 2H), 8.44 (s, 1H). \(^1\)C NMR (100 MHz, CDCl\(_3\)): δ 13.9, 63.7, 112.8, 115.5, 129.0, 129.2, 135.0, 135.1, 147.5, 160.4, 186.9. HRMS (FAB) calcd for M+H\(^+\) of C\(_{13}\)H\(_{11}\)NO\(_3\) 230.0817,
Chapter 3

Preparation of Carbonyl-ene-nitrile Compounds 2e and 2f.

1-Benzoyl-2-cyanocyclohexene (2e): To a solution of 2-bromo-1-cyclohexene-carbaldehyde (1.69 g, 9.0 mmol) in THF (10 mL) was added a solution of phenylmagnesium bromide (10 mmol) in THF (10 mL) at -78 °C under N₂. The mixture was stirred at -78 °C for 1 h, and then poured into saturated aqueous NH₄Cl solution (20 mL). The resulting mixture was extracted with AcOEt (20 mL × 3), and the organic layer was dried over MgSO₄. The organic solvent was removed under reduced pressure to afford α-(2-bromocyclohexen-1-yl)benzyl alcohol (2.29 g, 9.0 mmol, quant.) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 1.55-1.76 (m, 4H), 2.07-2.09 (m, 1H), 2.23-2.32 (m, 1H), 2.55-2.60 (m, 2H), 6.04 (d, J = 3.4 Hz, 1H), 7.26 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 7.4 Hz, 2H), 7.43 (d, J = 7.4 Hz, 2H). To a solution of α-(2-bromocyclohexen-1-yl)benzyl alcohol (2.29 g, 9.0 mmol) in CH₂Cl₂ (20 mL) was added Dess-Martin periodinane (3.82 g, 9.0 mmol) at 0 °C, and the resulting mixture was stirred at room temperature for 10 min. The organic solvent was removed under reduced pressure and the resulting white solid was filtered through short silica gel pad with Et₂O as an eluent. The residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 20/1) as eluents to afford 1-benzoyl-2-bromocyclohexene (2.30 g, 8.7 mmol, 97%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 1.77-1.89 (m, 4H), 2.34-2.36 (m, 2H), 2.61-2.64 (m, 2H), 7.49 (t, J = 7.3 Hz, 2H), 7.60 (t, J = 7.3 Hz, 1H), 7.95 (d, J = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 21.4, 24.2, 29.6, 35.6, 120.2, 128.8, 129.6, 133.6, 134.5, 137.8, 197.6. To a solution of 1-benzoyl-2-bromocyclohexene (2.30 g, 8.7 mmol) in DMF (20 mL) was added CuCN (860 mg, 9.6 mmol), and the resulting mixture was stirred at 110 °C for 3 h. The reaction mixture was poured into water, and then the aqueous layer was extracted with AcOEt...
The combined organic layer was washed with brine and dried over MgSO₄. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 4/1) as eluents to afford 1-benzoyl-2-cyanocyclohexene 2e (1.66 g, 7.8 mmol, 90% yield) as a colorless solid. mp 41.0-42.0 °C. IR (KBr): 690, 758, 1205, 1446, 1499, 1740 (C=O), 2912, 3420 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.75-1.79 (m, 4H), 2.39-2.42 (m, 2H), 2.42-2.47 (m, 2H), 7.49 (t, J = 7.8 Hz, 2H), 7.62 (t, J = 7.8 Hz, 1H), 7.87 (d, J = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 20.5, 20.8, 27.2, 27.6, 111.2, 117.0, 128.8, 129.4, 134.1, 134.5, 146.0. HRMS (FAB) calcd for M+H⁺ of C₁₄H₁₃NO₂ 212.1075, found 212.1088.

2-Cyano-1-cyclohexenyl (4-trifluoromethyl)phenyl ketone (2f): A pale yellow solid; mp 63.2-64.1 °C. IR (KBr): 687, 752, 1203, 1364, 1612, 1728 (C=O), 2910, 3428 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.80-1.82 (m, 4H), 2.45-2.48 (m, 4H), 7.77 (d, J = 7.8 Hz, 2H), 7.98 (d, J = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 20.6, 20.9, 27.5, 27.6, 112.7, 116.8, 123.3 (q, J = 273 Hz), 126.0 (q, J = 3.3 Hz), 129.8, 135.3 (q, J = 32.2 Hz), 137.5, 153.5, 195.0. HRMS (FAB) calcd for M+H⁺ of C₁₅H₁₂F₃NO₂ 280.0949, found 280.0947.

General Procedure for Platinum-catalyzed Reactions of Propargyl Carboxylates with Carbonyl-ene-nitrile Compounds. A solution of propargyl carboxylate 1 (1.2 mmol) and PtCl₂ (8.0 mg, 0.030 mmol) in toluene (1.2 mL) was added to carbonyl-ene-nitrile compound 2 (0.30 mmol), and the resulting mixture was stirred at 70 °C for 17 h. The resulting mixture was directly subjected to flash column chromatography on silica gel with hexane/AcOEt/CH₂Cl₂ (v/v = 15/1/1) as eluents to afford the corresponding N-furylimine. The structures of products were determined by nOe experiments.
Chapter 3

\(N-(2\text{-Acetoxy-3-phenyl-2-propen-1-ylidene})-3,5\text{-diphenyl-2-furanamine} \ (3a)\): A yellow solid; mp 168.1-169.3 °C. IR (KBr): 689, 756, 929, 1129, 1206, 1449, 1493, 1753 (C=O), 3422 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 2.42 (s, 3H), 6.72 (s, 1H), 6.99 (s, 1H), 7.27-7.43 (m, 9H), 7.61 (d, \(J = 7.2 \text{ Hz}, 2H\)), 7.72 (d, \(J = 7.2 \text{ Hz}, 2H\)), 7.83 (d, \(J = 7.2 \text{ Hz}, 2H\)), 8.32 (s, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 21.0, 107.4, 122.9, 123.9, 126.7, 127.2, 127.9, 128.0, 128.2, 128.7, 128.9, 129.1, 129.5, 129.9, 132.3, 133.4, 146.1, 146.4, 149.0, 150.3, 168.1. Anal. calcd for C\(_{27}\)H\(_{21}\)NO\(_3\): C, 79.59; H, 5.19. Found: C, 79.41; H, 5.21.

\(N-(2\text{-Pivaloyloxy-3-phenyl-2-propen-1-ylidene})-3,5\text{-diphenyl-2-furanamine} \ (3b)\): A yellow solid; mp 175.2-176.0 °C. IR (KBr): 694, 761, 1114, 1270, 1480, 1744 (C=O), 3460 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 1.30 (s, 9H), 6.69 (s, 1H), 6.90 (s, 1H), 7.21-7.33 (m, 9H), 7.52 (d, \(J = 6.8 \text{ Hz}, 2H\)), 7.64 (d, \(J = 7.3 \text{ Hz}, 2H\)), 7.72 (d, \(J = 7.3 \text{ Hz}, 2H\)), 8.31 (s, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 27.4, 39.0, 107.4, 122.9, 123.9, 126.0, 127.1, 128.0, 128.2, 128.5, 128.7, 129.0, 129.5, 129.8, 130.0, 132.4, 133.5, 146.7, 148.2, 149.6, 150.1, 175.4. HRMS (FAB) calcd for M\(^+\) of C\(_{30}\)H\(_{27}\)NO\(_3\) 449.1991, found 449.1991.

\(N-(2\text{-Benzoyloxy-3-phenyl-2-propen-1-ylidene})-3,5\text{-diphenyl-2-furanamine} \ (3c)\): A yellow solid; mp 224.2-225.0 °C. IR (KBr): 690, 759, 1061, 1244, 1450, 1492, 1733 (C=O), 3426 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 6.78 (t, \(J = 7.6 \text{ Hz}, 2H\)), 6.87 (s, 1H), 7.00 (t, \(J = 7.3 \text{ Hz}, 2H\)), 7.30-7.36 (m, 4H), 7.41 (t, \(J = 7.6 \text{ Hz}, 2H\)), 7.58-7.68 (m, 6H), 7.73-7.75 (m, 3H), 8.34 (d, \(J = 7.3 \text{ Hz}, 2H\)), 8.45 (s, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 107.1, 122.6, 124.1, 126.9, 127.6, 127.9, 128.1, 128.7, 128.8, 129.1, 129.2, 129.5, 129.7, 130.0, 130.6, 130.6, 131.8, 133.6, 133.7,
Chapter 3

145.8, 146.8, 149.1, 150.4, 164.0. Anal. calcd for C_{32}H_{23}NO_{3}: C, 81.86; H, 4.94. Found: C, 81.89; H, 4.82.

\[N-[2-Acetoxy-3-(4-bromophenyl)-2-propen-1-ylidene]-3,5-diphenyl-2-furanamine \ (3d): \] A yellow solid; mp 222.0-223.4 °C. IR (KBr): 686, 755, 1215, 1488, 1636, 1750 (C=O), 3421 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.41 (s, 3H), 6.66 (s, 1H), 7.01 (s, 1H), 7.30-7.50 (m, 10H), 7.73 (d, J = 7.2 Hz, 2H), 7.82 (d, J = 7.2 Hz, 2H), 8.31 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 21.0, 107.5, 123.2, 123.4, 124.0, 127.3, 127.4, 128.0, 128.1, 128.2, 128.7, 128.8, 130.8, 131.9, 132.3, 132.4, 145.7, 147.0, 148.9, 150.5, 167.9. HRMS (FAB) calcd for M⁺ of C_{27}H_{20}BrNO_{3} 487.0610, found 487.0629.

\[N-[2-Acetoxy-3-(4-trifluoromethylphenyl)-2-propen-1-ylidene]-3,5-diphenyl-2-furanamine \ (3e): \] A yellow solid; mp 174.5-175.5 °C. IR (KBr): 686, 755, 1069, 1113, 1165, 1239, 125.6 (q, J = 3.7 Hz), 125.8 (q, J = 272.5 Hz), 126.7, 127.9, 128.2, 128.4, 128.7, 128.9, 129.5, 129.8, 130.1, 130.4 (q, J = 32.9 Hz), 132.2, 136.8, 145.4, 148.2, 148.8, 150.8, 168.0. HRMS (FAB) calcd for M⁺ of C_{28}H_{20}F_{3}NO_{3} 475.1395, found 475.1389.

\[N-[2-Acetoxy-3-(1,2,3,4,5-pentafluorophenyl)-2-propen-1-ylidene]-3,5-diphenyl-2-furanamine \ (3f): \] A yellow solid; mp 222.8-223.9 °C. IR (KBr): 690, 758, 998, 1180, 1496, 1517, 1778.
Chapter 3

(C=O), 3448 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 2.31 (s, 3H), 6.61 (s, 1H), 7.04 (s, 1H), 7.30-7.46 (m, 6H), 7.75 (d, $J = 7.2$ Hz, 2H), 7.82 (d, $J = 7.2$ Hz, 2H), 8.37 (s, 1H). 13C NMR (100 MHz, CDCl$_3$): δ 20.7, 107.7, 108.4-108.9 (m), 111.4, 124.2, 125.2, 127.7, 128.2, 128.5, 128.7, 128.9, 129.7, 132.1, 137.8 (dm, $J = 251.8$ Hz), 141.1 (dm, $J = 250.0$ Hz), 144.0, 144.4 (dm, $J = 246.2$ Hz), 148.3, 150.9, 151.4, 167.9. HRMS (FAB) calcd for M$^+$ of C$_{27}$H$_{16}$F$_5$NO$_3$ 497.1050, found 497.1043.

N-[2-Acetoxy-3-(4-methylphenyl)-2-propen-1-ylidene]-3,5-diphenyl-2-furanamine (3g): A yellow solid; mp 186.0-186.8 °C. IR (KBr): 692, 756, 861, 925, 1211, 1493, 1508, 1601, 1752 (C=O), 3448 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 2.38 (s, 3H), 2.42 (s, 3H), 6.73 (s, 1H), 7.02 (s, 1H), 7.19-7.32 (m, 4H), 7.39 (d, $J = 8.1$ Hz, 2H), 753 (d, $J = 8.1$ Hz, 2H), 7.52 (d, $J = 8.0$ Hz, 2H), 7.73 (d, $J = 7.3$ Hz, 2H), 7.85 (d, $J = 7.3$ Hz, 2H), 8.36 (s, 1H). 13C NMR (100 MHz, CDCl$_3$): δ 21.0, 21.5, 107.4, 122.6, 124.0, 127.2, 128.0, 128.2, 128.7, 128.9, 129.1, 129.5, 129.6, 130.0, 130.8, 132.5, 139.5, 146.0, 146.4, 149.2, 150.3, 168.2. HRMS (FAB) calcd for M$^+$ of C$_{28}$H$_{23}$NO$_3$ 421.1678, found 421.1674.

N-[2-Acetoxy-3-(4-methoxyphenyl)-2-propen-1-ylidene]-3,5-diphenyl-2-furanamine (3h): A yellow solid; mp 144.2-145.0 °C. IR (KBr): 692, 757, 1028, 1208, 1256, 1508, 1601, 1752 (C=O), 3422 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 2.43 (s, 3H), 3.85 (s, 3H), 6.70 (s, 1H), 6.92 (d, $J = 8.7$ Hz, 2H), 7.01 (s, 1H), 7.28-7.45 (m, 6H), 7.59 (d, $J = 8.7$ Hz, 2H), 7.73 (d, $J = 7.8$ Hz, 2H), 7.85 (d, $J = 7.8$ Hz, 2H), 8.34 (s, 1H). 13C NMR (100 MHz, CDCl$_3$): δ 21.1, 55.4, 107.4, 114.3, 122.3, 123.9, 126.3, 127.1, 127.9, 127.9, 128.2, 128.7, 128.8, 130.0, 131.2, 132.5, 145.0, 146.4, 149.2, 150.1, 160.3, 168.2. HRMS (FAB)
calcd for M$^+$ of C$_{28}$H$_{23}$NO$_4$ 437.1627, found 437.1625.

$\text{N-[2-Acetoxy-2-(9H-fluoren-9-ylidene)ethyldiene]-3,5-di-phenyl-2-furanamine (3i):}$ A red solid; 266.7-267.2 $^\circ$C. $\lambda_{\text{abs}} = 476$ nm ($\varepsilon = 2.6 \times 10^6$ L mol$^{-1}$ cm$^{-1}$, 5.0 \times 10$^{-6}$ M in CH$_2$Cl$_2$), $\lambda_{\text{em}} = 557$ nm ($\lambda_{\text{ex}} = 476$ nm, 5.0 \times 10$^{-7}$ M in CH$_2$Cl$_2$). IR: (KBr) 688, 727, 758, 1017, 1200, 1369, 1444, 1474, 1490, 1759 (C=O), 3448 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$) δ 2.53 (s, 3H), 7.10 (s, 1H), 7.26-7.50 (m, 10H), 7.70-7.75 (m, 2H), 7.79 (d, $J = 7.6$ Hz, 2H), 7.89-7.97 (m, 4H), 9.33 (s, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 21.0, 108.2, 119.8, 120.3, 124.3, 125.5, 125.8, 126.2, 127.4, 127.7, 127.8, 128.2, 128.3, 128.5, 128.9, 129.0, 129.5, 129.7, 132.2, 134.1, 135.4, 137.0, 140.3, 141.2, 142.1, 146.0, 149.7, 151.6, 168.4. HRMS (FAB) calcd for M$^+$ of C$_{33}$H$_{23}$NO$_3$, 481.1678, found 487.1673.

$\text{N-(2-Acetoxy-3-phenyl-2-propen-1-ylidene)-3-(4-methylphenyl)-5-phenyl-2-furanamine (3j):}$ A yellow solid; mp 202.0-203.5 $^\circ$C. IR (KBr): 689, 760, 809, 928, 1197, 1447, 1758 (C=O), 3448 cm$^{-1}$. 1H NMR (300 MHz, CDCl$_3$) δ 2.39 (s, 3H), 2.44 (s, 3H), 6.74 (s, 1H), 7.00 (s, 1H), 7.20-7.43 (m, 8H), 7.63 (d, $J = 6.6$ Hz, 2H), 7.73-7.76 (m, 4H), 8.34 (s, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 21.1, 21.4, 107.4, 123.0, 124.0, 127.8, 128.0, 128.6, 128.7, 128.8, 128.9, 129.0, 129.4, 130.0, 133.5, 137.1, 145.7, 146.6, 148.8, 150.3, 168.1. HRMS (FAB) calcd for M$^+$ of C$_{28}$H$_{23}$NO$_3$, 421.1678, found 421.1683.

$\text{2-(2-Acetoxy-3-phenyl-2-propen-1-ylidene)amino-5-phenyl-3-furancarbonitrile (3k):}$ A yellow solid; mp 156.2-157.1 $^\circ$C. IR (KBr): 688, 755, 1205, 1449, 1599, 1752 (C=O), 3422 cm$^{-1}$. 1H
Chapter 3

NMR (400 MHz, CDCl₃): δ 2.47 (s, 3H), 6.82 (s, 1H), 6.89 (s, 1H), 7.35-7.46 (m, 6H), 7.64-7.68 (m, 4H), 8.39 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 20.9, 94.1, 107.8, 113.2, 118.2, 124.3, 128.9, 129.0, 129.2, 130.1, 130.2, 132.9, 133.3, 145.7, 151.5, 152.7, 158.5, 168.4. HRMS (FAB) calcd for M⁺ of C₂₂H₁₆N₂O₃ 357.1161, found 357.1169.

Ethyl 2-(2-acetoxy-3-phenyl-2-propen-1-ylidene)amino-5-phenyl-3-furancarboxylate (3l): A yellow solid; mp 122.1-123.1 °C. IR (KBr): 689, 758, 1200, 1484, 1589, 1692, 1758 (C=O), 3430 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.39 (t, J = 6.8 Hz, 3H), 2.50 (s, 3H), 4.35 (q, J = 6.8 Hz, 2H), 6.86 (s, 1H), 7.05 (s, 1H), 7.30-7.44 (m, 6H), 7.64-7.70 (m, 4H), 8.53 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 14.4, 21.0, 60.6, 108.5, 112.9, 124.0, 128.4, 128.8, 128.9, 129.4, 129.8, 129.9, 132.0, 133.1, 146.2, 149.8, 152.9, 154.7, 162.5, 168.5. HRMS (FAB) calcd for M⁺ of C₂₄H₂₁NO₅ 403.1420, found 403.1428.

N-(2-Acetoxy-3-phenyl-2-propen-1-ylidene)-3-phenyl-4,5,6,7-tetrahydroisobenzofuran-1-amine (3m): A yellow solid; mp 84.2-85.1 °C. IR (KBr): 697, 758, 1202, 1449, 1493, 1691, 1754 (C=O), 2859, 2936, 3382 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.71-1.79 (m, 4H), 2.64 (t, J = 6.3 Hz, 2H), 2.76 (t, J = 6.3 Hz, 2H), 6.65 (s, 1H), 7.21-7.41 (m, 6H), 7.59 (d, J = 7.3 Hz, 2H), 7.64 (d, J = 7.3 Hz, 2H), 8.15 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 20.8, 20.9, 22.3, 22.9, 23.3, 122.0, 122.4, 124.7, 126.7, 127.2, 128.6, 128.7, 128.8, 129.4, 131.4, 133.7, 143.6, 144.1, 146.8, 148.0, 168.4. HRMS (FAB) calcd for M⁺ of C₂₅H₂₃NO₃ 385.1678, found 385.1678.
Chapter 3

N-(2-Acetoxy-3-phenyl-2-propen-1-ylidene)-3-(4-trifluoromethylphenyl)-4,5,6,7-tetrahydroisobenzofuran-1-amine (3n):

A yellow solid; mp 150.2-150.9 °C. IR (KBr): 688, 754, 1205, 1325, 1609, 1760 (C=O), 2862, 2935, 3404 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.73-1.81 (m, 4H), 2.41 (s, 3H), 2.64 (t, J = 5.9 Hz, 2H), 2.76 (t, J = 5.9 Hz, 2H), 6.69 (s, 1H), 7.27-7.43 (m, 3H), 7.59-7.64 (m, 4H), 7.71 (d, J = 8.3 Hz, 2H), 8.18 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 20.7, 20.9, 22.2, 23.0, 23.1, 122.3, 124.1, 124.2 (q, J = 271 Hz), 124.4, 125.5 (q, J = 4.1 Hz), 128.1, 128.7, 128.8 (q, J = 67.0 Hz), 129.0, 129.5, 133.5, 134.6, 142.6, 145.0, 146.6, 148.8, 168.4. HRMS (FAB) calcd for M⁺ of C₂₆H₂₂F₃NO₃ 453.1552, found 453.1560.

Synthetic of Ethyl N-[2-(3,5-Diphenylfuryl)]-2-methyl-4-benzylpyrrole-3-carboxylate (7).

A solution of *N-(2-acetoxy-3-phenyl-2-propen-1-ylidene)-3,5-diphenyl-2-furan-amine 3a* (40.7 mg, 0.10 mmol) in THF (2 mL) was added to LiAlH₄ (11.4 mg, 0.30 mmol) at 0 °C, and the resulting mixture was stirred for 2 h at rt. The obtained dark green solution was carefully poured into water (10 mL), and extracted with Et₂O (10 mL × 3). The combined organic layer was dried over Na₂SO₄, then the organic solvent was removed under reduced pressure. The residue was passed through short silica gel pad, and concentrated in vacuo to give *N-(3-phenyl-2-oxopropyl)-3,5-diphenyl-2-furanamine 6* (32.2 mg, 0.088 mmol, 88% yield) as a yellow viscous oil. IR (neat): 698, 765, 947, 1177, 1212, 1449, 1495, 1700, 1732 (C=O), 2851, 2923, 3025, 3062 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.78 (s, 2H), 4.28 (d, J = 5.2 Hz, 2H), 5.02 (t, J = 5.2 Hz, 1H), 6.78 (s, 1H), 7.13-7.50 (m, 15H). ¹³C NMR (100 MHz, CDCl₃): δ 47.4, 53.1, 102.3, 107.1, 122.2, 125.4, 125.9, 127.4, 128.6, 128.9, 129.0, 129.3, 129.4, 130.8, 133.1, 133.7, 144.9, 150.8, 204.0. HRMS (FAB) calcd for M⁺H⁺ of
C$_{25}$H$_{20}$NO$_2$ 368.1651, found 368.1659. To a solution of 6 (29.3 mg, 0.080 mmol), ethyl acetoacetate (21.0 mg, 0.16 mmol) in EtOH (2 mL) was added to sodium ethoxide (10.9 mg, 0.16 mmol), and the resulting mixture was stirred at 50 °C for 24 h. The reaction mixture was quenched by adding excess of 10% NH$_4$Cl aqueous solution, and the aqueous layer was extracted with Et$_2$O (10 mL \times 3). The combined organic layer was washed with brine and dried over MgSO$_4$. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 20/1) as eluents to afford N-[2-(3,5-diphenylfuryl)]-2-methyl-4-benzylpyrrole-3-carboxylate 7 (27.0 mg, 0.060 mmol, 74% yield) as a yellow viscous oil. IR (neat): 694, 760, 801, 1027, 1095, 1261, 1420, 1637, 1700, 2925, 2963, 3027, 3060, 3384 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 1.27 (t, $J = 7.3$ Hz, 3H), 2.34 (s, 3H), 4.10 (s, 2H), 4.25 (q, $J = 7.3$ Hz, 2H), 6.33 (s, 1H), 7.01 (s, 1H), 7.11-7.14 (m, 2H), 7.24-7.30 (m, 5H), 7.39-7.34 (m, 4H), 7.41 (t, $J = 7.3$ Hz, 2H), 7.69 (d, $J = 7.3$ Hz, 2H). 13C NMR (100 MHz, CDCl$_3$): δ 12.1, 14.3, 33.1, 59.5, 105.3, 112.8, 120.7, 120.8, 123.9, 125.7, 126.1, 126.2, 127.6, 128.1, 128.2, 128.7, 128.8, 128.9, 129.7, 130.5, 139.0, 139.1, 141.2, 151.3, 165.6. HRMS (FAB) calcd for M+H$^+$ of C$_{31}$H$_{27}$NO$_3$ 462.2069, found 462.2067.
X-ray Crystallographic Studies of 3f. Orange crystals of 3f suitable for X-ray analysis were obtained by recrystallization from CHCl₃/hexane. The single crystal was sealed in a Pyrex glass capillary under N₂ atmosphere and used for data collection. All measurements were made on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo-Kα radiation. Details of crystal and data collection parameters are summarized in Table 4. The positions of non-hydrogen atoms were determined by direct methods (SIR92) and subsequent Fourier syntheses (DIRDIF PATTY). An ORTEP drawing of 3f is shown in Figure 2.

![ORTEP drawing of 3f.](image)

Figure 2. ORTEP drawing of 3f.
Table 4. Summary of crystallographic data of 3f

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{27}H_{16}F_{5}NO_{3}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>497.42</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P21/c (#14)</td>
</tr>
<tr>
<td>Crystal color</td>
<td>orange</td>
</tr>
<tr>
<td>Lattice parameters:</td>
<td></td>
</tr>
<tr>
<td>(a (\text{Å})) = 14.794(6) (b (\text{Å})) = 7.433(3) (c (\text{Å})) = 20.806(8)</td>
<td></td>
</tr>
<tr>
<td>(V (\text{Å}^3) = 2189.0(15) \beta = 106.905(2)^\circ)</td>
<td></td>
</tr>
<tr>
<td>(Z = 4)</td>
<td></td>
</tr>
<tr>
<td>(D_{\text{calc}} (\text{g cm}^{-3}) = 1.509)</td>
<td></td>
</tr>
<tr>
<td>(\mu (\text{Mo K(\alpha)) (cm}^{-1}) = 1.268)</td>
<td></td>
</tr>
<tr>
<td>Goodness of fit (GOF)</td>
<td>1.000</td>
</tr>
<tr>
<td>(F(000) : 1016)</td>
<td></td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoK(\alpha) ((\lambda = 0.71070 \text{Å}), Graphite Monochromated)</td>
</tr>
<tr>
<td>Temp ((^\circ)C)</td>
<td>-150</td>
</tr>
<tr>
<td>Scan type</td>
<td>(\omega - 2\theta)</td>
</tr>
<tr>
<td>Max. 2(\theta) ((^\circ))</td>
<td>55.0</td>
</tr>
<tr>
<td>No. of reflections measured total:</td>
<td>4910</td>
</tr>
<tr>
<td>No. of observations ((I > 3.00 \sigma (I))):</td>
<td>14606</td>
</tr>
<tr>
<td>Structure solution</td>
<td>Direct Methods (SIR92)</td>
</tr>
<tr>
<td>Refinement</td>
<td>Full-Matrix Least-Squares on F</td>
</tr>
<tr>
<td>No. of variables</td>
<td>341</td>
</tr>
<tr>
<td>Reflection/parameter ratio</td>
<td>14.4</td>
</tr>
<tr>
<td>Residuals</td>
<td>(R = 0.0534, R_{\text{int}} = 0.067, R_w = 0.1412)</td>
</tr>
<tr>
<td>Max Shift/Error in Final Cycle</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum peak in Final Diff Map (e (\text{Å}^{-3})):</td>
<td>0.92</td>
</tr>
<tr>
<td>Maximum peak in Final Diff Map (e (\text{Å}^{-3})):</td>
<td>-0.84</td>
</tr>
</tbody>
</table>
References and Notes

(2) For recent reviews, see:

(4) For recent reviews on the synthesis of 1,3-oxazoles from addition reactions of rhodium-carbene complexes generated from \(\alpha \)-diazocarbonyl compounds to nitriles, see:

(5) Recently, reactions of rhodium-carbene complexes generated from \(\alpha \)-diazocarbonyl compounds with nitriles leading to imidazopyridines and imidazoles have been reported.
Chapter 3

(10) The azametallacyclobutene intermediates were reported by Gevorgyan et al. See ref 5a.

(11) Reduction of vinylcarboxylates into corresponding ketones with LiAlH\(_4\) has been reported.

Chapter 4

Gallium-catalyzed Bromocyanation of Alkynes with Cyanogen Bromide: Regio- and Stereoselective Synthesis of Functionalized Nitriles

Abstract

Gallium-catalyzed reactions of arylacetylenes with cyanogen bromide gave (Z)-β-bromoacrylonitriles with high regio- and stereoselectivity. Since the carbon-bromine bonds can be further converted stereospecifically into various carbon-carbon bonds by cross-coupling reactions, two-step conversion of carbon-carbon triple bonds represents the regio-, stereo-, and chemoselective synthesis of a wide range of α,β-unsaturated nitriles. (Z)-β-Bromoacrylonitriles serve as useful precursors for the synthesis of biologically active nitrogen-containing heterocycles.
Chapter 4

Introduction

Catalytic addition reactions of X-CN bonds to carbon-carbon unsaturated bonds are currently an active area of research, because such reactions can provide a simultaneous installation of two functional groups from simple starting materials with complete atom-efficiency (Scheme 1). To date, several addition reactions of X-CN bonds including transition metal-catalyzed carbocyanation (C-CN),1,2 cyanosilylation (Si-CN),3 germylcyanation (Ge-CN),4 cyanoboration (B-CN),5 cyanothiolation (S-CN),6 and cyanostannylation (Sn-CN)7 have been reported. On the other hand, much less attention has been paid to halocyanation of alkynes, in which the halogen and cyano functionalities are introduced simultaneously to unsaturated substrates.8-10

![Scheme 1](image)

As described in Chapters 1, 2, and 3, properly functionalized nitriles, such as carbonyl-ene-nitrile compounds are highly useful precursors for the synthesis of heterocycles.11 However, there have been few general methods for stereoselective preparation of carbonyl-ene-nitrile compounds.12 We envisioned that (Z)-β-bromoacrylonitriles obtained from stereoselective addition reactions of cyanogen bromide to alkynes were useful intermediates for the synthesis of carbonyl-ene-nitrile compounds. Although the addition of cyanogen bromide13 to ynamines to afford β-bromo-α-cyanoenamines was reported to proceed without catalyst, the substrate scope is limited to only two examples.8 In this chapter, the author describes the gallium-catalyzed bromocyanation of alkynes with cyanogen bromide, providing an efficient route to (Z)-β-bromoacrylonitriles with high regio- and stereoselectivity. Taking advantage of (Z)-β-bromoacrylonitrile as a key intermediate,
the author has established an efficient route to prepare a wide range of α,β-unsaturated nitriles, which are synthetically applicable to heterocycles formation.

Results and Discussion

As the first attempt, the author examined the reaction of phenylacetylene with cyanogen bromide in the presence of a catalytic amount of typical Lewis acids. The addition reaction in the presence of AlCl_3 (10 mol%), which have been reported as an effective promoter for the cyanation of aromatics using cyanogen bromide as electrophilic cyanating reagent,14 proceeded to provide 3-bromo-3-phenylprop-2-enenitrile 1a in 22% yield as mixtures of two stereoisomers ($E:Z = 10:90$) (Scheme 2). The regio- and stereochemistry of the major product was identified on the basis of the spectral data of derivatives reported previously. It should be noted that the cyano group was introduced at the terminal carbon atom with high stereoselectivity, and regioisomers of 1a were not detected. This is in sharp contrast with observations from the previously reported non-catalyzed bromocyanation of ynamine, in which the cyano group was introduced at the internal carbon atom with low stereoselectivity ($E:Z = 50:50 \sim 40:60$).8

Scheme 2

\[
\begin{array}{ccccc}
\text{Ph} & \equiv & + & \text{BrCN} & \text{AlCl}_3 \ (10 \text{ mol%}) \\
(1.5 \text{ equiv}) & & & \text{ClCH}_2\text{CH}_2\text{Cl} & 80^\circ\text{C}, \ 5 \text{ h} \\
& & & \text{Ph} & \equiv \\
& & & \text{Br} & \equiv \\
& & & \text{CN} & \equiv \\
& & & \text{1a} & \\
\end{array}
\]

22% yield ($E:Z = 10:90$)

The results from reactions of phenylacetylene and cyanogen bromide in the presence of several metal catalysts are summarized in Table 1. After intensive screening, he found that 1a was obtained in 57 % yield ($E:Z = 8:92$) by employing 10 mol% of GaCl_3 (entry 6).
Although other catalysts, such as InCl₃, InBr₃, and GaBr₃ gave 1a in low to moderate yields (entries 1, 2, and 7), FeBr₃, CuBr₂, and ZnBr₂ were thoroughly ineffective giving no desired product 1a (entries 3-5). It is noted that the formation of chlorocyanation product was not observed at all, even when metal chloride complexes were used as catalysts. Oligomers of phenylacetylene were formed, whenever reactions did not afford 1a. In the absence of catalysts, 1a was not observed at all. The author next investigated the effect of different reaction parameters, such as temperature and solvents. Reactions were found to proceed more efficiently at high temperature (entries 6 and 8). The reaction also proceeded in non-polar solvents such as toluene and heptane, while in polar solvents such as MeCN, dioxane, THF, and DMF, the reaction resulted in complete recovery of phenylacetylene.

Table 1. Lewis acid-catalyzed bromocyanation reaction of phenylacetylene with BrCN

<table>
<thead>
<tr>
<th>entry</th>
<th>[M]</th>
<th>solvent</th>
<th>yield</th>
<th>E:Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>InCl₃</td>
<td>CICH₂CH₂Cl</td>
<td>23%</td>
<td>10:90</td>
</tr>
<tr>
<td>2</td>
<td>InBr₃</td>
<td>CICH₂CH₂Cl</td>
<td>31%</td>
<td>12:88</td>
</tr>
<tr>
<td>3</td>
<td>FeBr₃</td>
<td>CICH₂CH₂Cl</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CuBr₂</td>
<td>CICH₂CH₂Cl</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ZnBr₂</td>
<td>CICH₂CH₂Cl</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>GaCl₃</td>
<td>CICH₂CH₂Cl</td>
<td>57%</td>
<td>8:92</td>
</tr>
<tr>
<td>7</td>
<td>GaBr₃</td>
<td>CICH₂CH₂Cl</td>
<td>47%</td>
<td>9:91</td>
</tr>
<tr>
<td>8d</td>
<td>GaCl₃</td>
<td>CICH₂CH₂Cl</td>
<td>42%</td>
<td>8:92</td>
</tr>
<tr>
<td>9</td>
<td>GaCl₃</td>
<td>toluene</td>
<td>41%</td>
<td>4:96</td>
</tr>
<tr>
<td>10</td>
<td>GaCl₃</td>
<td>heptane</td>
<td>12%</td>
<td>15:85</td>
</tr>
<tr>
<td>11</td>
<td>GaCl₃</td>
<td>MeCN</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>GaCl₃</td>
<td>dioxane</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>13e</td>
<td>GaCl₃</td>
<td>CICH₂CH₂Cl</td>
<td>68%</td>
<td>8:92</td>
</tr>
</tbody>
</table>

* Reaction conditions: phenylacetylene (0.40 mmol), BrCN (0.60 mmol), [M] (0.040 mmol) in solvent (1.6 mL).
* Isolated yield.
* Determined by 1H NMR.
* At 70 °C.
* For 12 h.
(entries 9-12). Under the optimized reaction conditions (10 mol% of GaCl₃ in ClCH₂CH₂Cl at 80 °C), 1a was obtained in 68% yield when the reaction time was prolonged to 12 h (entry 13).

With the optimized reaction conditions in hand, the author next examined substrate scope of terminal alkynes. The results are summarized in Table 2. The reactions of 4-tolylacetylene and 2-ethynlnaphthalene proceeded smoothly to give 1b and 1c in 58% and 61% yields with high regio- and stereoselectivity, respectively (entries 1 and 2). Sterically hindered 2-tolylacetylene was also converted into the corresponding (Z)-adduct 1d predominantly with slightly lower yield compared with 4-tolylacetylene (entry 3). The reactions were sensitive to the electronic features of the aryl groups of alkynes. The bromocyanation of arylacetylenes bearing an electron-withdrawing group such as fluoro, chloro, and bromo groups at the para position afforded the corresponding β-bromo-

| Table 2. GaCl₃-catalyzed bromocyanation of terminal alkynes

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>product</th>
<th>yield</th>
<th>E:Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-MeC₆H₄</td>
<td>1b</td>
<td>61%</td>
<td>4:96</td>
</tr>
<tr>
<td>2</td>
<td>2-Naph</td>
<td>1c</td>
<td>58%</td>
<td>5:95</td>
</tr>
<tr>
<td>3</td>
<td>2-MeC₆H₄</td>
<td>1d</td>
<td>50%</td>
<td>2:98</td>
</tr>
<tr>
<td>4</td>
<td>4-FC₆H₄</td>
<td>1e</td>
<td>72%</td>
<td>10:90</td>
</tr>
<tr>
<td>5</td>
<td>4-ClC₆H₄</td>
<td>1f</td>
<td>64%</td>
<td>10:90</td>
</tr>
<tr>
<td>6</td>
<td>4-BrC₆H₄</td>
<td>1g</td>
<td>68%</td>
<td>9:91</td>
</tr>
<tr>
<td>7</td>
<td>4-MeOC₆H₄</td>
<td>1h</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>n-Hex</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TMS</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aReaction conditions: Alkyne (0.40 mmol), BrCN (0.60 mmol), GaCl₃ (0.040 mmol) in ClCH₂CH₂Cl (1.6 mL). bIsolated yield. cDetermined by ¹H NMR.
acrylonitriles 1e,1f, 1g in good yields, respectively (entries 4-6). Bromocyanation reaction of electron-donating 4-methoxyphenylacetylene and aliphatic alkynes, such as 1-octyne, trimethylsilylacetylene resulted in failure.

The substrate scope was further expanded to internal alkynes (Table 3). Reaction of unsymmetrical internal acetylenes such as 1-phenyl-1-propyne and 1-phenyl-1-hexyne with cyanogen bromide proceeded smoothly to afford 1h and 1i in good yields with high regio- and stereoselectivities (entries 1, 2). The stereochemistry of 1h was determined by nOe analysis of the corresponding 3-bromo-2-propen-1-ol 3, which was derived from subsequent reduction of 1h with DIBAL-H and NaBH₄ (Scheme 3). Although the reaction of sterically hindered diphenylacetylene gave rise to the corresponding adduct 1j in low yield, use of an excess amount of cyanogen bromide (3.0 equiv) improved the yield up to 64% (entries 3 and 4). All the alkynes examined possess at least one aromatic substituent, and a bromide of cyanogen bromide always attacks the carbon attached to the aromatic rings in each alkyne. Attempts to react aliphatic and silylated alkynes such as 4-octyne and bistrimethylsilyl-

Table 3. GaCl₃-catalyzed bromocyanation of internal alkynes

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>product</th>
<th>yield</th>
<th>E:Z<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>1h</td>
<td>69%</td>
<td>5:95</td>
</tr>
<tr>
<td>2</td>
<td>n-Bu</td>
<td>1i</td>
<td>81%</td>
<td>9:91</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>1j</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>4<sup>d</sup></td>
<td>Ph</td>
<td>1j</td>
<td>64%</td>
<td></td>
</tr>
</tbody>
</table>

^aReaction conditions: Alkyne (0.40 mmol), BrCN (0.60 mmol), GaCl₃ (0.040 mmol) in CICH₂CH₂Cl (1.6 mL).

^bIsolated yield.

^cDetermined by ¹H NMR.

^dBrCN (3.0 equiv) was used.

^eRatio of stereoisomers were not determined.
acetylene with cyanogen bromide failed to give the corresponding \(\beta \)-bromoacrylonitriles under the reaction conditions. Furthermore, alkynes having coordinating functional groups such as phenyl propiolate and 3-phenyl-2-propyn-1-ol also deterred the reaction.

To gain insight into the reaction mechanism, a stoichiometric reaction of cyanogen bromide with gallium trichloride was examined. After stirring these two reagents in CD\(_2\)Cl\(_2\) at room temperature for 5 min, the carbon signal of cyanogen bromide (\(\delta \) 76.6 ppm) completely disappeared, and a new peak of carbon atom appeared at 90.0 ppm (Scheme 4). Since the downfield shift of the carbon signal revealed that the carbon atom of cyanogen is electronically positive by the interaction with gallium trichloride, the author anticipated the formation of intermediate A.\(^{16}\) The ratio of the two stereoisomers of \(\beta \)-bromoacrylonitriles was not changed even when they were subjected in the presence of cyanogen bromide and GaCl\(_3\) at 80 °C for 24 h. This fact clearly indicates no interconversion of \(\beta \)-bromoacrylonitriles between (Z)- and (E)-adducts throughout the reaction.

Based on these observations, the author proposed the reaction mechanism as shown in Scheme 5. Cyanogen bromide initially coordinates with GaCl\(_3\) to form a complex A. The complex A then reacts with alkynes to generate zwitter ionic intermediate B. The generation
of a vinyl cation intermediate B stabilized with an aryl group probably plays a crucial role in the addition reaction, as supported by the failure of bromocyanation with aliphatic alkynes. The stereochemistry of the products might support that the reaction proceeded via the formation of intermediate B. The Br-CN bond of an intermediate B can be activated to promote nucleophilic attack to a cationic center giving (Z)-bromocyanation product along with the regeneration of GaCl₃ (path a).¹⁶ (E)-Bromocyanation adduct might be produced via the formation of intermediate B followed by external nucleophilic attack of another cyanogen bromide from opposite side of gallium complex (path b).

Combined with the cross-coupling reaction, the present bromocyanation reaction would allow easy access to various β-functionalized acrylonitriles. For example, palladium-catalyzed cross-coupling reaction of 1a with tributhyl-4-tolylstannane gave 4 in 96% yield with high stereoselectivity (Scheme 6a). Palladium-catalyzed cross-coupling reaction of 1a with benzoyltributhylstannane produced (Z)-carbonyl-ene-nitrile compound 5 in 57% yield (Scheme 6b). Treatment of 1a with phenylacetylene in the presence of palladium and copper catalysts, and Et₃N afforded (Z)-3-alkynylacrylonitrile 6 in 96% yield as a single stereoisomer (Scheme 6c). When the amounts of both phenyl acetylene and Et₃N were increased to 2.5 equivalent and heated at 70 °C for 15 h, a conjugated nitrile 7 was obtained in 92% yield as a single stereoisomer.¹⁷,¹⁸ The reaction of 1a in the presence of
catalytic amount of NiBr$_2$(PPh$_3$)$_2$ and a stoichiometric amount of Zn powder afforded homo-coupling product 8, which is a precursor of hexamethylenediamine derivative known as one of the monomers used in the production of Nylon 6,6 in 74% yield (Scheme 6d).19,20

The transformation of β-bromoacrylonitriles into heterocycles further demonstrated the synthetic utility of the bromocyanation reaction. For example, 3-amino-2-acylthiophene 9, which was a useful intermediate for the synthesis of various biologically active compounds,21 was obtained in 86% yield by simply heating with ethyl thioglycolate in the presence of
NaOEt (Scheme 7). Furthermore, copper-catalyzed reaction of carbonyl-ene-nitrile compound 5 with 1,3-dimethoxybenzene gave arylated pyrrolin-2-one 10 in 70% yield via cycloisomerization of 5 leading to 2-aza-2,4-cyclopentadienone as described in Chapter 1(Scheme 8).11

In conclusion, a novel gallium-catalyzed bromocyanation of arylacetylenes leading to \(\beta\)-bromoacrylonitriles has been demonstrated. Using commercially available cyanogen bromide, synthetically useful bromo and cyano groups were simultaneously introduced with high chemo-, regio-, and stereoselectivities. The resulting bromocyanation products are shown to serve as synthetically useful building blocks for not only various \(\beta\)-substituted acrylonitrile derivatives through palladium-catalyzed cross-coupling reactions but also nitrogen-containing heterocycles as described in the previous chapters.
Experimental

General Method. Unless otherwise noted, chemicals obtained from commercial suppliers were used without further purification. ClCH₂CH₂Cl was dried by the usual methods, distilled, and bubbled vigorously with a nitrogen gas for 20 min before use. All reactions were carried out under nitrogen atmosphere. NMR spectra were measured for solutions in CDCl₃ or CD₂Cl₂ with tetramethylsilane as an internal standard (¹H and ¹³C): the following abbreviations are used; br s: broad singlet, s: singlet, d: doublet, t: triplet, q: quartet, quint: quintet, sext: sextet, m: multiplet. IR spectra were recorded with an FT-IR spectrometer. Melting points (mp) are uncorrected. High-resolution mass spectra (HRMS) was measured with JEOL JMX-SX 102A spectrometer.

General Procedure of Gallium-catalyzed Bromocyanation of Alkynes. A flame dried Schlenk flask was charged with GaCl₃ (7.0 mg, 0.040 mmol) and ClCH₂CH₂Cl (1.6 mL), then BrCN (63.6 mg, 0.60 mmol) was added. After stirring at room temperature for 5 min, alkyne (0.40 mmol) was added, and the resulting mixture was stirred at 80 °C. After the time specified in Tables 1-2, the mixture was concentrated in vacuo. The residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 10/1-4/1) as eluents to afford the corresponding β-bromoacrylonitriles.

3-Bromo-3-phenylprop-2-enenitrile (1a): A brown oil (E:Z = 8:92); ¹H NMR (400 MHz, CDCl₃): δ 6.02 (s, 0.08×1H, (E)-1a), 6.30 (s, 0.92×1H, (Z)-1a), 7.40-7.50 (m, 3H), 7.60-7.63 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): (Z)-1a δ 100.6, 116.6, 127.8, 128.9, 131.7, 136.1, 145.6; (E)-1a δ 96.0, 115.3, 126.6, 128.7, 131.7, 133.7, 152.8. The spectral data match those reported in the literature (*J. Med. Chem.* **2000**, **43**, 4288).
3-Bromo-3-(4-tolyl)prop-2-enenitrile (1b): A brown oil (E:Z = 4:96);

IR (neat): 822, 890, 1250, 1277, 1363, 1456, 1612, 1678, 2219 (CN), 3042 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 2.40 (s, 6H), 5.98 (s, 0.04\(\times\)1H, (E)-1b), 6.26 (s, 0.96\(\times\)1H, (Z)-1b), 7.23 (d, 0.96\(\times\)2H, \(J = 8.8\) Hz, (Z)-1b), 7.24 (d, 0.04\(\times\)2H, \(J = 8.8\) Hz, (E)-1b), 7.51 (d, 0.96\(\times\)2H, \(J = 8.8\) Hz, (Z)-1b), 7.55 (d, 0.96\(\times\)2H, \(J = 8.8\) Hz, (E)-1b). \(^1\)C NMR (100 MHz, CDCl\(_3\)): (Z)-1b \(\delta\) 21.3, 99.5, 116.8, 127.7, 129.5, 133.2, 142.5, 145.7; (E)-1b \(\delta\) 21.4, 95.0, 116.8, 127.7, 129.5, 133.0, 142.5, 145.6. HRMS (FAB) calcd for M+H\(^+\) of C\(_{10}\)H\(_8\)BrN 221.9918, found 221.9928.

3-Bromo-3-(2-naphtyl)prop-2-enenitrile (1c): A white solid (E:Z = 5:95); mp 39.5-40.2 °C (from CHCl\(_3\)/hexane). IR (KBr): 859, 889, 1182, 1273, 1351, 1466, 1505, 1584, 2214 (CN), 3056 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 6.15 (s, 0.05\(\times\)1H, (E)-1c), 6.43 (s, 0.95\(\times\)1H, (Z)-1c), 7.55-7.65 (m, 4H), 7.84-7.95 (m, 2H), 8.16 (s, 0.95\(\times\)1H, (Z)-1c), 8.21 (s, 0.05\(\times\)1H, (E)-1c). \(^1\)C NMR (100 MHz, CDCl\(_3\)): (Z)-1c \(\delta\) 100.6, 116.8, 123.3, 127.4, 127.7, 128.3, 128.7, 129.0, 129.4, 132.6, 133.0, 134.5, 145.6. HRMS (FAB) calcd for M+H\(^+\) of C\(_{13}\)H\(_8\)BrN 257.9918, found 257.9926.

3-Bromo-3-(2-tolyl)prop-2-enenitrile (1d): A pale yellow oil (E:Z = 2:98);

IR (neat): 818, 890, 1225, 1252, 1288, 1383, 1456, 1485, 1612, 1684,2224 (CN), 3039 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 2.37 (s, 0.98\(\times\)3H, (Z)-1d), 2.40 (s, 0.02\(\times\)3H, (E)-1d), 5.67 (s, 0.02\(\times\)1H, (E)-1d), 5.99 (s, 0.98\(\times\)1H, (Z)-1d), 7.21-7.34 (m, 4H). \(^1\)C NMR (100 MHz, CDCl\(_3\)): (Z)-1d \(\delta\) 19.8, 105.1, 115.8, 126.1, 128.3, 130.5, 130.9, 132.0, 137.7, 145.0. HRMS (FAB) calcd for M+H\(^+\) of C\(_{10}\)H\(_8\)BrN 221.9918, found 221.9920.
3-Bromo-3-(4-fluorophenyl)prop-2-enenitrile (1e): A white solid \((E:Z = 10:90)\); mp 80.0-80.5 °C (from CHCl₃/hexane). IR (KBr): 818, 893, 1164, 1229, 1306, 1409, 1505, 1584, 1599, 2219 (CN), 3042 cm⁻¹. \(^1\)H NMR (400 MHz, CDCl₃): \(\delta 5.98\) (s, 0.10×1H, \((E)-1e\)), \(6.26\) (s, 0.90×1H, \((Z)-1e\)), \(7.09-7.15\) (m, 2H), \(7.61-7.69\) (m, 2H). \(^13\)C NMR (100 MHz, CDCl₃): \((Z)-1e\) \(\delta 100.6, 116.1\) (d, \(J = 21.5\) Hz), \(116.3, 130.0\) (d, \(J = 9.1\) Hz), \(132.3\) (d, \(J = 3.3\) Hz), \(144.2, 164.7\) (d, \(J = 253.8\) Hz); \((E)-1e\) \(\delta 96.1, 116.2\) (d, \(J = 22.3\) Hz), \(116.5, 129.1\) (d, \(J = 9.1\) Hz), \(129.9\) (d, \(J = 2.5\) Hz), \(152.0, 164.8\) (d, \(J = 254.9\) Hz). HRMS (FAB) calcd for M+H⁺ of C₉H₅BrFN 225.9668, found 225.9663.

3-Bromo-3-(4-chlorophenyl)prop-2-enenitrile (1f): A white solid \((E:Z = 16:84)\); mp 66.8-67.2 °C (from CHCl₃/hexane). IR (KBr): 804, 887, 1012, 1096, 1221, 1401, 1486, 1562, 1586, 2218 (CN), 3041 cm⁻¹. \(^1\)H NMR (400 MHz, CDCl₃): \(\delta 6.05\) (s, 0.16×1H, \((E)-1f\)), \(6.33\) (s, 0.84×1H, \((Z)-1f\)), \(7.37-7.43\) (m, 2H), \(7.54-7.62\) (m, 2H). \(^13\)C NMR (100 MHz, CDCl₃): \((Z)-1f\) \(\delta 101.0, 116.4, 128.9, 129.0, 134.3, 137.9, 144.0\); \((E)-1f\) \(\delta 96.6, 115.1, 128.0, 129.1, 132.4, 138.1, 151.7\). HRMS (FAB) calcd for M+H⁺ of C₉H₅BrClN 241.9372, found 241.9370.

3-Bromo-3-(4-bromophenyl)prop-2-enenitrile (1g): A white solid \((E:Z = 9:91)\); mp 66.8-67.2 °C (from CHCl₃/hexane). IR (KBr): 828, 886, 1008, 1076, 1223, 1396, 1482, 1582, 2216 (CN), 3035 cm⁻¹. \(^1\)H NMR (400 MHz, CDCl₃): \(\delta 6.04\) (s, 0.09×1H, \((E)-1g\)), \(6.32\) (s, 0.91×1H, \((Z)-1g\)), \(7.46-7.52\) (m, 2H), \(7.53-7.61\) (m, 2H). \(^13\)C NMR (100 MHz, CDCl₃): \((Z)-1g\) \(\delta 101.1, 116.4, 126.5, 129.1, 132.1, 134.9, 144.2\); \((E)-1g\) \(\delta 96.7, 115.1, 126.8, 128.3, 132.2, 136.0, 152.1\). HRMS (FAB) calcd for M+H⁺ of C₉H₅Br₂N 285.8867, found 285.8855.
3-Bromo-2-methyl-3-phenylprop-2-enenitrile (1h): A pale yellow crystal
\[(E:Z = 5:95); \text{mp } 37.5-37.8^\circ \text{C (from CHCl}_3/\text{hexane). IR (KBr): 883, 1019, 1235, 1443, 1489, 1614, 1686, 2218 (CN), 3060 cm}^{-1}. \text{^1H NMR (400 MHz, CDCl}_3): \delta 1.94 (s, 0.95\times3\text{H}, (Z)-1h), 2.01 (s, 0.05\times3\text{H}, (E)-1h), 7.31-7.34 (m, 2\text{H}), 7.39-7.42 (m, 3\text{H}). \text{^{13}C NMR (100 MHz, CDCl}_3): (Z)-1h \delta 19.4, 112.6, 118.9, 128.4, 128.5, 130.0, 135.9, 136.7. \text{HRMS (FAB) calcd for M+H}^+ \text{of } \text{C}_{10}\text{H}_8\text{BrN 221.9918, found 221.9916.}

3-Bromo-2-buthyl-3-phenylprop-2-enenitrile (1i): A colorless oil \[(E:Z = 13:87); \text{IR (KBr): 883, 1231, 1444, 1489, 1594, 1685, 2217 (CN), 2862, 2930, 2959, 3060 cm}^{-1}. \text{^1H NMR (400 MHz, CDCl}_3): \delta 0.83 (t, J = 7.3 \text{Hz, 0.87\times3\text{H}, (Z)-1i}), 0.91 (t, J = 7.3 \text{Hz, 0.13\times3\text{H}, (E)-1i}), 1.26 (sext, J = 7.3 \text{Hz, 0.87\times2\text{H}, (Z)-1i}), 1.37 (sext, J = 7.3 \text{Hz, 0.13\times2\text{H}, (E)-1i}), 1.57 (qunt, J = 7.3 \text{Hz, 0.87\times2\text{H}, (Z)-1i}), 1.74 (quint, J = 7.3 \text{Hz, 0.13\times2\text{H}, (E)-1i}), 2.22 (t, J = 7.3 \text{Hz, 0.87\times2\text{H}, (Z)-1i}), 2.96 (t, J = 7.3 \text{Hz, 0.13\times2\text{H}, (E)-1i}), 7.28-7.31 (m, 2\text{H}), 7.40-7.42 (m, 3\text{H}). \text{^{13}C NMR (100 MHz, CDCl}_3): (Z)-1i \delta 13.5, 21.8, 30.3, 32.4, 118.2, 118.8, 128.2, 128.6, 130.0, 135.6, 137.2; (E)-1i \delta 13.9, 22.5, 31.5, 38.6, 118.1, 118.7, 128.0, 128.5, 132.8, 133.6, 137.1. \text{HRMS (FAB) calcd for M+H}^+ \text{of } \text{C}_{13}\text{H}_{14}\text{BrN 264.0388, found 264.0394.}

3-Bromo-2,3-diphenylprop-2-enenitrile (1j): A pale yellow solid; mp 77.2-77.9 \text{^0}\text{C (from CHCl}_3/\text{hexane). IR (KBr): 883, 919, 1081, 1266, 1444, 1488, 1584, 1597, 2214 (CN), 3062 cm}^{-1}. \text{^1H NMR (400 MHz, CDCl}_3): \delta 7.14-7.31 (m, 10\text{H}). \text{^{13}C NMR (100 MHz, CDCl}_3): \delta 117.9, 118.7, 128.5, 128.7, 129.0, 129.1, 129.5, 130.2, 133.2, 137.2, 138.4. \text{HRMS (FAB) calcd for M+H}^+ \text{of } \text{C}_{15}\text{H}_{10}\text{BrN 284.0075, found 284.0071.}
Reduction of 1h with DIBAL-H. To a solution of 1h (222 mg, 1.0 mmol) in toluene (4 mL) was added a 1.5 M solution of DIBAL-H in toluene (1.0 mL, 1.5 mmol) at -78 °C, and the resulting mixture was stirred at the same temperature for 1 h. The reaction was quenched with MeOH (0.5 mL) at -78 °C and was warmed at room temperature. The mixture was filtered through a short silica gel pad with Et2O as an eluent, and concentrated in vacuo. The residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 10/1) as eluents to give 3-bromo-2-methyl-3-phenylprop-2-enen-1-al 2 (112 mg, 0.81 mmol, 81% yield) as a colorless oil (E:Z = 5:95). IR (neat): 865, 1022, 1261, 1443, 1490, 1591, 1604, 1681 (C=O), 1717, 2863, 3057 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.79 (s, 0.95×3H, (Z)-2), 1.85 (s, 0.05×3H, (E)-2), 7.25-7.45 (m, 5H), 10.2 (s, 0.95×1H, (Z)-2), 10.4 (s, 0.05×1H, (E)-2). ¹³C NMR (100 MHz, CDCl₃): (Z)-2 δ 14.8, 128.4, 128.5, 129.7, 134.6, 139.3, 139.4, 194.3. HRMS (FAB) calcd for M+H⁺ of C₁₀H₉BrO 224.9915, found 224.9912.

Reduction of 2 by NaBH₄. To a suspension of NaBH₄ (15.1 mg, 0.40 mmol) in THF (2.0 mL) was added a solution of 2 (90 mg, 0.40 mmol) in THF (1.0 mL) at 0 °C, and the resulting mixture was stirred for 30 min. The reaction was quenched with 10% HCl aqueous solution at 0 °C, and the resulting mixture was extracted with Et₂O (10 mL×3). The combined organic layers were washed with a sat. NaHCO₃ aqueous solution and brine, dried over MgSO₄, filtered, and concentrated in vacuo. The residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 3/1) as eluents to give 3-bromo-2-methyl-3-phenyl-2-propen-1-ol 3 (83.5 mg, 0.37 mmol, 92% yield) as a colorless oil (E:Z = 4:96). IR (neat): 867, 1012, 1263, 1442, 1490, 1704, 2857, 2917, 3336 (OH) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.81 (s, 0.96×1H, (Z)-3), 1.85 (s, 0.04×2H, (E)-3), 4.45 (s, 0.96×3H, (Z)-3), 4.47 (s, 0.04×2H, (E)-3), 7.25-7.32 (m, 2H),
7.33-7.38 (m, 3H). 13C NMR (100 MHz, CDCl$_3$): (Z)-3 δ 18.3, 67.4, 118.4, 128.1, 128.2, 129.1, 136.2, 140.3. HRMS (FAB) calcd for M+H$^+$ of C$_{10}$H$_{11}$BrO 227.0072, found 227.0072.

Palladium-catalyzed Cross-coupling Reaction of 1a with Tributhyl-4-tolylstannane. A flame dried Schlenk flask was charged with Pd(PPh$_3$)$_4$ (9.2 mg, 0.0080 mmol), CuI (3.0 mg, 0.016 mmol), 1a (82.9 mg, 0.40 mmol), tributhyl-4-tolylstannane (183 mg, 0.48 mmol), and dioxane (1.6 mL). The mixture was stirred at 100 °C for 8 h, and then diluted with Et$_2$O (5 mL). The resulting mixture was treated with a 10 mol% KF aqueous solution (2 mL) for 30 min, and the insoluble materials were filtered through a Celite pad. The organic layer was washed with water and brine, and then dried over MgSO$_4$. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 7/1) as eluents to afford 3-(4-methylphenyl)-3-phenyl-2-propenenitrile 4 (83.0 mg, 0.38 mmol) as a white solid (E:Z = 6:94). 1H NMR (400 MHz, CDCl$_3$): δ 2.40 (s, 0.96×3H, (Z)-4), 2.36 (s, 0.04×1H, (E)-4), 5.67 (s, 0.96×1H, (Z)-4), 5.70 (s, 0.04×1H, (E)-3), 7.23-7.44 (m, 9H). 13C NMR (100 MHz, CDCl$_3$): (Z)-4 δ 21.4, 94.2, 118.1, 128.4, 128.5, 129.2, 129.5, 130.3, 134.1, 139.2, 140.3, 163.1; (E)-4 δ 21.2, 94.0, 117.8, 128.4, 128.5, 129.0, 129.3, 129.8, 135.5, 137.2, 140.7, 162.9. The spectral data match those reported in the literature (*Synthesis* 2002, 1903.).

Palladium-catalyzed Cross-coupling Reaction of 1a with Benzoyltributhylstannane. A flame dried Schlenk flask was charged with Pd(OAc)$_2$ (9.2 mg, 0.040 mmol), PPh$_3$ (21.0 mg, 0.080 mmol), 1a (82.9 mg, 0.40 mmol), benzoyltributhylstannane (316 mg, 0.80 mmol), and dioxane (1.6 mL). The mixture was
stirred at 100 °C for 12 h, and then diluted with Et₂O (5 mL). The resulting mixture was treated with a 10 mol% KF aqueous solution (2 mL) for 30 min, and the insoluble materials were filtered through a short silica gel pad with Et₂O as an eluent. The organic layer was washed with water and brine, and then dried over MgSO₄. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 4/1) as eluents to afford (2Z)-4-oxo-3,4-diphenylbut-2-en-carbonitrile 5 (53.6 mg, 0.23 mmol, 57% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.03 (s, 1H), 7.39-7.50 (m, 7H), 7.63 (t, J = 6.8 Hz, 1H), 7.94 (d, J = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 96.1, 115.5, 126.6, 129.1, 129.4, 129.9, 131.4, 133.2, 134.7, 134.8, 161.0, 194.0. The spectral data match those reported in the literature (J. Org. Chem. 2008, 73, 2396.).

Palladium-catalyzed Cross-coupling Reaction of 1a with Phenylacetylene.

A flame dried Schlenk flask was charged with 1a (82.9 mg, 0.40 mmol) and phenylacetylene (44.9 mg, 0.44 mmol) in THF (1.6 mL) was degassed by three freeze-thaw cycles. To this were added Pd(PPh₃)₄ (4.6 mg, 0.0040 mmol), CuI (1.5 mg, 0.0080 mmol), and Et₃N (44.5 mg, 0.44 mmol), and then the mixture was stirred at rt for 5 h. The reaction mixture was washed with water and brine, and then dried over MgSO₄. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 10/1) as eluents to afford (2Z)-3,5-diphenylpent-2-en-4-yenitrile 6 as a pale yellow oil (88.0 mg, 0.38 mmol, 96% yield). IR (neat): 919, 1069, 1213, 1257, 1362, 1444, 1489, 1556, 2191, 2217 (CN), 2362, 3060 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 5.98 (s, 1H), 7.33-7.45 (m, 7H), 7.63 (dd, J = 2.0, 7.8 Hz, 2H), 7.71 (dd, J = 2.0, 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 85.2, 100.0, 101.9, 117.4, 121.3, 126.6, 128.4, 128.8, 129.8, 130.9, 132.2, 134.2, 142.9. HRMS (FAB)
Chapter 4

calcd for M+H⁺ of C₁₇H₁₁N 230.0970, found 230.0977.

According to the procedure for the synthesis of 6, 1a (82.9 mg, 0.40 mmol)) and phenylacetylene (102 mg, 1.0 mmol) in THF (1.6 mL) was added Pd(PPh₃)₄ (4.6 mg, 0.004 mmol), CuI (1.5 mg, 0.008 mmol), and Et₃N (101 mg, 1.0 mmol), and then the mixture was stirred at 70 °C for 15 h. The reaction mixture was washed with water and brine, and then dried over MgSO₄. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 10/1) as eluents to afford (2Z,4Z)-3,5,7-triphenylhepta-2,4-dien-6-ynenitrile 7 as a pale yellow oil (88.0 mg, 0.38 mmol, 96% yield); A pale yellow crystal; mp 97.2-97.8 °C. IR (KBr): 1029, 1343, 1445, 1490, 1571, 2210 (CN), 2359, 2923, 3057 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 5.65 (s, 1H), 7.05 (s, 1H), 7.28-7.30 (m, 2H), 7.37-7.45 (m, 9H), 7.50-7.54 (m, 2H), 8.02 (d, J = 6.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 86.9, 95.5, 98.7, 117.1 118.2, 122.7, 128.3, 128.4, 128.5, 128.7, 128.8, 129.6, 129.7, 130.4, 131.5, 135.2, 137.4, 142.1, 161.7. HRMS (FAB) calcd for M+H⁺ of C₂₅H₁₇N 332.1439, found 332.1436.

Palladium-catalyzed Homo-coupling Reaction of 1a. A flame dried Schlenk flask was charged with NiBr₂(PPh₃)₂ (6.7 mg, 0.0090 mmol), PPh₃ (4.7 mg, 0.018 mmol), zinc powder (19.6 mg, 0.30 mmol), and dioxane (1.2 mL). The solution was stirred at room temperature for 10 min, and then 1a (62.2 mg, 0.30 mmol) was added dropwise. The mixture was stirred at 80 °C for 6 h, and then diluted with Et₂O (5 mL). The reaction mixture was washed with water and brine, and then dried over MgSO₄. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 10/1) as
eluents to afford 3,4-diphenylhexa-2,4-hexadiene-1,6-dinitrile 8 (28.5 mg, 0.11 mmol, 74% yield) as a white solid ($E:Z = 4:96$). mp 183.8-184.6 °C (from CHCl$_3$/hexane). IR (KBr): 1031, 1372, 1445, 1493, 1604, 2215 (CN), 2922, 3057 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 5.77 (s, 0.04×1H, (4E)-8), 5.95 (s, 0.04×1H, (4E)-8), 6.20 (s, 0.96×2H, (4Z)-8), 7.36-7.46 (m, 10H). 13C NMR (100 MHz, CDCl$_3$): (4Z)-8 δ 99.2, 115.9, 126.8, 129.4, 131.4, 134.0, 157.8. HRMS (FAB) calcd for M+H$^+$ of C$_{18}$H$_{12}$N$_2$ 257.1079, found 257.1078.

Synthesis of Ethyl 3-Amino-5-phenylthiophene-2-carboxylate 9. To a stirred solution of 1a (82.9 mg, 0.40 mmol) and ethyl thioglycolate (57.7 mg, 0.48 mmol) in EtOH (2 mL) was added sodium ethoxide (32.7 mg, 0.48 mmol) at rt. After stirring at 70 °C for 12 h, the solvent was removed. The residue was dissolved in Et$_2$O, washed with water, and then dried over MgSO$_4$. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 4/1) as eluents to afford ethyl 3-amino-5-phenylthiophene-2-carboxylate 9 as a white solid (84.0 mg, 0.34 mmol, 86% yield). mp 92.1-92.7 °C. IR (KBr): 768, 1039, 1094, 1129, 1294, 1368, 1467, 1553, 1607, 1673, 3309, 3389 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 1.36 (t, $J = 7.3$ Hz, 3H), 4.30 (q, $J = 7.3$ Hz, 2H), 5.47 (br, 2H), 6.75 (s, 1H), 7.30-7.40 (m, 3H), 7.55-7.59 (m, 2H). 13C NMR (100 MHz, CDCl$_3$): δ 14.5, 58.2, 115.5, 125.9, 128.8, 128.9, 133.3, 148.9, 154.1, 164.6. HRMS (FAB) calcd for M+H$^+$ of C$_{13}$H$_{13}$NO$_2$S 248.0745, found 248.0744.

Copper-catalyzed Reaction of Carbonyl-ene-nitrile Compound 5. A flame dried Schlenk flask was charged with Cu(OTf)$_2$ (7.2 mg, 0.020 mmol), 5 (46.6 mg, 0.20 mmol), 1,3-dimethoxybenzene (138.2 mg, 1.0 mmol), and ClCH$_2$CH$_2$Cl (2.0 mL). After stirring at 80 °C for 15 h, the mixture was diluted with Et$_2$O and filtered through a short silica gel pad.
Filtrate was concentrated under reduced pressure and the residue was subjected to flash column chromatography on with hexane/AcOEt (v/v = 7/1-3/1) as eluents to afford 4,5-diphenyl-5-(2,4-dimethoxyphenyl)-3-pyrrolin-2-one 10 (52.1 mg, 0.14 mmol, 70% yield) as a white solid. mp 210.3-210.8 °C. IR (KBr): 794, 832, 868, 922, 1038, 1211, 1262, 1353, 1378, 1418, 1447, 1586, 1612, 1693 (C=O), 2838, 2942, 3017, 3276 (N-H) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.57 (s, 3H), 3.80 (s, 3H), 6.22 (s, 1H), 6.48 (s, 1H), 6.48-6.49 (m, 1H), 7.07-7.23 (m, 5H), 7.31 (d, J = 7.8 Hz, 2H), 7.32-7.39 (m, 2H), 7.41 (br s, 1H), 7.83 (d, J = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 55.3, 55.4, 67.8, 100.8, 104.27, 122.4, 125.6, 127.1, 127.2, 128.1, 128.2, 128.3, 128.5, 131.0, 132.8, 141.0, 146.1, 158.0, 162.8, 171.8. HRMS (FAB) calcd for M+H⁺ of C₂₄H₂₁NO₃ 372.1602, found 372.1600.
Determination of Products Structures. The structures of known compounds 1a, 3, and 4 were determined on the basis of NMR spectrum in literatures. The regio- and stereochemistry of other bromocyanation adducts derived from terminal acetylenes, such as 1b-1g were determined by comparing their chemical shift values of analogous vinyl protons with that of 1a. The stereochemistry were also confirmed by nOe experiments of 1H NMR. Selected results are shown below (Figure 1). The structure of major product of 1e and 7 was unambiguously determined by X-ray crystallographic analysis (Figures 2 and 3).

Figure 1. Determination of stereochemistry of the products.
Chapter 4

X-ray Crystallographic Studies of 1e. Colorless crystals of (Z)-1e suitable for X-ray analysis were obtained by recrystallization from CHCl₃/hexane. The single crystal was sealed in a Pyrex glass capillary under N₂ atmosphere and used for data collection. All measurements were made on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo-Kα radiation. Details of crystal and data collection parameters are summarized in Table 4. The positions of non-hydrogen atoms were determined by direct methods (SIR92) and subsequent Fourier syntheses (DIRDIF PATTY). An ORTEP drawing of (Z)-1e is shown in Figure 2.

![ORTEP drawing of (Z)-1e.](image)

Figure 2. ORTEP drawing of (Z)-1e.
Table 4. Summary of Crystallographic Data of (Z)-1e

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula:</td>
<td>C$_9$H$_6$BrFN</td>
</tr>
<tr>
<td>Formula weight:</td>
<td>227.06</td>
</tr>
<tr>
<td>Crystal system:</td>
<td>triclinic</td>
</tr>
<tr>
<td>Space group:</td>
<td>P-1 (#2)</td>
</tr>
<tr>
<td>Crystal color:</td>
<td>colorless</td>
</tr>
<tr>
<td>Lattice parameters:</td>
<td></td>
</tr>
<tr>
<td>a (Å) = 7.460(4), b (Å) = 9.197(5), c (Å) = 12.279(7)</td>
<td></td>
</tr>
<tr>
<td>V (Å3) = 822.2(8), $\alpha = 83.7518(18)^\circ$, $\beta = 86.002(16)^\circ$</td>
<td></td>
</tr>
<tr>
<td>$\gamma = 79.445(15)^\circ$</td>
<td></td>
</tr>
<tr>
<td>$Z = 4$</td>
<td></td>
</tr>
<tr>
<td>D_{calc} (g cm$^{-3}$):</td>
<td>1.834</td>
</tr>
<tr>
<td>μ (Mo Kα) (cm$^{-1}$):</td>
<td>49.662</td>
</tr>
<tr>
<td>Goodness of fit (GOF):</td>
<td>1.002</td>
</tr>
<tr>
<td>$F(000)$:</td>
<td>444</td>
</tr>
<tr>
<td>Diffractometer:</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>Radiation: MoKα ($\lambda = 0.71070$ Å), Graphite Monochromated</td>
<td></td>
</tr>
<tr>
<td>Temp (°C):</td>
<td>23.0</td>
</tr>
<tr>
<td>Scan type:</td>
<td>$\omega - 2\theta$</td>
</tr>
<tr>
<td>Max. 2θ (°):</td>
<td>54.9</td>
</tr>
<tr>
<td>No. of reflections measured total:</td>
<td>5520</td>
</tr>
<tr>
<td>No. of observns ($I > 3.00 \sigma (I)$):</td>
<td>3075</td>
</tr>
<tr>
<td>Structure solution:</td>
<td>Direct Methods (SIR92)</td>
</tr>
<tr>
<td>Refinement: Full-Matrix Least-Squares on F</td>
<td></td>
</tr>
<tr>
<td>No. of variables:</td>
<td>217</td>
</tr>
<tr>
<td>Reflection/parameter ratio:</td>
<td>14.17</td>
</tr>
<tr>
<td>Residuals:</td>
<td>$R = 0.0634$, $R_w = 0.0630$</td>
</tr>
<tr>
<td>Max Shift/Error in Final Cycle:</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum peak in Final Diff Map (e (Å$^{-3}$)):</td>
<td>0.99</td>
</tr>
<tr>
<td>Minimum peak in Final Diff Map (e (Å$^{-3}$)):</td>
<td>-0.71</td>
</tr>
</tbody>
</table>
Chapter 4

X-ray Crystallographic Studies of 7. Pale yellow crystals of 7 suitable for X-ray analysis were obtained by recrystallization from CHCl₃/hexane. The single crystal was sealed in a Pyrex glass capillary under N₂ atmosphere and used for data collection. All measurements were made on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo-Kα radiation. Details of crystal and data collection parameters are summarized in Table 5. The positions of non-hydrogen atoms were determined by direct methods (SIR92) and subsequent Fourier syntheses (DIRDIF PATTY). An ORTEP drawing of 7 is shown in Figure 3.

![ORTEP drawing of 7](image)

Figure 3. ORTEP drawing of 7.
Table 5. Summary of Crystallographic Data of 7

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula:</td>
<td>C_{25}H_{17}N</td>
</tr>
<tr>
<td>Formula weight:</td>
<td>331.42</td>
</tr>
<tr>
<td>Crystal system:</td>
<td>triclinic</td>
</tr>
<tr>
<td>Space group:</td>
<td>P-1 (#2)</td>
</tr>
<tr>
<td>Crystal color:</td>
<td>yellow</td>
</tr>
<tr>
<td>Lattice parameters:</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>9.162(7)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>10.020(7)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>10.939(9)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>919.7(12)</td>
</tr>
<tr>
<td>α</td>
<td>87.93(2)°</td>
</tr>
<tr>
<td>β</td>
<td>88.96(2)°</td>
</tr>
<tr>
<td>γ</td>
<td>66.424(14)°</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>D_{calc} (g cm⁻³):</td>
<td>2.393</td>
</tr>
<tr>
<td>μ (Mo Kα) (cm⁻¹):</td>
<td>1.381</td>
</tr>
<tr>
<td>Goodness of fit (GOF):</td>
<td>1.002</td>
</tr>
<tr>
<td>$F(000)$:</td>
<td>696</td>
</tr>
<tr>
<td>Diffractometer:</td>
<td>Rigaku RAXIS-RAPID</td>
</tr>
<tr>
<td>Radiation:</td>
<td>MoKα ($\lambda = 0.71070$ Å), Graphite Monochromated</td>
</tr>
<tr>
<td>Temp (°C):</td>
<td>23.0</td>
</tr>
<tr>
<td>Scan type:</td>
<td>$\omega - 2\theta$</td>
</tr>
<tr>
<td>Max. 2θ (°):</td>
<td>54.9</td>
</tr>
<tr>
<td>No. of reflections measured total:</td>
<td>5114</td>
</tr>
<tr>
<td>No. of observns ($I > 3.00 \sigma (I)$):</td>
<td>3192</td>
</tr>
<tr>
<td>Structure solution:</td>
<td>Direct Methods (SIR92)</td>
</tr>
<tr>
<td>Refinement:</td>
<td>Full-Matrix Least-Squares on F</td>
</tr>
<tr>
<td>No. of variables:</td>
<td>252</td>
</tr>
<tr>
<td>Reflection/parameter ratio:</td>
<td>12.67</td>
</tr>
<tr>
<td>Residuals:</td>
<td>$R = 0.1296$, $R_w = 0.0912$</td>
</tr>
<tr>
<td>Max Shift/Error in Final Cycle:</td>
<td>0.00</td>
</tr>
<tr>
<td>Maximum peak in Final Diff Map (e (Å⁻³)):</td>
<td>0.40</td>
</tr>
<tr>
<td>Minimum peak in Final Diff Map (e (Å⁻³)):</td>
<td>-0.41</td>
</tr>
</tbody>
</table>

(9) Iodocyanation of a (perfluoroalkyl)alkyne using 50 equivalent of ICN which was generated in situ from CuCN and I₂ have reported. See: Moreau, P.; Commeyras, A. *J. Chem. Soc., Chem. Commun.* **1985**, *817*.

(13) von Braun reaction using BrCN as electrophilic cyanating reagent to cleave C-N bonds of tert-amines have been well known. See: (a) von Braun, J. *Chem. Ber.* **1900**, *33*, 1438.
Recent examples, see: (b) Giles, R. L.; Sullivan, J. D.; Steiner, A. M.; Looper, R. E.
11, 2940.

(15) The structure of the major stereoisomer of 1e was unambiguously determined by X-ray
crystallography analysis. See Experimental Section for the details.

(16) The similar active specie was proposed in AlCl₃-mediated Friedel-Crafts cyanation
reactions of aromatics using BrCN as cyanide source. See ref 14. In the literature, the
electrophilic cyanating species [CN][AlCl₃Br]⁻ were proposed.

(18) See Experimental Section for the detail of X-ray crystallography of 7.

(b) Parshall, G. W.; Ittel, G. W. Homogeneous Catalysis; 2nd ed.; Wiley-Interscience:

(21) For recent examples, see: (a) Bogolubsky, A. V.; Ryabukhin, S. V.; Plaskon, A. S.;
(b) David, H.; Charles David, H.; Jacqueline Elizabeth, M; Martin John, S. PCT Int. Appl.
1188.
Chapter 5

Palladium-catalyzed Cycloisomerization of 2-(Cyanomethyl)phenyl Esters: A New Route to 3-Acyl-2-aminobenzofurans

Abstract

Palladium-catalyzed cycloisomerization of 2-(cyanomethyl)phenyl esters leading to 3-acyl-2-aminobenzofurans are described. The reaction proceeded via cleavage of an acyl-oxygen bond with palladium catalyst and oxypalladation of a cyano moiety followed by isomerization and reductive elimination. The reaction was dramatically accelerated by using the combination of Pd(PCy₃)₂ and Zn(OAc)₂ as catalysts. The substrate scope could also be expanded to formate and carbonate, giving corresponding 2-aminobenzofurans in good to excellent yields. Since the resulting benzofurans have both an amino and a carbonyl group, they are useful building blocks for the synthesis of various benzofuran-fused heterocycles, such as Elbfluorene.
Chapter 5

Introduction

Recently, transition metal-catalyzed cycloisomerization reactions have received considerable attention as useful tools for the synthesis of various carbo- and heterocycles.1 Although cycloisomerization of alkynes, alkenes, and allenes has been well investigated, counterparts of nitriles are limited and still remain challenging.2 In Chapters 1 and 2, the author describes copper-catalyzed cycloisomerization of carbonyl-ene-nitrile compounds leading to 2-aza-2,4-cyclopentadienones, which are useful intermediates for the synthesis of variously functionalized pyrrolin-2-ones.3 Furthermore, using the same carbonyl-ene-nitrile compounds, platinum-catalyzed coupling reaction of carbonyl-ene-nitrile compounds with vinylcarbene complexes generated in situ from propargyl carboxylates were demonstrated, in Chapter 3. These results stimulated him to investigate new types of cycloisomerization of properly functionalized nitriles.

In this chapter, the author describes a novel palladium-catalyzed cycloisomerization of 2-(cyanomethyl)phenyl esters 1 leading to 2-aminobenzofurans. Although 2-aminobenzofurans are an important class of heterocyclic compounds, they are difficult to work with because of the instability.4 However, it is well known that substitution at the 3-position as well as \(N\)-acylation remarkably increases the stability of otherwise unstable 2-aminobenzofurans.5,6 The author hypothesized that intramolecular oxyacylation of 1 via cleavage of the acyl-oxygen bond followed by prototropic isomerization of a cyclic \(N\)-acylimino ether would give rise to a series of stable \(N\)-acyl-2-aminobenzofurans 27 (Scheme 1).
Results and Discussion

The author examined the reaction of 2-(cyanomethyl)phenyl 4-trifluoromethylbenzoate 1a, which contains an acyl-oxygen bond prone to cleavage by low-valent transition metals because of activation by the electron-withdrawal of a trifluoromethyl group. When the reaction of 1a in the presence of Pd(OAc)$_2$ (10 mol%) and P(t-Bu)$_3$ (20 mol%) in DMF at 100 °C was carried out, 3-acyl-2-aminobenzofuran 3a was obtained in 27% yield instead of the expected N-acyl-2-aminobenzofuran 2a (Scheme 2).

This interesting result stimulated him to optimize conditions for the cycloisomerization of 1a (Table 1). Several phosphines including PCy$_3$, PCy$_2$Ph, and diphenylphosphinofilrocene
(dpff) were also effective (entries 1-3), whereas PPh₃ was found to be ineffective for the reaction (entry 4). Other palladium compounds including PdCl₂ and Pd₂(dba)₃ did not catalyze the reaction, even when PCy₃ was used as a ligand. On the other hand, the use of Ni(cod)₂ (10 mol%) and PCy₃ (20 mol%) produced 3a in a yield comparable to that of the combination of Pd(OAc)₂ and PCy₃ (entry 5). Since Pd(PCy₃)₂ is assumed as an active catalyst for the present reaction, the author next examined the reaction in the presence of Pd(PCy₃)₂. To his delight, the yield of 3a increased up to 62% yield (entry 6). Furthermore, it was revealed that the addition of Zn(OAc)₂ to Pd(PCy₃)₂ system was effective to facilitate the reaction to give 3a in 96% yield (entry 7). The author also found the reaction proceeded smoothly using combined catalyst of cheap Pd(OAc)₂/PCy₃/Zn to furnish 3a in 98% yield (entry 8)\(^\text{10}\) As a solvent, DMF was found to give the best result, whereas DMSO, toluene, and dioxane decreased the yield of 3a.

<table>
<thead>
<tr>
<th>entry</th>
<th>[M] / ligand / additive</th>
<th>conv. (%)</th>
<th>yield (%)(^\text{b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(OAc)₂ / PCy₃</td>
<td>54</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OAc)₂ / PCy₂Ph</td>
<td>53</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>Pd(OAc)₂ / dpff</td>
<td>78</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)₂ / PPh₃</td>
<td>79</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Ni(cod)₂ / PCy₃</td>
<td>68</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>Pd(PCy₃)₂</td>
<td>68</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>Pd(PCy₃)₂ / Zn(OAc)₂</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>8</td>
<td>Pd(OAc)₂ / PCy₃ / Zn</td>
<td>100</td>
<td>98</td>
</tr>
</tbody>
</table>

\(^\text{a}\)Reaction conditions: 1a (0.40 mmol), [M] (0.040 mmol), ligand (0.080 mmol) (0.040 mmol) in DMF (2.0 mL). \(^\text{b}\)Isolated yields. \(^\text{c}\)dpff (10 mol%) was used.

\(^\text{d}\)Zn(OAc)₂ (0.040 mmol) was used. \(^\text{e}\)Pd(OAc)₂ (0.040 mmol), PCy₃ (0.080 mmol), Zn powder (0.040 mmol).
With the optimal reaction conditions (Pd(OAc)$_2$, PCy$_3$, and Zn powder) established, the author next examined reactions of 2-(cyanomethyl)phenyl esters 1 containing various carboxylates. The results are summarized in Table 2. All reactions were conducted in the presence of MS4A to avoid competitive hydrolysis of 1 to 2-(cyanomethyl)phenol. Reactions of 1b-d with halogen at the ortho or para position occurred smoothly and gave 3-acyl-2-amino-benzofurans 3b-d in good yields, respectively (entries 1-3). The cycloisomerization described here is applicable to esters having either moderately electron-withdrawing or electron-donating substituents (entries 4-8). Surprisingly, 2-(cyanomethyl)phenyl acetate 1j also afforded

![Table 2. Palladium-catalyzed cycloisomerization of 2-(cyanomethyl)phenyl esters 1](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>1</th>
<th>time (h)</th>
<th>product</th>
<th>yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-FC$_6$H$_4$</td>
<td>1b</td>
<td>24</td>
<td>3b</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>4-ClC$_6$H$_4$</td>
<td>1c</td>
<td>24</td>
<td>3c</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>2-ClC$_6$H$_4$</td>
<td>1d</td>
<td>24</td>
<td>3d</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>2-Naph</td>
<td>1e</td>
<td>24</td>
<td>3e</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>1f</td>
<td>72</td>
<td>3f</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>4-MeC$_6$H$_4$</td>
<td>1g</td>
<td>72</td>
<td>3g</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td>4-MeOC$_6$H$_4$</td>
<td>1h</td>
<td>72</td>
<td>3h</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>4-Me$_2$NC$_6$H$_4$</td>
<td>1i</td>
<td>96</td>
<td>3i</td>
<td>68</td>
</tr>
<tr>
<td>9</td>
<td>Me</td>
<td>1j</td>
<td>72</td>
<td>3j</td>
<td>57</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td>1k</td>
<td>60</td>
<td>3k</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>OEt</td>
<td>1l</td>
<td>24</td>
<td>3l</td>
<td>68</td>
</tr>
</tbody>
</table>

aReaction conditions: 1 (0.40 mmol), Pd(OAc)$_2$ (0.040 mmol), PCy$_3$ (0.080 mmol), Zn powder (0.040 mmol) and molecular sieves 4A (40 mg) in DMF (2.0 mL) at 100 °C. bIsolated yields.
3-acetyl-2-aminobenzofuran 3j in 57% yield (entry 9). Furthermore, the substrate scope could be expanded to formate 1k and carbonate 1l, giving 2-amino-3-formylbenzofuran 3k and 2-amino-3-ethoxycarbonylbenzofuran 3l in 50% and 68% yields, respectively (entries 10 and 11).

To gain insight into the reaction mechanism, a crossover experiment was carried out (Scheme 3). Palladium-catalyzed cycloisomerization of a mixture of equimolar amounts of esters 1b and 1m yielded only two types of 3-acyl-2-aminobenzofurans, 3b and 3m without any crossover products. This result clearly shows that the present cycloisomerization reaction proceeds in an intramolecular fashion.

![Scheme 3](image)

Although the details of the process remains to be elucidated, the author proposes the following mechanism for the reaction involving oxidative cleavage of an acyl-oxygen bond with the low valent palladium species (Scheme 4).\(^8,11\) The oxidative cleavage of an acyl-oxygen bond with transition metals is known to be difficult to achieve, except in the case of esters activated with electron-withdrawing groups\(^8\) and esters having 2-pyridylmethyl as a directing group.\(^12\) In the present reaction Zn(OAc)\(_2\) which is generated from the reaction of Pd(OAc)\(_2\) with zinc might accelerate the oxidative cleavage of an acyl-oxygen bond forming an
intermediate **A** by coordination to the carbonyl group.\(^{13}\) In the next step, oxypalladation of a cyano moiety followed by prototopic isomerization gives the intermediate **B**. Subsequent \(\sigma-\pi\) isomerization of an azaallyl-palladium and reductive elimination at the 3-position of the benzofuran yield 3-acyl-2-aminobenzofuran **3**, and regenerate the catalyst.\(^{14,15}\)

![Scheme 4](image)

Since 3-acyl-2-aminobenzofurans have both an amino and a carbonyl group, they are implemented as the key useful building blocks for the synthesis of benzofuran fused heterocycles. Elbfluorene **7**, which is a CDK (cyclin-dependent-kinase) inhibitor is a logical target for the application of 3-acyl-2-aminobenzofuran (Scheme 5).\(^{16}\) Palladium-catalyzed cycloisomerization of 2-(cyanomethyl)phenyl ester **1n** afforded corresponding 3-acyl-2-aminobenzofuran **3n** in 82% yield. Reaction of **3n** with ketene followed by dehydrative cyclization lead to the formation of pyridone skeleton to give **5**. After the amide carbonyl moiety of **5** was converted to the triflate, methoxymethoxy group was deprotected. Finally, palladium-catalyzed reduction with silane gave Elbfluorene **7**.
In conclusion, unique palladium-catalyzed cycloisomerization of 2-(cyanomethyl)phenyl esters has been developed. The reaction provides a new route to 3-acyl-2-aminobenzofurans, which are rather inaccessible substituted heterocyclic structures. Furthermore, 3-acyl-2-aminobenzofurans are applicable to the synthesis of biologically active nitrogen-containing heterocycles as demonstrated by the synthesis of Elbfluorene.

Experimental

General Method. Unless otherwise noted, chemicals obtained from commercial suppliers were used without further purification. Solvents were dried by the usual methods and distilled before use. Zinc powder was washed successively with dil. HCl aqueous solution, water, ethanol, acetone, and diethyl ether, and dried under reduced pressure prior to use.¹⁷
All reactions were carried out under nitrogen atmosphere. NMR spectra were measured for solutions in CDCl₃ or acetone-d₆ with tetramethylsilane as an internal standard (¹H and ¹³C): the following abbreviations are used; br s: broad singlet, s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. IR spectra were recorded with an FT-IR spectrometer. Melting points (mp) are uncorrected. Element analyses were performed at Microanalytical Center of Kyoto University. High-resolution mass spectra (HRMS) was measured with JEOL JMX-SX 102A spectrometer.

Preparation of 2-(Cyanomethyl)phenyl Esters 1 (Scheme 6)

2-(Cyanomethyl)phenyl 4’-trifluoromethylbenzoate (1a): To a solution of o-cresol (5.41 g, 50 mmol), triethylamine (10.4 mL, 75 mmol), and 4-N,N-dimethylaminopyridine (611 mg, 5.0 mmol) in CH₂Cl₂ (75 mL) was slowly added acetic anhydride (7.2 mL, 75 mmol) at 0 °C and the mixture was stirred at room temperature for 1 h. The reaction mixture was poured into sat. NaHCO₃ aqueous solution. The aqueous layer was extracted with Et₂O (50 mL × 3). The combined organic layer was washed with brine and dried over MgSO₄. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 100/0-20/1) as eluents to afford 2-methylphenyl acetate 8 (7.43 g, 49.5 mmol, 99% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 2.18 (s, 3H), 2.31 (s, 3H), 7.00 (d, J = 7.7 Hz, 1H), 7.11-7.25 (m, 3H).
Chapter 5

To a suspension of N-bromosuccinimide (8.92 g, 50 mmol) and benzoyl peroxide (121 mg, 0.50 mmol) in CCl₄ (50 mL) was added 2-methyl phenylacetate 8 (7.43 g, 49.5 mmol) in CCl₄ (10 mL) at 0 °C, and the resulting mixture was heated at 80 °C for 1 h. The reaction mixture was filtered through a short silica gel pad. Filtrate was concentrated under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 100/0-20/1) as eluents to afford 2-(bromomethyl)phenylacetate 9 (10.4 g, 45.5 mmol, 92% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 2.33 (s, 3H), 4.40 (s, 2H), 7.10 (d, J = 7.9 Hz, 1H), 7.17 (t, J = 7.9 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 7.38 (d, J = 7.9 Hz, 1H). A solution of 2-(bromomethyl)phenylacetate 9 (6.86 g, 30 mmol) in DMF (30 mL) was added to sodium cyanide (3.71 g, 75 mmol), and the resulting mixture was stirred for at 80 °C for 3 h. After the resulting solution was cooled to room temperature, it was poured into 10% HCl aqueous solution (30 mL), and extracted with Et₂O (30 mL × 3). The combined organic layer was dried over MgSO₄, and the organic solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel with hexane/AcOEt (v/v = 20/1-5/1) as eluents followed by recrystallization from hexane/CHCl₃ gave 2-(cyanomethyl)phenol 10 (1.52 g, 11.4 mmol, 38% yield) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 3.72 (s, 2H), 5.05 (br s, 1H), 6.80 (d, J = 7.9 Hz, 1H), 6.95 (t, J = 7.9 Hz, 1H), 7.20 (t, J = 7.9 Hz, 1H), 7.33 (d, J = 7.9 Hz, 1H). The spectral data match those reported in the literature.¹⁸ To a solution of 2-(cyanomethyl)phenol 10 (666 mg, 5.0 mmol), triethylamine (1.04 mL, 7.5 mmol), and 4-N,N-dimethylaminopyridine (61.1 mg, 0.50 mmol) in CH₂Cl₂ (20 mL) was added 4-trifluoromethylbenzoyl chloride (1.56 g, 7.5 mmol) at 0 °C and the mixture was stirred at room temperature for 3 h. The reaction mixture was poured into water (20 mL), and extracted with Et₂O (20 mL × 3). The combined organic layer was dried over MgSO₄. The organic solvent was removed under reduced pressure and the residue was subjected to flash
column chromatography on silica gel with hexane/AcOEt (v/v = 20/1-7/1) as eluents to afford 2-(cyanomethyl)phenyl 4’-trifluoromethylbenzoate 1a (1.22 g, 4.0 mmol, 80% yield) as a white solid. mp 62.1-62.8 °C. IR (KBr): 751, 758, 871, 1016, 1074, 1126, 1171, 1219, 1269, 1328, 1415, 1493, 1736 (C=O), 2259 (CN), 2945, 2981, 3062 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.66 (s, 2H), 7.28 (d, J = 7.6 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.77 (d, J = 8.0 Hz, 2H), 8.32 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 19.1, 116.7, 122.4, 122.5, 123.3 (q, J = 272.5 Hz), 125.6 (q, J = 3.3 Hz), 126.8, 129.5, 129.6, 130.5, 131.7, 131.5 (q, J = 32.3 Hz), 148.3, 163.0. Anal. calcd for C₁₆H₁₀F₃NO₂: C, 62.96; H, 3.30. found: C, 62.82; H, 3.41.

2-(Cyanomethyl)phenyl 4’-fluorobenzoate (1b): A white solid; mp 31.8-32.2 °C. IR (KBr): 756, 779, 853, 1011, 1061, 1096, 1150, 1170, 1198, 1217, 1267, 1413, 1456, 1504, 1603, 1733 (C=O), 2262 (CN), 2943, 2973 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.65 (s, 2H), 7.17 (d, J = 8.8 Hz, 2H), 7.26 (d, J = 7.6 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.46 (d, J = 7.6 Hz, 1H), 8.22 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 19.0, 115.7, 115.9, 116.7, 122.5, 122.6, 124.7 (d, J = 3.3 Hz), 126.5, 129.4 (d, J = 8.2 Hz), 132.8 (d, J = 9.9 Hz), 148.4, 163.1, 166.1 (d, J = 255.9 Hz). Anal. calcd for C₁₅H₁₀FNO₂: C, 70.58; H, 3.95. found: C, 70.60; H, 3.99.

2-(Cyanomethyl)phenyl 4’-chlorobenzoate (1c): A white solid; mp 67.8-68.0 °C. IR (KBr): 759, 849, 955, 1012, 1095, 1170, 1220, 1275, 1401, 1456, 1492, 1594, 1722 (C=O), 2251 (CN), 2906, 2932 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.64 (s, 2H), 7.24 (d, J = 7.8 Hz, 1H), 7.28 (t, J = 7.3 Hz, 1H), 7.40 (t, J = 7.3 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.47 (d, J = 8.3 Hz, 2H),
8.13 (d, J = 8.3 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$): δ19.0, 116.7, 122.5, 122.6, 126.6, 126.9, 129.0, 129.5, 129.6, 131.5, 140.4, 148.4, 163.4. Anal. calcd for C$_{15}$H$_{10}$ClNO$_2$: C, 66.31; H, 3.71. found: C, 66.11; H, 3.83.

2-(Cyanomethyl)phenyl 2'-chlorobenzoate (1d): A white solid; mp 65.8-66.2 °C. IR (KBr): 756, 868, 947, 1032, 1099, 1172, 1220, 1243, 1401, 1456, 1492, 1594, 1722 (C=O), 2251 (CN), 2906, 2932 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ3.74 (s, 2H), 7.26-7.36 (m, 2H), 7.38-7.46 (m, 2H), 7.50-7.57 (m, 3H), 8.09 (d, J = 7.3 Hz, 1H). 13C NMR (100 MHz, CDCl$_3$): δ19.3, 116.9, 122.6, 122.7, 126.8, 126.9, 128.4, 129.6, 129.7, 131.5, 132.1, 133.7, 134.5, 148.5, 163.3. Anal. calcd for C$_{15}$H$_{10}$ClNO$_2$: C, 66.31; H, 3.71. found: C, 66.29; H, 3.58.

2-(Cyanomethyl)phenyl 2'-naphthoate (1e): A colorless oil; IR (neat): 761, 775, 825, 951, 1059, 1098, 1128, 1172, 1190, 1218, 1281, 1415, 1456, 1492, 1630, 1735 (C=O), 2251 (CN), 2942, 2968 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ3.70 (s, 2H), 7.28-7.32 (m, 2H), 7.42 (d, J = 7.6 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 8.81 (s, 1H). 13C NMR (100 MHz, CDCl$_3$): δ19.1, 116.9, 122.7, 122.8, 125.2, 125.7, 126.6, 126.9, 127.8, 128.6, 128.9, 129.4, 129.5, 129.6, 132.2, 132.4, 135.9, 148.7, 164.5. Anal. calcd for C$_{19}$H$_{13}$NO$_2$: C, 79.28; H, 4.67. found: C, 79.43; H, 4.56.

2-(Cyanomethyl)phenyl benzoate (1f): A white solid; mp 39.8-40.1 °C. IR (KBr): 751, 842, 1024, 1064, 1078, 1105, 1172, 1223, 1268, 1417, 1452, 1494, 1600, 1733 (C=O), 2255 (CN), 2963, 2975, 3061 cm$^{-1}$. 1H NMR (400 MHz,
2-(Cyanomethyl)phenyl 4'-methylbenzoate (1g): A white solid; mp 44.8-45.3 °C. IR (KBr): 744, 837, 1019, 1072, 1103, 1170, 1221, 1269, 1417, 1457, 1493, 1610, 1735 (C=O), 2255 (CN), 2926, 2938 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 2.44\) (s, 3H), 3.65 (s, 2H), 7.22-7.28 (m, 2H), 7.31 (d, \(J = 8.0\) Hz, 2H), 7.41 (t, \(J = 7.6\) Hz, 1H), 7.48 (t, \(J = 7.6\) Hz, 1H), 8.10 (d, \(J = 8.0\) Hz, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 19.0, 21.6, 116.9, 122.7, 122.8, 125.7, 126.4, 129.2, 129.3, 129.4, 130.2, 144.9, 148.7, 164.3\). Anal. calcd for C\(_{16}\)H\(_{13}\)NO\(_2\): C, 76.48; H, 5.21. found: C, 76.76; H, 5.21.

2-(Cyanomethyl)phenyl 4'-methoxybenzoate (1h): A white solid; mp 79.0-80.2 °C. IR (KBr): 753, 842, 1028, 1065, 1103, 1169, 1223, 1263, 1425, 1456, 1493, 1513, 1607, 1722 (C=O), 2245 (CN), 2842, 2929, 2959 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 3.67\) (s, 2H), 3.89 (s, 3H), 7.00 (d, \(J = 8.4\) Hz, 2H), 7.25 (d, \(J = 7.6\) Hz, 1H), 7.29 (t, \(J = 7.6\) Hz, 1H), 7.41 (t, \(J = 7.6\) Hz, 1H), 7.49 (d, \(J = 7.6\) Hz, 1H), 8.17 (d, \(J = 8.4\) Hz, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 19.1, 55.5, 114.0, 117.0, 120.7, 122.8, 122.9, 126.5, 129.4, 129.5, 132.4, 148.8, 164.0, 164.2\). Anal. calcd for C\(_{16}\)H\(_{13}\)NO\(_2\): C, 71.90; H, 4.90. found: C, 71.63; H, 4.89.
2-(Cyanomethyl)phenyl 4’-(N,N-dimethylamino)benzoate (1i): A pale yellow solid; mp 139.2-140.6 °C. IR (KBr): 761, 824, 1053, 1096, 1165, 1184, 1223, 1282, 1383, 1454, 1487, 1537, 1604, 1701 (C=O), 2247 (CN), 2826, 2925, 2960 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 3.06 (s, 6H), 3.66 (s, 2H), 6.69 (d, \(J = 9.2\) Hz, 2H), 7.23 (d, \(J = 8.0\) Hz, 1H), 7.26 (t, \(J = 8.0\) Hz, 1H), 7.38 (t, \(J = 8.0\) Hz, 1H), 7.48 (d, \(J = 8.0\) Hz, 1H), 8.06 (d, \(J = 9.2\) Hz, 2H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 19.1, 39.9, 110.7, 114.5, 117.1, 122.8, 122.9, 126.0, 129.1, 129.2, 132.0, 148.9, 153.8, 164.4. Anal. calcd for C\(_{17}\)H\(_{16}\)N\(_2\)O\(_2\): C, 72.84; H, 5.75. found: C, 72.54; H, 5.86.

2-(Cyanomethyl)phenyl acetate (1j): A colorless oil; IR (neat): 753, 792, 830, 1011, 1095, 1171, 1202, 1370, 1417, 1456, 1492, 1588, 1768 (C=O), 2250 (CN), 2928, 2980, 3067 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 2.32 (s, 3H), 3.61 (s, 2H), 7.11 (d, \(J = 7.9\) Hz, 1H), 7.25 (t, \(J = 7.9\) Hz, 1H), 7.34 (t, \(J = 7.9\) Hz, 1H), 7.40 (d, \(J = 7.9\) Hz, 1H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 18.9, 20.6, 116.7, 122.2, 122.5, 126.2, 129.2, 129.3, 148.2, 168.4. Anal. calcd for C\(_{13}\)H\(_9\)NO\(_2\): C, 68.56; H, 5.18. found: C, 68.39; H, 5.19.

2-(Cyanomethyl)phenyl formate (1k): A colorless oil; IR (neat): 760, 830, 1085, 1116, 1172, 1215, 1415, 1457, 1493, 1589, 1740 (C=O), 2252 (CN), 2968, 3068 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 3.66 (s, 2H), 7.18 (d, \(J = 7.8\) Hz, 1H), 7.29 (t, \(J = 7.8\) Hz, 1H), 7.38 (t, \(J = 7.8\) Hz, 1H), 7.47 (d, \(J = 7.8\) Hz, 1H), 8.31 (s, 1H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 18.8, 116.7, 122.0, 122.1, 126.9, 129.5, 129.7, 147.4, 158.2. Anal. calcd for C\(_9\)H\(_7\)NO\(_2\): C, 67.07; H, 4.38. found: C, 67.32; H, 4.64.
2-(Cyanomethyl)phenyl ethyl carbonate (1l): A colorless oil; IR (neat): 775, 897, 996, 1056, 1176, 1226, 1258, 1457, 1494, 1589, 1767 (C=O), 2251 (CN), 2986, 3068 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 1.38 (t, \(J = 7.3\) Hz, 3H), 3.70 (s, 2H), 4.32 (q, \(J = 7.3\) Hz, 2H), 7.28-7.30 (m, 2H), 7.36 (t, \(J = 7.8\) Hz, 1H), 7.45 (d, \(J = 7.8\) Hz, 1H). \(^1\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 14.0, 18.6, 65.2, 116.7, 122.1, 122.2, 126.6, 129.3, 129.4, 148.6, 152.7. Anal. calcd for C\(_{11}\)H\(_{11}\)NO\(_3\): C, 64.38; H, 5.40. found: C, 64.34; H, 5.43.

2-Cyanomethyl-5-methylphenyl benzoate (1m): A white solid; mp 74.0-74.6 °C. IR (neat): 712, 815, 892, 946, 1023, 1065, 1104, 1153, 1174, 1238, 1256, 1315, 1413, 1451, 1508, 1581, 1600, 1622, 1725 (C=O), 2247 (CN), 2857, 2920, 2970, 3032 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 2.33 (s, 3H), 3.56 (s, 2H), 7.04 (s, 1H), 7.05 (d, \(J = 7.3\) Hz, 1H), 7.30 (d, \(J = 7.3\) Hz, 1H), 7.47 (t, \(J = 7.3\) Hz, 2H), 7.60 (t, \(J = 7.3\) Hz, 1H), 8.19 (d, \(J = 7.3\) Hz, 2H). \(^1\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 18.4, 20.7, 116.9, 119.4, 123.0, 127.1, 128.5, 129.0, 129.9, 130.0, 133.7, 139.6, 148.3, 164.1. Anal. calcd for C\(_{16}\)H\(_{13}\)NO\(_2\): C, 76.48; H, 5.21. found: C, 76.52; H, 5.32.

2-Cyanomethyl-4-(methoxymethoxy)phenyl benzoate (1n): A pale yellow oil; IR (neat): 709, 804, 872, 923, 1010, 1059, 1077, 1102, 1153, 1188, 1265, 1315, 1452, 1499, 1602, 1739 (C=O), 2251 (CN), 2828, 2957, 3070 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 3.49 (s, 3H), 3.64 (s, 2H), 5.18 (s, 2H), 7.08 (d, \(J = 8.3\) Hz, 1H), 7.17 (s, 1H), 7.18 (d, \(J = 8.3\) Hz, 1H), 7.53 (t, \(J = 7.3\) Hz, 2H), 7.66 (t, \(J = 7.3\) Hz, 1H), 8.21 (d, \(J = 7.3\) Hz, 2H). \(^1\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 19.3, 56.0, 94.7, 116.7, 117.0, 117.3, 123.6, 128.6, 128.7, 130.2, 130.3, 134.0, 143.0, 155.3, 164.7. Anal. calcd for C\(_{17}\)H\(_{15}\)NO\(_4\): C, 68.68; H, 5.09. found: C, 68.52; H, 5.16.
General Procedure of Palladium-Catalyzed Cycloisomerization Reactions. A flame dried Schlenk flask was charged with Pd(OAc)$_2$ (6.7 mg, 0.030 mmol), PCy$_3$ (16.9 mg, 0.060 mmol), zinc powder (19.6 mg, 0.30 mmol), MS$_4$A (30 mg), and DMF (1.2 mL). After stirring at room temperature for 20 min, 2-(cyanomethyl)phenyl ester 1 (0.30 mmol) was added and the resulting mixture was stirred at 100 °C. After the time specified in Tables 1-2, the mixture was diluted with Et$_2$O and filtered through a short silica gel pad. The filtrate was washed with brine, and the aqueous layer was extracted with Et$_2$O (10 mL × 3). The combined organic layer was dried over MgSO$_4$, and then filtered. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 7/1-2/1) as eluents to afford the corresponding 3-acyl-2-aminobenzofuran 3.

2-Amino-3-(4'-trifluoromethylbenzoyl)benzo[b]furan (3a): A yellow solid; mp 117.8-119.5 °C. IR (KBr): 745, 784, 854, 918, 978, 1018, 1067, 1123, 1177, 1240, 1298, 1327, 1480, 1515, 1593, 1650 (C=O), 2940, 3120, 3161, 3369 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 6.76 (d, J = 7.2 Hz, 1H), 7.00 (t, J = 7.6 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H), 7.20 (d, J = 7.2 Hz, 1H), 7.38 (br s, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H). 13C NMR (100 MHz, CDCl$_3$): δ 94.2, 110.1, 118.5, 122.2, 123.8 (q, J = 271.7 Hz), 123.9, 125.4 (q, J = 3.3 Hz), 125.6, 127.7, 132.2 (q, J = 32.2 Hz), 144.0, 149.2, 166.9, 188.8. Anal. calcd for C$_{16}$H$_{10}$F$_3$NO$_2$: C, 62.96; H, 3.30. found: C, 63.09; H, 3.22.

2-Amino-3-(4'-fluorobenzoyl)benzo[b]furan (3b): A pale yellow solid; mp 107.2-108.4 °C. IR (KBr): 745, 781, 849, 916, 977, 1021, 1095, 1153, 1177, 1240, 1298, 1336, 1478, 1509, 1599, 1644 (C=O), 2930, 3119, 3164,
Chapter 5

3368 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 6.91 (d, \(J = 6.8\) Hz, 1H), 7.00-7.07 (m, 2H), 7.11-7.19 (m, 4H), 7.23 (d, \(J = 6.8\) Hz, 1H), 7.73 (d, \(J = 8.0\) Hz, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 94.2, 110.1, 115.3 (d, \(J = 22.4\) Hz), 118.7, 121.9, 123.7, 126.1, 129.9 (d, \(J = 8.3\) Hz), 136.9 (d, \(J = 3.3\) Hz), 149.1, 164.2 (d, \(J = 250.1\) Hz), 166.5, 189.3. Anal. calcd for C\(_{15}\)H\(_{10}\)FNO\(_2\): C, 70.58; H, 3.95. found: C, 70.67; H, 3.91.

\[\text{2-Amino-3-(4'-chlorobenzoyl)benzo[b]furan (3c)}: \text{A yellow solid; mp 122.1-122.7 °C. IR (KBr): 750, 777, 840, 917, 975, 1016, 1095, 1173, 1241, 1337, 1437, 1477, 1591, 1614, 1642 (C=O), 3169, 3393 cm}^{-1}. \] \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 6.90 (d, \(J = 7.3\) Hz, 1H), 7.03 (t, \(J = 7.8\) Hz, 1H), 7.04 (t, \(J = 7.8\) Hz, 1H), 7.09 (br s, 2H), 7.23 (d, \(J = 7.3\) Hz, 1H), 7.46 (d, \(J = 8.3\) Hz, 2H), 7.66 (d, \(J = 8.3\) Hz, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 94.2, 110.2, 118.8, 122.1, 123.9, 128.6, 129.1, 130.9, 137.0, 139.2, 149.2, 166.7, 189.2. Anal. calcd for C\(_{15}\)H\(_{10}\)ClNO\(_2\): C, 66.31; H, 3.71. found: C, 66.34; H, 3.53.

\[\text{2-Amino-3-(2'-chlorobenzoyl)benzo[b]furan (3d): A yellow solid; mp 120.7-121.8 °C. IR (KBr): 741, 761, 851, 920, 979, 1018, 1098, 1181, 1238, 1338, 1442, 1495, 1594, 1614, 1656 (C=O), 3114, 3246, 3380 cm}^{-1}. \] \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 6.26 (d, \(J = 7.3\) Hz, 1H), 6.94 (t, \(J = 7.3\) Hz, 1H), 7.01 (t, \(J = 7.3\) Hz, 1H), 7.20 (d, \(J = 7.3\) Hz, 2H), 7.37 (br s, 2H), 7.42 (m, 2H), 7.50 (d, \(J = 7.3\) Hz, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 95.3, 110.0, 117.9, 122.0, 124.1, 125.8, 127.1, 127.7, 130.0, 130.3, 130.5, 140.5, 149.3, 166.3, 188.0. Anal. calcd for C\(_{15}\)H\(_{10}\)ClNO\(_2\): C, 66.31; H, 3.71. found: C, 66.38; H, 3.60.
Chapter 5

2-Amino-3-(2'-naphtoyl)benzo[b]furan (3e): A yellow solid; mp 47.8-49.2 °C. IR (KBr): 744, 783, 812, 915, 976, 1018, 1099 1177, 1229, 1298, 1334, 1481, 1507, 1597, 1614 1647 (C=O), 2951, 3054, 3194, 3360 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.85-6.94 (m, 2H), 6.95 (t, J = 6.8 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 7.43 (br s, 2H), 7.45-7.55 (m, 2H), 7.84 (d, J = 8.0 Hz, 1H), 7.86 (t, J = 6.8 Hz, 2H), 7.92 (d, J = 8.0 Hz, 1H), 8.22 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 94.4, 109.9, 118.8, 121.7, 123.6, 124.5, 126.2, 126.4, 127.2, 127.6, 127.7, 128.1, 128.7, 134.4, 137.9, 149.0, 166.7, 190.3 Anal. calcd for C₁₉H₁₃NO₂: C, 79.43; H, 4.56. found: C, 79.44; H, 4.64.

2-Amino-3-benzoylbenzo[b]furan (3f): A yellow solid; mp 138.9-140.3 °C. IR (KBr): 749, 762, 794, 906, 930, 974, 1017, 1104, 1173, 1185, 1243, 1300, 1338, 1437, 1481, 1596, 1618, 1645 (C=O), 2938, 3054, 3153, 3207, 3410 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.85 (d, J = 7.2 Hz, 1H), 6.95-7.02 (m, 2H), 7.18 (d, J = 7.2 Hz, 1H), 7.33 (br s, 2H), 7.45-7.53 (m, 3H), 7.75 (d, J = 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 94.6, 109.8, 118.7, 121.7, 123.5, 126.1, 127.2, 128.2, 130.6, 140.8, 149.0, 166.5, 191.0. Anal. calcd for C₁₅H₁₁NO₂: C, 75.94; H, 4.67. found: C, 76.11; H, 4.66.

2-Amino-3-(4'-methylbenzoyl)benzo[b]furan (3g): A yellow solid; mp 108.6-109.2 °C. IR (KBr): 746, 776, 833, 914, 971, 1018, 1100, 1175, 1242, 1298, 1332, 1439, 1479, 1596, 1610, 1646 (C=O), 2946, 3190, 3205, 3364 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.42 (s, 3H), 6.98 (d, J = 8.0 Hz, 1H), 6.97-7.03 (m, 2H), 7.17-7.19 (m, 1H), 7.21 (br s, 2H), 7.26 (d, J = 7.6 Hz, 2H), 7.62 (d, J = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 21.5, 94.2, 109.9, 119.0, 121.7, 123.6, 126.4, 127.6, 128.9, 138.0, 141.2, 149.1, 166.6, 190.7. Anal. calcd for C₁₆H₁₃NO₂: C, 76.48;
Chapter 5

125

H, 5.21. found: C, 76.64; H, 5.20.

2-Amino-3-(4'-methoxybenzoyl)benzo[b]furan (3h): A yellow solid; mp 115.8-116.5 °C. IR (KBr): 743, 780, 844, 915, 975, 1025, 1103, 1170, 1185, 1245, 1299, 1337, 1437, 1482, 1589, 1605, 1647 (C=O), 2940, 3046, 3192, 3247, 3379 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.84 (s, 3H), 6.97 (d, \(J = 7.2\) Hz, 1H), 6.95-7.02 (m, 4H), 7.18-7.21 (m, 1H), 7.27 (br s, 2H), 7.74 (d, \(J = 7.2\) Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 55.3, 94.5, 109.8, 113.3, 118.8, 121.5, 123.4, 126.4, 129.6, 133.3, 149.0, 161.6, 166.4, 190.1. Anal. calcd for C₁₆H₁₃NO₃: C, 71.90; H, 4.90. found: C, 71.67; H, 4.90.

2-Amino-3-(4'-N,N-dimethylaminobenzoyl)benzo[b]furan (3i): A yellow solid; mp 54.2-55.8 °C. IR (KBr): 744, 780, 825, 914, 970, 1018, 1100, 1174, 1186, 1248, 1298, 1337, 1430, 1476, 1601, 1646 (C=O), 2952, 3195, 3218, 3385 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.05 (s, 6H), 6.71 (d, \(J = 7.2\) Hz, 2H), 6.89 (br s, 2H), 7.00-7.08 (m, 2H), 7.23-7.25 (m, 2H), 7.75 (d, \(J = 7.2\) Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 40.1, 94.4, 109.8, 110.7, 119.3, 121.3, 123.4, 127.0, 128.0, 130.0, 149.1, 152.5, 166.0, 190.1. Anal. calcd for C₁₇H₁₆N₂O₂: C, 72.84; H, 5.75. found: C, 72.54; H, 5.75.

3-Acetyl-2-aminobenzo[b]furan (3j): A yellow solid; mp 171.2-172.3 °C. IR (KBr): 739, 753, 940, 1024, 1103, 1179, 1236, 1299, 1326, 1362, 1422, 1442, 1494, 1605, 1656 1676 (C=O), 2946, 3072, 3168, 3222, 3384 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.55 (s, 3H), 6.84 (br s, 2H), 7.10 (t, \(J = 7.6\) Hz, 1H), 7.25 (t, \(J = 7.6\) Hz, 1H), 7.26 (d, \(J = 7.6\) Hz, 1H). ¹³C NMR (100 MHz,
CDCl₃): δ 29.5, 95.2, 110.2, 118.3, 121.6, 124.1, 126.4, 149.1, 164.8, 192.7. Anal. calcd for C₁₀H₉NO₂: C, 68.56; H, 5.18. found: C, 68.29; H, 5.02.

2-Amino-3-formylbenzo[b]furan (3k): A white solid; ¹H NMR (400 MHz, CDCl₃): δ 6.78 (br s, 2H), 6.93-7.33 (m, 3H), 7.68-7.71 (m, 1H), 9.91 (s, 1H). The spectral data match those reported in the literature.¹⁹

2-Amino-3-ethoxycarbonylbenzo[b]furan (3l): A white solid; mp 69.2-69.8 °C. IR (KBr): 746, 785, 969, 1039, 1123, 1240, 1298, 1321, 1368, 1434, 1487, 1535, 1628, 1664 (C=O), 2931, 2984, 3149, 3274, 3414 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 1.42 (t, J = 7.3 Hz, 3H), 4.37 (q, J = 7.3 Hz, 2H), 6.03 (br s, 2H), 7.05 (t, J = 7.8 Hz, 1H), 7.16-7.26 (m, 2H), 7.65 (d, J = 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 14.5, 59.7, 84.6, 109.6, 119.3, 121.4, 124.0, 126.8, 149.1, 164.5, 166.2. Anal. calcd for C₁₁H₁₁NO₃: C, 64.38; H, 5.40. found: C, 64.37; H, 5.49.

2-Amino-3-benzoyl-6-methylbenzo[b]furan (3m): A yellow solid; mp 123.1-123.9 °C. IR (KBr): 762, 807, 899, 937, 983, 1033, 1111, 1156, 1209, 1254, 1336, 1364, 1477, 1504, 1590, 1629, 1659 (C=O), 2859, 3177 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.33 (s, 3H), 6.75 (d, J = 7.8 Hz, 1H), 6.80 (d, J = 7.8 Hz, 1H), 7.01 (s, 1H), 7.18 (br s, 2H), 7.42-7.56 (m, 3H), 7.69 (d, J = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 21.2, 94.2, 110.5, 118.5, 123.5, 124.5, 127.4, 128.2, 130.7, 131.9, 140.9, 149.5, 166.5, 190.5. Anal. calcd for C₁₆H₁₃NO₂: C, 76.48; H, 5.21. found: C, 76.52; H, 5.32.
2-Amino-3-benzoyl-4-(methoxymethoxy)benzo[b]furan (3n): A yellow solid; mp 118.9-119.7 °C. IR (KBr): 756, 797, 920, 1023, 1079, 1152, 1175, 1246, 1342, 1480, 1593, 1651 (C=O), 2942, 3111, 3325 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 3.40 (s, 3H), 4.98 (s, 2H), 6.55 (d, J = 2.5 Hz, 1H), 6.74 (dd, J = 2.5, 8.8 Hz, 1H), 7.06 (br s, 2H), 7.11 (d, J = 8.8 Hz, 1H), 7.49 (d, J = 2.5 Hz, 1H), 7.49-7.55 (m, 1H), 7.69 (d, J = 6.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 55.8, 94.7, 95.4, 107.6, 110.2, 110.7, 127.2, 127.4, 128.3, 130.9, 140.7, 144.8, 154.0, 167.1, 190.7. Anal. calcd for C₁₇H₁₅NO₄: C, 68.68; H, 5.09. found: C, 68.61; H, 5.11.

Synthesis of Elbfluorene (7): To a solution of 2-amino-3-benzoyl-4-(methoxymethoxy)benzo[b]furan 3n (595 mg, 2.0 mmol), diketene (0.19 mL, 2.4 mmol) in CH₃CN (6.0 mL) were added dropwise a solution of trimethylchlorosilane (0.30 mL, 2.4 mmol) in CH₃CN (6 mL) at 50 °C over 12 h. After being stirred additionally for 2 h, the reaction mixture was poured into sat. NaHCO₃ aqueous solution. The aqueous layer was extracted with Et₂O (20 mL x 3). The combined organic layer was washed with brine and dried over MgSO₄. The organic solvent was removed under reduced pressure to afford 4 (2:1 mixture of two tautomers) as a brown oil. ¹H NMR (400 MHz, CDCl₃): δ 2.06 (s, 3H), 2.35 (s, 3H), 2.39 (s, 6H), 3.76 (s, 2H), 5.00 (s, 4H), 5.37 (s, 1H), 6.67-6.71 (m, 2H), 6.91-6.94 (m, 2H), 7.39-7.44 (m, 2H), 7.48-7.60 (m, 8H), 7.72-7.78 (m, 4H), 10.9 (s, 1H), 11.7 (s, 1H), 13.3 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 21.8, 30.8, 50.9, 55.8, 62.5, 91.7, 94.6, 95.2, 99.8, 101.0, 107.9, 108.0, 111.8, 111.9, 113.2, 113.5, 124.8, 124.9, 127.9, 128.2, 128.3, 128.4, 128.5, 130.0, 132.0, 132.2, 133.6, 139.0, 139.3, 146.0, 146.1, 154.3, 154.4, 156.9, 158.6, 162.9, 168.5, 178.8, 191.9, 192.2, 202.0. To a solution of 4 in MeOH (4 mL) was added sodium methoxide (130 mg, 2.4 mmol), and the resulting mixture was stirred at room temperature for 8 h, then the reaction
was quenched by adding excess of 10% NH₄Cl aqueous solution. The aqueous layer was extracted with Et₂O (20 mL × 3). The combined organic layer was washed with brine and dried over MgSO₄. After the organic solvent was removed under reduced pressure, the resulting mixture diluted with CH₂Cl₂ (8 mL) was slowly added to pyridine (0.19 mL, 2.4 mmol) and trifluoromethanesulfonic anhydride (0.40 mL, 2.4 mmol) at -78 °C. After stirring for 1 h at -78 °C, the resulting solution was gradually warmed up to room temperature and then stirred additionally for 1 h. The solution was washed with sat. NH₄Cl aqueous solution, and the aqueous layer was extracted with Et₂O (10 mL × 3). The combined organic layer was washed with brine and dried over MgSO₄. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 50/1) as eluents to afford 6 (555 mg, 1.12 mmol, 56% (three steps from 2n)) as a pale yellow oil. IR (KBr): 704, 756, 916, 1002, 1074, 1149, 1194, 1251, 1378, 1474, 1557, 1585, 1700 (C=O), 2853, 2925, 3090 cm⁻¹. ′H NMR (400 MHz, CDCl₃): δ 2.15 (s, 3H), 3.41 (s, 3H), 5.02 (s, 2H), 6.86 (d, J = 2.4 Hz, 1H), 7.22-7.23 (m, 1H), 7.48-7.51 (m, 2H), 7.56 (d, J = 8.8 Hz, 1H), 7.61-7.63 (m, 2H). ′C NMR (100 MHz, CDCl₃): δ 32.0, 55.9, 95.4, 109.8, 112.9, 115.9, 118.5 (q, J = 320.7 Hz), 119.0, 121.7, 124.4, 128.5, 129.4, 130.3, 133.6, 147.1, 148.5, 151.0, 153.9, 160.3, 198.4. HRMS (FAB) calcd for M+H⁺ of C₂₂H₁₆F₃NO₇S 496.0678, found 496.0677. To a solution of 6 (248 mg, 0.50 mmol) in THF (2 mL) was added 10% HCl aqueous solution, and the mixture was stirred at 50 °C for 8 h. The reaction mixture was poured into sat. NaHCO₃ aqueous solution, and then the aqueous layer was extracted with Et₂O (50 mL × 3). The combined organic layer was washed with brine and dried over MgSO₄. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 10/1) as eluents to afford triflate 11 (176 mg, 0.39 mmol, 78%) as a
pale yellow solid. mp 203.4-204.8 °C. IR (KBr): 796, 812, 839, 903, 1023, 1134, 1168, 1218, 1293, 1375, 1421, 1497, 1588, 1699 (C=O), 3056, 3558 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.13 (s, 3H), 5.00 (br s, 1H), 6.60 (d, J = 2.4 Hz, 1H), 7.01 (dd, J = 2.4, 8.8 Hz, 1H), 7.45-7.52 (m, 3H), 7.59-7.62 (m, 3H). ¹³C NMR (100 MHz, d₆-acetone): δ 32.1, 108.3, 113.7, 117.1, 119.4 (q, J = 320.7 Hz), 118.8, 122.6, 125.3, 129.5, 130.3, 131.0, 134.8, 148.3, 149.0, 150.4, 155.1, 161.0, 198.7. HRMS (FAB) calcd for M+H⁺ of C₂₀H₁₂F₃NO₆S 452.0416, found 452.0412. A flame dried Schlenk flask was charged with Pd(OAc)$_₂$ (2.0 mg, 0.0090 mmol), dppf (5.0 mg, 0.0090 mmol), 11 (135 mg, 0.30 mmol), triethylsilane (0.070 ml, 0.45 mmol), and DMF (1.2 mL). After stirring at 70 °C for 3 h, the mixture was diluted with Et₂O and filtered through a short silica gel pad. The filtrate was washed with brine, and the aqueous layer was extracted with Et₂O (10 mL × 3). The combined organic layer was dried over MgSO₄, and then filtered. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/acetone (v/v = 10/1) as eluents to afford Elbflorene 7 (87.0 mg, 0.29 mmol, 96%) as a white solid. mp 234.8-235.6 °C. IR (KBr): 706, 738, 835, 910, 978, 1037, 1106, 1146, 1184, 1228, 1248, 1282, 1355, 1410, 1471, 1586, 1692 (C=O), 2873, 3146 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.12 (s, 3H), 4.98 (br s, 1H), 6.48 (d, J = 2.4 Hz, 1H), 7.00 (dd, J = 2.4, 8.8 Hz, 1H), 7.43-7.47 (m, 2H), 7.50 (d, J = 8.8 Hz, 1H), 7.58-7.62 (m, 3H), 8.75 (s, 1H). ¹³C NMR (100 MHz, d₆-acetone): δ 30.7, 108.7, 113.2, 116.1, 118.0, 123.5, 129.3, 129.9, 130.0, 132.6, 137.1, 145.9, 147.8, 149.8, 154.6, 165.1, 200.0. HRMS (FAB) calcd for M+H⁺ of C₁₉H₁₃NO₃ 304.0974, found 304.0966.
Chapter 5

X-ray Crystallographic Studies of 3a. Yellow crystals of 3a suitable for X-ray analysis were obtained by recrystallization from CHCl₃/hexane. The single crystal was sealed in a Pyrex glass capillary under N₂ atmosphere and used for data collection. All measurements were made on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo-Kα radiation. Details of crystal and data collection parameters are summarized in Table 3. The positions of non-hydrogen atoms were determined by direct methods (SIR97) and subsequent Fourier syntheses (DIRDIF PATTY). An ORTEP drawing of 3a is shown in Figure 1.

![ORTEP drawing of 3a](image)

Figure 1. ORTEP drawing of 3a.
Table 3. Summary of Crystallographic Data of 3a

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula: C_{16}H_{10}F_{3}NO_{2}</td>
<td></td>
</tr>
<tr>
<td>Formula weight:</td>
<td>305.26</td>
</tr>
<tr>
<td>Crystal system:</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group: P21/n (#14)</td>
<td></td>
</tr>
<tr>
<td>Crystal color:</td>
<td>yellow</td>
</tr>
<tr>
<td>Lattice parameters:</td>
<td></td>
</tr>
<tr>
<td>(a) (Å) = 9.129(6), (b) (Å) = 29.139(19), (c) (Å) = 20.733(14), (V) (Å³) = 5494(6), (\alpha = \beta = 90°, \gamma = 95.000(3)°)</td>
<td></td>
</tr>
<tr>
<td>(Z) = 16</td>
<td></td>
</tr>
<tr>
<td>(D_{calc}) (g cm(^{-3})): 1.476</td>
<td></td>
</tr>
<tr>
<td>(\mu) (Mo K(\alpha)) (cm(^{-1})): 1.249</td>
<td></td>
</tr>
<tr>
<td>Goodness of fit (GOF): 1.001</td>
<td></td>
</tr>
<tr>
<td>(F(000)): 632</td>
<td></td>
</tr>
<tr>
<td>Diffractometer: Rigaku RAXIS-RAPID</td>
<td></td>
</tr>
<tr>
<td>Radiation: MoK(\alpha) ((\lambda = 0.71070) Å), Graphite Monochromated</td>
<td></td>
</tr>
<tr>
<td>Temp (°C): -150</td>
<td></td>
</tr>
<tr>
<td>Scan type: (\omega - 2\theta)</td>
<td></td>
</tr>
<tr>
<td>Max. (2\theta) (°): 55.0</td>
<td></td>
</tr>
<tr>
<td>No. of reflections measured total: 21191</td>
<td></td>
</tr>
<tr>
<td>No. of observns (I > 3.00 \sigma (I)): 9597</td>
<td></td>
</tr>
<tr>
<td>Structure solution: Direct Methods (SIR92)</td>
<td></td>
</tr>
<tr>
<td>Refinement: Full-Matrix Least-Squares on F</td>
<td></td>
</tr>
<tr>
<td>No. of variables: 829</td>
<td></td>
</tr>
<tr>
<td>Reflection/parameter ratio: 11.58</td>
<td></td>
</tr>
<tr>
<td>Residuals: (R = 0.0786), (R_{int} = 0.059), (R_w = 0.1390)</td>
<td></td>
</tr>
<tr>
<td>Max Shift/Error in Final Cycle: 0.00</td>
<td></td>
</tr>
<tr>
<td>Maximum peak in Final Diff Map (e (Å(^{-3})): 1.39</td>
<td></td>
</tr>
<tr>
<td>Minimum peak in Final Diff Map (e (Å(^{-3})): -1.44</td>
<td></td>
</tr>
</tbody>
</table>
References and Notes

(4) (a) Ciller, J. A.; Seoane, C.; Soto, J. L. J. Heterocycl. Chem. 1986, 23, 1583. (b) Lythgoe, D. J.; McClennaghan, I.; Ramsden, C. A. J. Heterocycl. Chem. 1993, 30, 113. Only one exception for the isolation of 2-amino-4-nitrobenzofuran from the isomerization of (2-hydroxy-6-nitropheny]acetonitrile has been reported, see: (c) Makosza, M.;

(9) The structure of 3a was unambiguously determined by X-ray crystallography. See Experimental section for the detail of their analysis data.

(10) Neither Zn(OAc)₂ nor zinc catalyzed the reaction at all in the absence of Pd catalysts.

(15) Direct attack of an anionic α-carbon atom of a cyano group activated with palladium like ruthenium catalysis to an acyl group of esters might be an alternative route to the product. For examples, see: (a) Naota, T.; Taki, H.; Mizuno, M.; Murahashi, S.-I. J. Am. Chem. Soc. 1989, 111, 5954. (b) Murahashi, S.-I.; Naota, T.; Taki, H.; Mizuno, M.; Takaya, H.; Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.; Hirano, M.; Fukuoka, A. J. Am. Chem. Soc. 1995, 117, 12436. It is important to note, however, that the side product was 2-(cyanomethyl)phenol generated from hydrolysis of intermediate A. This observation supports the reaction mechanism involving oxidative cleavage of an acyl-oxygen bond with palladium species, although precise mechanism awaits further studies.

Chapter 6

Palladium-catalyzed Three-component Coupling Reactions of 2-(Cyanomethyl)phenol, Aryl Halides, and CO

Abstract

Palladium-catalyzed three-component coupling reactions of 2-(cyanomethyl)phenol, aryl halides, and CO gave 3-acyl-2-aminobenzofurans. In this reaction, 2-(cyanomethyl)phenyl esters, which are produced via the Pd(PPh$_3$)$_4$-catalyzed alkoxy carbonylation of aryl halides with 2-(cyanomethyl)phenol, undergo in situ cycloisomerization reaction catalyzed by Pd(PCy$_3$)$_2$ as a co-catalyst to give 3-acyl-2-aminobenzofurans. Bases play an important role in this catalytic reaction, and two types of products were obtained. In the presence of Et$_3$N as a base, 3-acyl-2-aminobenzofurans were obtained through the three-component coupling reactions, while in the presence of K$_2$CO$_3$, 3-acyl-2-(N-acylamino)benzofurans were obtained as a major product. Because 2-(cyanomethyl)phenols can be synthesized from commercially available salicylic acids in two steps, the present method provides a facile access to synthetically useful 3-acyl-2-aminobenzofurans, which are useful building blocks for the synthesis of benzofuran-fused N-heterocycles.
Cascade reactions provide an efficient access to structurally complex molecules from simple and readily available starting materials.1 These reactions often involve inter- and intramolecular multibond-forming processes with simple operation, and thus minimize requisite reagents, cost, byproducts, time, and separation processes for the desired transformation. Among them, transition metal-catalyzed cascade reactions involving cyclization of alkynes have proven to be one of the most powerful methods to construct a wide variety of carbo- and heterocycles.1,2 In particular, there have been many reports on palladium-catalyzed synthesis of heterocycles via cyclization of alkynes, which possess nucleophilic oxygen or nitrogen moieties in close proximity to the carbon-carbon triple bonds, followed by coupling reaction with aryl, alkenyl, and acid halides (Scheme 1; $B = \text{CH}$).3 In contrast to reactions of alkynes, only a few examples on analogous reactions of nitriles have been reported (Scheme 1; $B = \text{N}$).4 To the best of his knowledge, the reported examples are limited to transition metal-catalyzed cascade reactions involving two-component coupling reactions of nitriles,5,6 while there is no example of three-component coupling reactions leading to heterocycles.7,8 Therefore, the development of such a cascade reaction of nitriles might be a significant contribution to organic synthesis, as it allows a rapid construction of
complicated molecules having carbon-carbon and carbon-heteroatom bonds.\(^9\)

As described in Chapter 5, the author found a novel palladium-catalyzed cycloisomerization of 2-(cyanomethyl)phenyl esters \(1\) leading to the formation of 3-acyl-2-aminobenzofurans \(2.\)^{10} The reaction involves oxidative cleavage of an acyl-oxygen bond of esters by a low-valent palladium complex, and subsequent intramolecular oxypalladation of a cyano moiety followed by isomerization via aza-\(\pi\)-allyl palladium complex (Scheme 2).

![Scheme 2](image)

Since 3-acyl-2-aminobenzofurans \(2\) have both an amino and a carbonyl group, they are useful building blocks for the synthesis of various benzofuran-fused heterocycles. The author envisioned that three-component coupling reactions of 2-(cyanomethyl)phenol \(3\), aryl halides, and CO can be an efficient and straightforward synthetic method for \(2\) (Scheme 3).\(^{11,12}\) In the course of investigation, the author found a unique cooperative catalytic system consisting of two different palladium complexes, which promoted the three-component
coupling reactions of nitriles, aryl halides, and CO.13,14

\textbf{Results and Discussion}

First, the palladium-catalyzed three-component coupling reaction of 2-(cyanomethyl)phenol 3a and 1.5 equiv of 4-bromotoluene in the presence of 1.5 equiv of Et\textsubscript{3}N in DMF at 100 °C under a CO atmosphere for 40 h was examined. Although Pd(PCy\textsubscript{3})\textsubscript{2} was effective for the cycloisomerization of 2-(cyanomethyl)phenyl ester 1a into 2a as described in Chapter 5, it was totally ineffective in the three-component coupling reaction even when Zn(OAc)\textsubscript{2} was used as an additive (Scheme 4).10 However, when the reaction was carried out in the presence of 5 mol% of Pd(PCy\textsubscript{3})\textsubscript{2} and 5 mol% of Pd(PPh\textsubscript{3})\textsubscript{4}, 2a was formed in 28% yield along with 1a in 42% yield.13

\begin{scheme}
\begin{eqnarray*}
3a + \text{Me} & \longrightarrow & \text{NH}_2 + 1a \\
\text{cat. [Pd]} & \quad & \text{Et}_3\text{N (1.5 equiv)} \\
\text{DMF, 100 °C} & \quad & \text{40 h, 1 atm} \\
\text{0%} & \quad & \text{0%}
\end{eqnarray*}

Pd(PCy\textsubscript{3})\textsubscript{2} (10 mol%), Zn(OAc)\textsubscript{2} \\
Pd(PCy\textsubscript{3})\textsubscript{2} (5 mol%), Pd(PPh\textsubscript{3})\textsubscript{4} (5 mol%)
\end{scheme}

Since the author has already found that Pd(PCy\textsubscript{3})\textsubscript{2} was the most effective catalyst for the cycloisomerization of 1a to 2a,10 he next optimized the reaction condition for alkoxy-carbonylation of 4-bromotoluene with 3a and CO. Results are summarized in Table 1.
When three-component coupling reaction of 3a, 4-bromotoluene, and CO was carried out using the combination of 5 mol% of Pd(OAc)$_2$ and 10 mol% of PPh$_3$ as a catalyst, 1a was obtained in 91% yield (entry 1). Although changing PPh$_3$ to more sterically hindered P(o-Tol)$_3$ and basic P(t-Bu)$_3$ deterred the carbonylation reaction, bidentate ligands such as dppf and DPEphos gave 1a in 82% and 92% yields, respectively (entries 2-5). Among the catalysts screened, Pd(PPh$_3$)$_4$ showed the best catalytic activity for the alkoxy carbonylation to afford 1a in 94% yield (entry 6). Next, various bases were examined when Pd(PPh$_3$)$_4$ was used as a catalyst. i-Pr$_2$EtN was comparably effective to afford 1a in 94% yield, while pyridine, K$_2$CO$_3$, and NaOEt were less effective, affording 1a in moderate yields (entries 7-10). It should be noted that a small amount of 3-acyl-2-(N-acylamino)benzofuran 4a was

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>base</th>
<th>conv. (%)</th>
<th>yield (%)b 1a</th>
<th>yield (%)b 4a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pd(OAc)$_2$/PPh$_3$ (1:2)</td>
<td>Et$_3$N</td>
<td>100</td>
<td>91</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Pd(OAc)$_2$/P(o-Tol)$_3$ (1:2)</td>
<td>Et$_3$N</td>
<td>68</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Pd(OAc)$_2$/P(t-Bu)$_3$ (1:2)</td>
<td>Et$_3$N</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Pd(OAc)$_2$/dppf (1:1)</td>
<td>Et$_3$N</td>
<td>100</td>
<td>82</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Pd(OAc)$_2$/DPEphos (1:1)</td>
<td>Et$_3$N</td>
<td>100</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Pd(PPh$_3$)$_4$</td>
<td>Et$_3$N</td>
<td>100</td>
<td>94</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Pd(PPh$_3$)$_4$</td>
<td>i-Pr$_2$EtN</td>
<td>100</td>
<td>94</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Pd(PPh$_3$)$_4$</td>
<td>pyridine</td>
<td>89</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Pd(PPh$_3$)$_4$</td>
<td>K$_2$CO$_3$</td>
<td>83</td>
<td>68</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>Pd(PPh$_3$)$_4$</td>
<td>NaOEt</td>
<td>100</td>
<td>79</td>
<td>4</td>
</tr>
<tr>
<td>11c</td>
<td>Pd(PPh$_3$)$_4$</td>
<td>Et$_3$N</td>
<td>100</td>
<td>94</td>
<td>0</td>
</tr>
</tbody>
</table>

aReaction conditions: 3a (0.20 mmol), ArBr (0.30 mmol), Et$_3$N (0.30 mmol), catalyst (0.01 mmol) in DMF (0.8 mL) under CO (1 atm). bIsolated yields. cPd(PPh$_3$)$_4$ (2 mol%).
obtained together with 1a, when inorganic bases such as K₂CO₃ and NaOEt were used (entries 9 and 10). However, the formation of 3-acyl-2-aminobenzofuran 2a was not observed at all in all the conditions listed in Table 1. These results show that the combination of Pd(PPh₃)₄ as a catalyst and Et₃N as a base was most effective for the alkoxyacyrnylation of 4-bromotoluene with 3a and CO. In addition, the alkoxyacyrnylation proceeded successfully even when the loading of Pd(PPh₃)₄ was decreased to 2 mol% (entry 11).

Finally, when the author carried out the three-component coupling reaction of 3a, 4-bromotoluene, and CO using Pd(PPh₃)₄ (2 mol%) and Pd(PCy₃)₂ (8 mol%), he obtained 2a in 52% yield (Scheme 5).

Scheme 5

![Scheme 5](image)

Under the optimized reaction conditions (1.5 equiv of aryl bromide, 2 mol % of Pd(PPh₃)₂, 8 mol % of Pd(PCy₃)₂, and 1.5 equiv of Et₃N in DMF at 100 °C under 1 atm of CO), the substrate scope was examined using several aryl halides. The results are summarized in Table 2. The reactions with aryl bromides having electron-withdrawing groups such as trifluoromethyl and chloro groups at the para positions afforded the corresponding 3-acyl-2-aminobenzofurans 2b and 2c in 84% and 74% yields, respectively (entries 1-2). A substituent at an ortho position such as a chloro group did not deter the reaction (entry 3). Three-component coupling reaction described here was also applicable to aryl halides having either moderately electron-withdrawing or electron-donating substituents, although a relatively longer reaction time was required for the completion of reactions (entries 4-6).
Although a coupling reaction with 4-bromoanisole was sluggish to give a small amount of 3-acyl-2-aminobenzofuran 2h, the yield was improved up to 42% yield using 4-iodoanisole instead of 4-bromoanisole (entries 7 and 8).

Table 2. Pd-catalyzed three-component coupling reactions using aryl halides, 3a, and CO leading to 3-acyl-2-aminobenzofurans\(^a\)

```
<table>
<thead>
<tr>
<th>entry</th>
<th>Ar</th>
<th>X</th>
<th>time (h)</th>
<th>product</th>
<th>yield (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-CF(_3)C(_6)H(_4)</td>
<td>Br</td>
<td>20</td>
<td>2b</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>4-ClC(_6)H(_4)</td>
<td>Br</td>
<td>30</td>
<td>2c</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>2-ClC(_6)H(_4)</td>
<td>Br</td>
<td>30</td>
<td>2d</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>4-FC(_6)H(_4)</td>
<td>Br</td>
<td>40</td>
<td>2e</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>2-Naph</td>
<td>Br</td>
<td>40</td>
<td>2f</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>Ph</td>
<td>Br</td>
<td>40</td>
<td>2g</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>4-MeOC(_6)H(_4)</td>
<td>Br</td>
<td>40</td>
<td>2h</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>4-MeOC(_6)H(_4)</td>
<td>I</td>
<td>40</td>
<td>2h</td>
<td>42</td>
</tr>
</tbody>
</table>
```

\(^a\)Reaction conditions: 3a (0.30 mmol), ArX (0.45 mmol), Et\(_3\)N (0.45 mmol), Pd(PPh\(_3\))\(_4\) (2 mol%), Pd(PC\(_y\)\(_3\))\(_2\) (8 mol%), Et\(_3\)N (1.5 equiv), DMF, 100 °C, 1 atm.

\(^b\)Isolated yields.

Furthermore, the substrate scope in variation of 2-(cyanomethyl)phenol was examined. As shown in Table 3, 2-(cyanomethyl)phenols possessing various substituents undergo the cascade reactions to give the corresponding 3-acyl-2-aminobenzofuran 2i-2l in moderate to good yield (entries 1-4). It should be noted that a remote ester group of 2m remained intact under the reaction conditions (entry 5). Silyloxy and methoxymethoxy groups were compatible with the reaction conditions to afford 2n and 2o in 70% and 72% yields, respectively (entries 6 and 7).
The most plausible catalytic cycle leading to 3-acyl-2-aminobenzofurans is shown in Figure 1. The Pd(PPh₃)₄-catalyzed alkoxycarbonylation of aryl halides, CO, and phenols produces 2-(cyanomethyl)phenyl esters (cycle A). Esters then participates in the second catalytic cycle, and are converted to 3-acyl-2-aminobenzofurans via cycloisomerization catalyzed by Pd(PCy₃)₂, which was described in Chapter 5 (cycle B).

Table 3. Pd-catalyzed three-component coupling reactions leading to 3-acyl-2-aminobenzofurans

<table>
<thead>
<tr>
<th>entry</th>
<th>product</th>
<th>yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td> (Ar = 4-CF₃C₆H₄)</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td> (Ar = Ph)</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td> (R = OBz)</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td> (R = OTBDMS)</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td> (OMOM)</td>
<td>72</td>
</tr>
</tbody>
</table>

aReaction conditions: 3 (0.30 mmol), ArBr (0.45 mmol), Et₃N (0.45 mmol), Pd(PPh₃)₄ (0.006 mmol), and Pd(PCy₃)₂ (0.024 mmol) in DMF (1.2 mL) under CO (1 atm). bIsolated yields.

The most plausible catalytic cycle leading to 3-acyl-2-aminobenzofurans is shown in Figure 1. The Pd(PPh₃)₄-catalyzed alkoxycarbonylation of aryl halides, CO, and phenols produces 2-(cyanomethyl)phenyl esters (cycle A). Esters then participates in the second catalytic cycle, and are converted to 3-acyl-2-aminobenzofurans via cycloisomerization catalyzed by Pd(PCy₃)₂, which was described in Chapter 5 (cycle B).
When the reaction was carried out using K₂CO₃ or NaOEt as a base and Pd(PPh₃)₄ as a catalyst, 3-acyl-2-(N-acylamino)benzofuran 4a was obtained in 9% and 4% yields together with ester 1a (Table 1, entries 9 and 10). The yield of 4a was increased to 73%, when Pd(OAc)₂, PPh₃ (Pd:P = 1:2), 3 equiv of 4-bromotoluene, and K₂CO₃ were used (Table 4, entry 1). Under the reaction conditions, a variety of aryl halides afford the corresponding 3-acyl-2-(N-acylamino)benzofurans 4b-4g in moderate to good yields (entries 2-7). In all cases, 3-acyl-2-aminobenzofurans 2 were not obtained at all. These results show that each reaction leading to 2 or 4 proceeds via different pathways controlled by a base used.

![Figure 1. Plausible reaction mechanism for the three-component coupling reaction.](image-url)
To gain insight into the reaction mechanism, 2a was heated with 4-bromotoluene and K₂CO₃ in the presence of a palladium catalyst. However, 4a was not obtained even in the presence of excess amount of 4-bromotoluene. This result clearly shows that the conversion of 3a to 4a did not proceed via 2a (Scheme 6).

Based on these results, the author proposes the reaction mechanism leading to 4 as shown in Scheme 7. The reaction proceeds via the aroylation of 3 followed by 1,4-benzoyl shift to afford intermediate A. The direct attack of a phenolate anion of A to a nitrile moity

<table>
<thead>
<tr>
<th>entry</th>
<th>Ar</th>
<th>X</th>
<th>product</th>
<th>yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-MeC₆H₄</td>
<td>Br</td>
<td>4a</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>4-CF₃C₆H₄</td>
<td>Br</td>
<td>4b</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>4-ClC₆H₄</td>
<td>Br</td>
<td>4c</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>Br</td>
<td>4d</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>2-Naph</td>
<td>Br</td>
<td>4e</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>4-MeOC₆H₄</td>
<td>I</td>
<td>4f</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>2-MeC₆H₄</td>
<td>I</td>
<td>4g</td>
<td>68</td>
</tr>
</tbody>
</table>

^aReaction conditions: 3a (0.30 mmol), ArBr (0.90 mmol), K₂CO₃ (0.90 mmol), Pd(OAc)₂ (0.030 mmol), and PPh₃ (0.060 mmol) in DMF (1.2 mL) under CO (1 atm).^bIsolated yields.
activated by arroylpalladium complexes gave a cyclic intermediate B, which results in the formation of the N-acyl-2-aminobenzofuran 4 by reductive elimination of palladium complex followed by aromatization.

Since benzofurans obtained from the present palladium-catalyzed three-component coupling reactions possess both an amino and a carbonyl group, they serve as key intermediates for the synthesis of benzofuran-fused nitrogen-containing heterocycles. For example, 3-acyl-2-aminobenzofuran 2g was converted into corresponding benzofuro[2,3-d]-pyrimidine derivative 8 in 97% yield by simply heating with formamide in the presence of 3 mol% of Sc(OTf)₃ (Scheme 8).

In conclusion, the author has demonstrated a palladium-catalyzed three-component coupling reaction of 2-(cyanomethyl)phenols, aryl halides, and CO leading to 3-acyl-2-aminobenzofuran 4 by reductive elimination of palladium complex followed by aromatization.
Chapter 6

benzofuran derivatives. The present transformation is composed of two types of reactions catalyzed by independent palladium complexes, respectively, i.e., (i) Pd(PPh₃)₄-catalyzed alkoxy carbonylation of aryl halides with 2-(cyanomethyl)phenols and (ii) Pd(PCy₃)₂-catalyzed cycloisomerization leading to 3-acyl-2-aminobenzofurans. Under the reaction conditions, a diverse array of functional groups, including chloro, silyloxy, methoxymethoxy as well as an ester are tolerated. Furthermore, choosing the base and palladium catalyst properly, two types of different 3-acyl-2-aminobenzofurans were obtained selectively. Since 2-(cyanomethyl)phenols can be easily prepared from commercially available salicylic acids in two steps, the present method provides a facile access to 3-acyl-2-aminobenzofurans.

Experimental

General Method. Unless otherwise noted, chemicals obtained from commercial suppliers were used without further purification. CO gas (purity 99.97%) was purchased from Sumitomo Seika Co. Solvents were dried by the usual methods and distilled before use. All reactions were carried out under nitrogen atmosphere. NMR spectra were measured for solutions in CDCl₃ or acetone-d₆ with tetramethylsilane as an internal standard (¹H and ¹³C): the following abbreviations are used; br s: broad singlet, s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet. IR spectra were recorded with an FT-IR spectrometer. Melting points (mp) are uncorrected. Element analyses were performed at Microanalytical Center of Kyoto University. High-resolution mass spectra (HRMS) was measured with JEOL JMX-SX 102A spectrometer.
Preparation of 2-(Cyanomethyl)phenols 3

2-(Cyanomethyl)phenol (3a): To a solution of LiAlH$_4$ (2.1 g, 55 mmol) in THF (100 mL) was added salicylic acid (6.9 g, 50 mmol) at 0 °C, and stirred at 60 °C overnight. The reaction mixture was cooled to 0 °C, and then degassed water (2 mL), 15 wt% NaOH aqueous solution (2 mL), and water (6 mL) were successively added. After stirring at room temperature for 1 h, the mixture was filtered and washed with Et$_2$O (50 mL × 3). The combined organic layer was washed with brine and dried over MgSO$_4$. The organic solvent was removed under reduced pressure to afford 2-hydroxymethyl phenol (4.5 g, 33.5 mmol, 67% yield) as a colorless oil. 1H NMR (400 MHz, CDCl$_3$): δ 2.26 (br, 1H), 4.86 (s, 2H), 6.84 (t, J = 7.3 Hz), 6.88 (d, J = 6.8 Hz, 1H), 7.04 (d, J = 6.8 Hz, 1H), 7.21 (t, J = 7.3 Hz, 1H). A solution of 2-hydroxymethyl phenol (3.9 g, 30 mmol) in DMF (30 mL) was added to sodium cyanide (2.9 g, 60 mmol), and the resulting mixture was stirred at 100 °C for 12 h. After the resulting solution was cooled to room temperature, it was poured into 10% HCl aqueous solution (30 mL), and extracted with Et$_2$O (30 mL × 3). The combined organic layer was dried over MgSO$_4$, and the organic solvent was removed under reduced pressure. The residue was filtered through a short silica gel pad followed by recrystallization from hexane/CHCl$_3$ gave 2-(cyanomethyl)phenol 3a (3.2 g, 24 mmol, 80% yield) as a pale yellow solid. 1H NMR (400 MHz, CDCl$_3$): δ 3.72 (s, 2H), 5.05 (br s, 1H), 6.80 (d, J = 7.9 Hz. 1H), 6.95 (t, J = 7.9 Hz, 1H), 7.20 (t, J = 7.9Hz, 1H), 7.33 (d, J = 7.9 Hz, 1H).

2-Cyanomethyl-6-methylphenol (3i): A yellow solid; mp 103.5-104.3 °C. IR (KBr): 762, 883, 958, 1097, 1160, 1193, 1216, 1333, 1411, 1472, 1595, 2255 (CN), 2926, 3422 (OH) cm$^{-1}$. 1H NMR (400 MHz, acetone-d$_6$): δ 2.15 (s, 3H), 3.67 (s, 2H), 6.69 (t, J = 7.3 Hz, 1H), 6.98 (d, J = 7.3 Hz, 1H), 7.05 (d, J = 7.3 Hz, 1H). 13C NMR (100 MHz, acetone-d$_6$): δ 16.4, 18.8, 118.9, 119.0, 120.9, 125.3, 127.8, 131.4, 153.4. HRMS
2-Cyanomethyl-5-methylphenol (3j): A yellow solid; mp 107.2-108.3 °C. IR (KBr): 734, 813, 858, 957, 1114, 1157, 1195, 1233, 1287, 1353, 1425, 1523, 1593, 1618, 2262 (CN), 2907, 2957, 3332 (OH) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.28 (s, 3H), 3.68 (s, 2H), 5.40 (br s, 1H), 6.60 (s, 1H), 6.75 (d, J = 7.8 Hz, 1H), 7.19 (d, J = 7.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 18.1, 21.1, 113.8, 116.1, 118.2, 121.9, 129.4, 139.8, 153.0. HRMS (FAB) calcd for M+H⁺ of C₉H₉NO 148.0762, found 148.0758.

5-Chloro-2-(cyanomethyl)phenol (3l): A orange solid; mp 108.7-109.5 °C. IR (KBr): 724, 822, 870, 910, 1086, 1119, 1228, 1284, 1351, 1426, 1505, 1607, 2268 (CN), 2914, 2974, 3328 (OH) cm⁻¹. ¹H NMR (400 MHz, acetone-d₆): δ 3.76 (s, 2H), 6.90 (d, J = 8.8 Hz, 1H), 7.14 (d, J = 8.8 Hz, 1H), 7.31 (s, 1H). ¹³C NMR (100 MHz, acetone-d₆): δ 18.4, 117.4, 118.4, 120.8, 124.7, 129.7, 129.9, 154.6. HRMS (FAB) calcd for M+H⁺ of C₈H₆ClNO 168.0216, found 168.0210.

2-Cyanomethyl-4-(tert-butyldimethylsilyloxy)phenol (3n): A yellow solid; mp 69.7-70.4 °C. IR (KBr): 780, 813, 912, 985, 1093, 1151, 1206, 1270, 1362, 1438, 1511, 1614, 2277 (CN), 2856, 2892, 2927, 2957, 3325 (OH) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.17 (s, 6H), 0.97 (s, 9H), 3.67 (s, 2H), 5.73 (br s, 1H), 6.66 (m, 2H), 6.82 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ -4.54, 18.1, 18.5, 25.6, 116.1, 117.5, 118.0, 120.4, 147.6, 149.3. HRMS (FAB) calcd for M+H⁺ of C₁₄H₂₁NO₂Si 264.1420, found 264.1428.
2-Cyanomethyl-4-(methoxymethoxy)phenol (3o): A yellow oil; IR (neat): 733, 810, 872, 1112, 1188, 1262, 1351, 1452, 1612, 2259 (CN), 2824, 2957, 3328 (OH) cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 3.48 (s, 3H), 3.66 (s, 2H), 5.10 (br s, 1H), 6.69 (d, \(J = 8.8\) Hz, 1H), 6.85 (d, \(J = 8.8\) Hz, 1H), 7.00 (s, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 18.5, 55.8, 95.2, 116.0, 117.5, 117.6, 117.9, 118.0, 148.7, 150.7. HRMS (FAB) calcd for M+H\(^+\) of C\(_{10}\)H\(_{11}\)NO\(_3\) 194.0817, found 194.0812.

General Procedure of Palladium-Catalyzed Three-component Coupling Reactions Leading to 3-Acyl-2-aminobenzofurans. A flame dried Schlenk flask was charged with Pd(PCy\(_3\))\(_2\) (10.7 mg, 0.016 mmol), Pd(PPh\(_3\))\(_4\) (4.6 mg, 0.0040 mmol), 2-(cyanomethyl)phenols 3 (0.20 mmol), aryl halides (0.30 mmol), Et\(_3\)N (0.042 mL, 0.30 mmol), and DMF (0.80 mL). The flask was then flushed with CO, and the system was closed. After the reaction mixture was stirred at 100 °C for the time specified in Scheme 4, 5 and Tables 1-3, it was diluted with Et\(_2\)O and filtered through a short silica gel pad. The filtrate was washed with brine, and the aqueous layer was extracted with Et\(_2\)O (10 mL × 3). The combined organic layer was dried over MgSO\(_4\), and then filtered. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt (v/v = 7/1-2/1) as eluents to afford the corresponding 3-acyl-2-aminobenzofurans 2.

2-Amino-3-benzoyl-7-methylbenzo[b]furan (2i): A yellow solid; mp 153.8-154.7 °C. IR (KBr): 749, 772, 849, 920, 1062, 1170, 1281, 1340, 1477, 1645 (C=O), 3198, 3366 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 2.40 (s, 3H), 6.70 (d, \(J = 7.3\) Hz, 1H), 6.84 (d, \(J = 6.8\) Hz, 1H), 6.89 (t, \(J = 7.3\) Hz, 1H), 7.11 (br s, 2H), 7.44-7.54 (m, 3H), 7.70 (d, \(J = 6.8\) Hz, 2H). \(^{13}\)C NMR (100 MHz,
CDCl₃): δ 14.7, 94.7, 116.5, 120.1, 123.3, 123.6, 125.8, 127.4, 128.3, 130.8, 140.9, 147.9, 166.4, 190.9. Anal. calcd for C₁₆H₁₃NO₂: C, 76.48; H, 5.21. found: C, 76.38; H, 5.50.

2-Amino-6-methyl-3-(4’-trifluoromethylbenzoyl)benzo[b]furan (2j):
A yellow solid; mp 126.8-127.3 °C. IR (KBr): 782, 810, 859, 904, 980, 1018, 1067, 1109, 1125, 1173, 1250, 1323, 1475, 1589, 1656 (C=O), 3165, 3351 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 2.35 (s, 3H), 6.64 (d, J = 8.3 Hz, 1H), 6.83 (d, J = 8.3 Hz, 1H), 7.03 (s, 1H), 7.25 (br s, 2H), 7.74 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 8.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 21.2, 94.2, 110.7, 118.2, 123.0, 123.8 (q, J = 271.9 Hz), 124.8, 125.4 (q, J = 3.3 Hz), 127.8, 132.4 (q, J = 32.2 Hz), 132.5, 144.1, 149.6, 166.9, 188.7. HRMS (FAB) calcd for M+H⁺ of C₁₇H₁₂F₃NO₂ 320.0898, found 320.0891.

2-Amino3-benzoyl-6-chlorobenzo[b]furan (2l): A pale yellow solid; mp 121.3-122.5 °C. IR (KBr): 759, 799, 858, 920, 993, 1073, 1177, 1242, 1347, 1435, 1478, 1589, 1658 (C=O), 3110, 3325 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.84 (d, J = 2.0 Hz, 1H), 6.99 (dd, J = 2.0, 8.8 Hz, 1H), 7.09 (br s, 2H), 7.13 (d, J = 8.8 Hz, 1H), 7.52 (d, J = 7.3 Hz, 2H), 7.49-7.59 (m, 1H), 7.67 (d, J = 7.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 94.0, 110.9, 118.8, 121.7, 127.3, 127.9, 128.5, 129.4, 131.3, 140.4, 147.5, 167.0, 190.7. Anal. calcd for C₁₅H₁₀ClNO₂: C, 66.31; H, 3.71. found: C, 66.34; H, 3.53.

5-(2-Amino-3-benzoylbenzo[b]furyl)benzoate (2m): A yellow solid; mp 145.4-146.3 °C. IR (KBr): 757, 800, 873, 923, 1004, 1065 1165, 1266, 1450, 1479, 1593, 1656 (C=O), 1722 (C=O), 3096, 3329 cm⁻¹.
1H NMR (400 MHz, CDCl$_3$): δ 6.72 (d, $J = 2.0$ Hz, 1H), 6.86 (dd, $J = 2.0$, 8.3 Hz, 1H), 7.17 (br s, 2H), 7.22 (d, $J = 8.8$ Hz, 1H), 7.46-7.50 (m, 5H), 7.61 (t, $J = 7.3$ Hz, 1H), 7.71 (d, $J = 7.3$ Hz, 2H), 8.14 (d, $J = 8.3$ Hz, 2H). 13C NMR (100 MHz, CDCl$_3$): δ 94.4, 110.4, 112.3, 115.2, 127.4, 127.5, 128.4, 128.5, 129.5, 130.1, 131.1, 133.5, 140.5, 146.7, 147.3, 165.5, 167.3, 190.5. Anal. calcd for C$_{22}$H$_{15}$NO$_4$: C, 73.94; H, 4.23. found: C, 73.77; H, 4.18.

2-Amino-3-benzoyl-5-(tert-butyldimethylsilyl)oxybenzo[b]-furan (2n): A yellow solid; mp 147.8-148.8 °C. IR (KBr): 752, 852, 920, 1073, 1156, 1232, 1364, 1438, 1479, 1590, 1655 (C=O), 3112, 3326 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 0.06 (s, 6H), 0.91 (s, 9H), 6.29 (d, $J = 2.9$ Hz, 1H), 6.52 (d, $J = 2.9$, 8.8 Hz, 1H), 7.04 (d, $J = 8.4$ Hz, 1H), 7.19 (br s, 2H), 7.45-7.55 (m, 3H), 7.67 (d, $J = 6.6$ Hz, 2H). 13C NMR (100 MHz, CDCl$_3$): δ -4.64, 18.1, 25.6, 94.6, 110.0, 110.1, 113.9, 127.0, 127.1, 128.3, 130.6, 140.9, 144.2, 152.1, 167.2, 190.7. HRMS (FAB) calcd for M+H$^+$ of C$_{21}$H$_{25}$NO$_3$Si 368.1682, found 368.1682.

General Procedure of Palladium-Catalyzed Three-component Coupling Reactions Leading to 3-Acyl-2-(N-acylamino)benzofurans. A flame dried Schlenk flask was charged with Pd(OAc)$_2$ (6.7 mg, 0.030 mmol), PPh$_3$ (15.7 mg, 0.060 mmol), 2-(cyanomethyl)phenol 3a (39.9 mg, 0.30 mmol), aryl halides (0.9 mmol), K$_2$CO$_3$ (124 mg, 0.9 mmol), and DMF (1.2 mL). The flask was then flushed with CO, and the system was closed. After the reaction mixture was stirred at 100 °C for the time specified in Table 4, it was diluted with Et$_2$O and filtered through a short silica gel pad. The filtrate was washed with brine, and the aqueous layer was extracted with Et$_2$O (10 mL \times 3). The combined organic layer was dried over MgSO$_4$, and then filtered. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt =
7/1-2/1 as eluents to afford the corresponding 3-acyl-2-(N-acylamino)benzofurans 6.

\[N-[3-(4'-Methylbenzoyl)-2-benzo[b]furyl]-4'-methylbenzamide \ (6a) \]: A yellow solid; mp 157.1-157.7 °C. IR (KBr): 745, 773, 828, 932, 1016, 1061, 1285, 1324, 1461, 1557, 1614 (C=O), 1712 (C=O), 2921, 3027 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 2.43 (s, 3H), 2.46 (s, 3H), 7.11-7.15 (m, 2H), 7.20-7.25 (m, 1H), 7.32 (d, \(J = 2.4\) Hz 2H), 7.33 (d, \(J = 2.4\) Hz, 2H), 7.58 (d, \(J = 8.3\) Hz, 1H), 7.71 (d, \(J = 7.8\) Hz, 2H), 8.01 (d, \(J = 8.3\) Hz, 2H) 12.2 (s, 1H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 21.5, 21.6, 100.0, 111.6, 120.2, 123.7, 123.8, 124.0, 124.2, 127.9, 128.2, 129.1, 129.6, 136.8, 142.8, 143.9, 150.7, 158.9, 163.1, 192.6. HRMS (FAB) calcd for M+H\(^+\) of C\(_{24}\)H\(_{19}\)NO\(_3\) 370.1443, found 370.1449.

\[N-[3-(4'-Trifluoromethylbenzoyl)-2-benzo[b]furyl]-4'-trifluoromethylbenzamide \ (6b) \]: A yellow solid; mp 176.2-176.9 °C. IR (KBr): 677, 751, 785, 855, 1014, 1068, 1124, 1170, 1287, 1326, 1462, 1558, 1617, 1718, 2361, 3077 cm\(^{-1}\). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.01 (d, \(J = 7.8\) Hz, 1H), 7.19 (t, \(J = 7.8\) Hz, 1H), 7.29 (t, \(J = 7.3\) Hz 1H), 7.61 (d, \(J = 8.3\) Hz, 1H), 7.83 (d, \(J = 8.3\) Hz, 4H), 7.91 (d, \(J = 8.3\) Hz, 2H), 8.21 (d, \(J = 7.8\) Hz, 2H), 12.3 (s, 1H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 100.3, 111.9, 119.9, 123.1, 123.4 (q, \(J = 272.3\) Hz), 123.6 (q, \(J = 272.3\) Hz), 124.6, 124.8, 125.7 (q, \(J = 3.3\) Hz), 126.2 (q, \(J = 3.3\) Hz), 128.3, 128.4, 133.8 (q, \(J = 32.3\) Hz), 134.8 (q, \(J = 32.3\) Hz), 135.4, 142.4, 150.8, 159.0, 161.9, 191.6. HRMS (FAB) calcd for M+H\(^+\) of C\(_{24}\)H\(_{13}\)F\(_6\)NO\(_3\) 478.0878, found: 478.0884.
Chapter 6

N-[3-(4'-Chlorobenzoyl)-2-benzo[b]furyl]-4'-chlorobenzamide (6c): A yellow solid; mp 181.2-181.9 °C. IR (KBr): 668, 742, 774, 845, 934, 1011, 1060, 1091, 1285, 1323, 1430, 1458, 1558, 1615, 1714, 2342, 2359. 3032. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (d, J = 7.6 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 7.27 (t, J = 7.6 Hz 1H), 7.52 (d, J = 8.3 Hz 4H), 7.60 (d, J = 8.3 Hz, 1H), 7.75 (d, J = 8.3 Hz, 2H), 8.04 (d, J = 8.3 Hz, 1H), 12.2 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 100.1, 111.9, 120.1, 123.5, 124.3, 124.6, 128.9, 129.3, 129.4, 129.6, 130.7, 137.6, 138.6, 139.8, 150.8, 159.0, 162.1, 191.6. HRMS (FAB) calcd for M+H⁺ of C₂₂H₁₃Cl₂NO₃ 410.0351, found 410.0344.

N-(3-Benzoyl-2-benzo[b]furyl)benzamide (6d): A yellow solid; mp 162.4-163.0 °C. IR (KBr): 622, 749, 860, 982, 1178, 1282, 1451, 1487, 1504, 1523, 1610, 1625, 1662, 2953, 3036, 3285 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (t, J = 7.8 Hz, 1H), 7.15 (t, J = 7.8 Hz, 1H), 7.26 (t, J = 8.8 Hz 1H), 7.52-7.65 (m, 7H), 7.81 (d, J = 6.8 Hz, 2H), 8.13 (d, J = 7.3 Hz, 2H), 12.3 (s, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 100.2, 111.8, 120.2, 123.9, 124.0, 124.4, 128.0, 128.1, 128.5, 129.1, 132.2, 132.4, 133.2, 139.5, 150.8, 159.0, 163.3, 193.0. HRMS (FAB) calcd for M+H⁺ of C₂₂H₁₅NO₃ 342.1130, found 342.1131.

N-[3-(2'-Naphtoyl)-2-benzo[b]furyl]-2'-naphthalene-carboxamide (6e): A yellow solid; mp 184.0-184.5 °C. IR (KBr): 698, 749, 806, 932, 1060, 1125, 1198, 1224, 1286, 1318, 1435, 1457, 1473, 1558, 1607, 1704, 2258, 3027 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.12-7.13 (m, 2H), 7.25-7.29 (m, 1H), 7.57-7.67 (m, 5H), 7.88-7.91 (dd, J = 1.5, 8.3 Hz, 1H), 7.93-7.97 (m, J = 3.4 Hz, 2H), 8.00 (d, J = 8.8 Hz, 1H),
8.02 (d, \(J = 8.8 \) Hz, 1H), 8.07 (d, \(J = 7.8 \) Hz, 1H), 8.17 (dd, \(J = 1.5, 8.3 \) Hz, 1H), 8.38 (s, 1H), 8.67 (s, 1H), 12.5 (br, 1H). \(^{13}\text{C} \text{NMR} (100 \text{ MHz, CDCl}_3): \delta 100.4, 111.8, 120.3, 123.6, 123.9, 124.0, 124.4, 126.9, 127.0, 127.8, 127.9, 128.1, 128.5, 128.6, 129.0, 129.1, 129.2, 129.3, 129.4, 129.5, 129.6, 132.4, 132.5, 135.1, 135.4, 136.7, 150.8, 159.0, 163.3, 192.8. HRMS (FAB) calcd for M+H\(^+\) of C\(_{30}\)H\(_{19}\)NO\(_3\) 442.1443, found 442.1440.

\(-[3-(4’-\text{Methoxybenzoyl})-2\text{-benzo}\{b\}\text{furyl}]-4’-\text{methoxy benzamide (6f)}: \) A yellow solid; \(\text{mp} 202.9-203.7 \) °C. IR (KBr): 749, 780, 840, 933, 1032, 1063, 1174, 1192, 1246, 1286, 1328, 1430, 1463, 1558, 1576, 1615, 1698, 3040. \(^1\text{H} \text{NMR} (400 \text{ MHz, CDCl}_3): \delta 3.90 \text{ (s, 3H)}, 3.93 \text{ (s, 3H)}, 7.03 \text{ (dd, } J = 1.5, 8.8 \text{ Hz, 4H)}, 7.18 \text{ (d, } J = 7.3 \text{ Hz, 1H)}, 7.24 \text{ (d, } J = 7.3 \text{ Hz, 1H)}, 7.26-7.27 \text{ (m, 1H)}, 7.61 \text{ (d, } J = 7.8 \text{ Hz, 1H)}, 7.84 \text{ (d, } J = 6.8 \text{ Hz, 2H)}, 8.09 \text{ (d, } J = 8.8 \text{ Hz, 2H)}, 12.2 \text{ (br, 1H).} \(^{13}\text{C} \text{NMR} (100 \text{ MHz, CDCl}_3): \delta 55.4, 55.5, 100.0, 111.8, 113.7, 114.3, 120.3, 123.7, 124.1, 124.2, 124.8, 130.1, 130.6, 132.0, 150.8, 159.0, 162.8, 163.0, 163.6, 191.7. HRMS (FAB) calcd for M+H\(^+\) of C\(_{24}\)H\(_{19}\)NO\(_5\) 402.1341, found 402.1344.

\(-[3-(2’-\text{Methylbenzoyl})-2\text{-benzo}\{b\}\text{furyl}]-2’-\text{methylbenzamide (6g)}: \) A yellow solid; \(\text{mp} 169.7-170.3 \) °C. IR (KBr): 738, 763, 929, 1054, 1174, 1221, 1284, 1322, 1434, 1461, 1558, 1592, 1621, 1708, 3063. \(^1\text{H} \text{NMR} (400 \text{ MHz, CDCl}_3): \delta 2.33 \text{ (s, 3H)}, 2.67 \text{ (s, 3H)}, 6.47 \text{ (d, } J = 7.8 \text{ Hz, 1H)}, 7.06 \text{ (t, } J = 8.3 \text{ Hz, 1H)}, 7.21 \text{ (t, } J = 8.3 \text{ Hz, 1H)}, 7.30-7.37 \text{ (m, 5H)}, 7.42-7.47 \text{ (m, 2H)}, 7.58 \text{ (d, } J = 7.8 \text{ Hz, 1H)}, 7.81 \text{ (d, } J = 7.8 \text{ Hz, 1H)}, 11.8 \text{ (s, 1H).} \(^{13}\text{C} \text{NMR} (100 \text{ MHz, CDCl}_3): \delta 19.1, 20.7, 100.8, 111.6, 119.4, 123.7, 123.9, 124.6, 126.0, 126.3, 126.4, 127.7, 130.2, 130.9, 131.7, 132.0, 133.2, 134.7, 138.7, 140.1, 150.7, 158.3,
165.5, 194.7. HRMS (FAB) calcd for M+H+ of C24H19NO3 370.1443, found 370.1444.

Synthesis of 4-Phenylbenzofuro[2,3-d]pyrimidine (8). To a solution of 2-amino-3-benzoylfuran 2g (94.9 mg, 0.40 mmol) in formamide (0.8 mL) was added Sc(OTf)3 (5.9 mg, 0.012 mmol), and the resulting mixture was stirred at 140 °C for 3 h. The reaction mixture was washed with water and brine, and then dried over MgSO4. The organic solvent was removed under reduced pressure and the residue was subjected to flash column chromatography on silica gel with hexane/AcOEt = 4/1 as eluents to afford 4-phenylbenzofuro[2,3-d]pyrimidine 8 as a white solid (95.5 mg, 0.39 mmol, 97% yield) as a white solid. mp 120.2-120.8 °C. IR (KBr): 750, 765, 816, 849, 930, 941, 1128, 1201, 1248, 1315, 1368, 1431, 1462, 1478, 1552, 1585, 3023, 3071 cm⁻¹. 1H NMR (400 MHz, CDCl₃): δ 7.30 (t, J = 7.3 Hz, 1H), 7.53 (t, J = 8.3 Hz, 1H), 7.60-7.68 (m, 4H), 7.91 (d, J = 7.8 Hz, 1H), 7.96-8.00 (m, 2H), 9.10 (s, 1H). 13C NMR (100 MHz, CDCl₃): δ 112.2, 112.3, 120.2, 122.8, 124.0, 128.7, 128.8, 129.2, 130.7, 137.1, 153.7, 155.4, 161.6, 168.9. Anal. calcd for C11H8N2O: C, 78.03; H, 4.09. found: C, 78.05; H, 4.37.

References and Notes

(2) (a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. *Chem. Rev.* 1996, 96, 635. (b)

Chapter 6

1771.

(9) Strecker-type three-component coupling reactions of nitriles with amines and carbonyl compounds leading to α-amino acid derivatives have been well investigated. See: (a) Strecker, A. *Ann. Chem. Pharm.* 1850, 75, 27. (b) Yet, L. *Angew. Chem. Int. Ed.* 2001, 40, 875. (c) Harald Gröger, H. *Chem. Rev.* 2003, 103, 2795.

(12) There has been only one precedent report on cycloisomerization of (2-hydroxy-6-nitrophenyl)acetonitrile leading to 2-amino-4-nitrobenzofurans. See: Makosza, M.; Danikiewicz, W.; Wojciechowski, K. *Liebigs. Ann. Chem.* 1988, 203.

(14) During the course of this study, Li et al. reported coupling and cyclization cascade reactions of nitriles leading to Luotonin A derivatives using two different palladium catalysts generated in situ from Pd(OAc)$_2$, dppf and DPEphos. See: ref 4e.

(15) Palladium-catalyzed alkoxy carbonylation reactions of aryl halides are well investigated. See: (a) Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V. *Carbonylation: Direct
Chapter 6

List of Publications

Chapter 1 “Copper-catalyzed Transformation of Carbonyl-en-nitrile Compounds: Vinylation, Imino Ene Reaction, and Alkynylation of 2-Aza-2,4-cyclopentadienone Intermediates Generated via Ritter-type Hydration and Dehydrative Cyclization Reactions”
Masahito Murai, Shigekazu Kawai, Koji Miki, Kouichi Ohe

Chapter 2 “Copper-catalyzed Addition Reactions of Aromatics and Ketones to 2-Aza-2,4-cyclopentadienone: Facile and Efficient Transformation of Carbonyl-ene-nitriles to 1H-Pyrrolin-2(5H)-ones”
Masahito Murai, Koji Miki, Kouichi Ohe

Chapter 3 “Atom-efficient Synthesis of α-Alkylidene-N-furylimines via Catalytic Vinylcarbene-transfer Reactions to Carbonyl-ene-nitrile Compounds”
Masahito Murai, Shotaro Yoshida, Koji Miki, Kouichi Ohe

Chapter 4 “Gallium-catalyzed Bromocyanation of Alkynes with Cyanogen Bromide: Regio- and Stereoselective Synthesis of Functionalized Nitriles”
Masahito Murai, Ryo Hatano, Kouichi Ohe
Submitted to *J. Am. Chem. Soc.*
List of Publications

Chapter 5 “A New Route to 3-Acyl-2-aminobenzofurans: Palladium-catalyzed
Cycloisomerisation of 2-(Cyanomethyl)phenyl esters”
Masahito Murai, Koji Miki, Kouichi Ohe

Chapter 6 “Palladium-catalyzed Three-component Coupling Reactions of
1-(Cyanomethyl)phenol, Aryl Halides and CO”
Masahito Murai, Kentaro Koumura, Kouichi Ohe
In preparation.
Other Publications

“Facile Synthesis of Trifluoromethyl-substituted Enynes: Remarkable Reactivity and Stereoselectivity of Tributyl(3,3,3-trifluoropropynyl)stannane in Carbostannylation of Alkynes”
Masaki Shimizu, Guofang Jiang, Masahito Murai, Youhei Takeda, Yoshiaki Nakao, Eiji Shirakawa, Tamejiro Hiyama

“Transition Metal-Catalyzed Ring-opening, Substitution, and Cyclopropanation Reactions via Vinylcarbene Complexes Generated from O-Propargyl Thiocarbamates”
Yuji Ikeda, Masahito Murai, Tomohiro Abo, Koji Miki, Kouichi Ohe

“Novel Generation of 3,3,3-Trifluoropropynyllithium and Transformation of the Carbonyl Adducts to Trifluoromethyl-substituted Allenes”
Masaki Shimizu, Masahiro Higashi, Youhei Takeda, Guofang Jiang, Masahito Murai, Tamejiro Hiyama
Synlett 2007, 7, 1163.

Masaki Shimizu, Masahiro Higashi, Youhei Takeda, Masahito Murai, Guofang Jiang, Yuiga Asai, Yoshiaki Nakao, Eiji Shirakawa, Tamejiro Hiyama
Acknowledgements

The studies described in this thesis have been carried out under the direction of Professor Kouichi Ohe from 2005 to 2010 at Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University.

First of all, the author wishes to express his sincerest gratitude to Professor Kouichi Ohe for his kind guidance, constant support, hearty encouragement, and warm enthusiasm throughout this study. The author would like to express his thanks and appreciation to Lecturer Koji Miki and Assistant Professor Kazuhiro Okamoto for their hearty advices, practical guidance, and stimulating discussion during the course of this study.

The author also would like to acknowledge to Professor Tamejiro Hiyama, Associate Professor Masaki Shimizu, and Assistant Professor Yoshiaki Nakao for their kind introduction to organometallic chemistry. The author is grateful to Assistant Professor Tetsuaki Fujihara for the help of X-ray crystal structure analysis and fruitful discussion.

The author acknowledges his appreciation to Professor Masaharu Nakamura and Professor Michinori Suginome for careful reviewing of this thesis and fruitful comments.

The author is deeply grateful to Dr. Katsuhiro Shimono, Mr. Masanori Nata, and Mr. Tomoaki Bando for their kind guidance in experiment techniques and fruitful discussions in his early days. Additionally, the author is thankful to Mr. Tomohiro Abo, Mr. Yuji Ikeda, Mr. Yusuke Nakanishi, Mr. Shotaro Yoshida, Mr. Takahiko Murata, Miss Sachie Kitabata, and Mr. Ryo Hatano for their active and valuable collaboration. Special thanks are also due to Mr. Toshiyuki Kowada for his constructive discussions, innovative ideas, and friendship. The author is obliged to Miss Mayumi Sakamoto and Mrs. Akemi Nagano for kindly supporting his daily work. The author also expresses his appreciation to all members of Professor Ohe’s group and Professor Hiyama’s group.
Acknowledgements

The author is thanking to Professor David J. Procter for giving him a chance to join the exciting and stimulating research group at the University of Manchester from August to November in 2008. The author is grateful to Dr. Guiditta Guazzelli, Mr. Tom Baker, Mr. Johannes Vogel, Mr. Hassan Harb, and all members of Professor Procter’s group for kind assistance during his stay at Manchester.

The author is grateful to the Japan Society of the Promotion of Science for Young Scientist for the financial support.

Finally, the author would like to express his sincere acknowledgement to his family, Mr. Koji Murai, Mrs. Keiko Murai, and Mr. Yasuhito Murai for their kind assistance and encouragement.

March 2010

Masahito Murai