<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>車輪とレールの接触特性が車両運動に及ぼす影響に関する研究</td>
<td></td>
</tr>
</tbody>
</table>
車輪とレールの接触特性が車両運動に及ぼす影響に関する研究

足立 雅和
目次

第１章 緒論 1
1.1 緒言 1
1.2 本論文の構成 2
参考文献 4

第２章 車両のダイナミクスを表す運動方程式 7
2.1 計算モデル 7
2.2 記号 7
2.3 直線走行解析の運動方程式 13
2.3.1 車両回転試験装置を考慮した運動方程式 16
2.3.2 セミアクティブダンパを考慮した運動方程式 16
2.4 曲線走行解析の運動方程式 18
2.4.1 クリープ力、輪重、横圧 22
2.4.2 緩和曲線の曲率 23
2.4.3 慣性力 23
2.4.4 レールに関する式 24
2.5 シミュレーションに用いた数値 24
2.6 固有値解析 28
2.7 時刻歴応答解析 33
2.7.1 直線走行解析 33
2.7.2 曲線走行解析 35
参考文献 37

第３章 台上走行試験における軌道不整模擬のための新しい加振方法 39
3.1 緒言 39
3.2 車両回転試験装置 39
3.2.1 車両回転試験装置の概要 39
3.2.2 車両回転試験装置と本線の違い 40
3.3 車両回転試験装置の新規方法 46
3.3.1 新加振方法による試験 46
3.3.2 新加振方法による車両試験のシミュレーション 48
3.3.3 車両回転試験装置による試験結果 49
3.4 考察 53
3.4.1 本線レール上の車両応答特性におけるピーク 53
3.4.2 本線レール上と軌条輪上の車両応答特性の違い 56
第4章 等価踏面勾配がセミアクティブ制御の効果に及ぼす影響 63
4.1 緒言
4.2 車両運動解析
4.2.1 スカイフックの原理
4.2.2 セミアクティブサスペンション
4.2.3 計算条件
4.3 セミアクティブ制御の効果
4.3.1 軌道条件
4.3.2 等価踏面勾配と制御の効果の関係
4.3.2.1 等価踏面勾配と車体左右振動加速度の関係
4.3.2.2 パッシブ状態の車体左右振動加速度
4.3.2.3 実測結果との検証
4.3.2.4 車体・台車間の左右相対速度およびモード
4.3.2.5 セミアクティブ制御の蛇行動への影響
4.4 緒言
参考文献

第5章 車輪とレールの摩耗を考慮した接触特性評価システムの開発 83
5.1 緒言
5.2 車輪とレールの接触特性評価システム
5.2.1 接触特性評価システムの概念
5.2.2 形状計測データの補間処理
5.2.3 車輪摩耗特性
5.2.4 車輪とレールの接触特性計算
5.2.4.1 車輪とレールの配置
5.2.4.2 輪軸のローリング
5.2.4.3 接触点の算出
5.2.4.4 等価踏面勾配の算出
5.3 接触特性評価システムによる解析
5.3.1 接触状態図
5.3.2 車輪半径の増分と接触角
5.3.3 等価踏面勾配
5.4 解析結果の検証
5.4.1 設計形状踏面の計算結果の検証
7.3.4 レール傾斜削正の影響
   7.3.4.1 レール傾斜削正形状
   7.3.4.2 スラック量による影響
7.4 車両運動解析
   7.4.1 計算条件
   7.4.2 解析結果
7.5 結言
参考文献

第8章 結論

謝辞
第1章 緒論

1.1 緒言
近年、鉄道車両のいっそうの高速化、安全性向上および快適性向上等の利用者のニーズが高まっており、さらなる鉄道車両の走行面での性能向上が望まれている。鉄道車両の走行性能向上を図るためには、車両運動を正確に把握して、問題点を抽出し、その改良を行っていくことが必要である。

鉄道の車両運動に影響を及ぼす因子は、台車の諸元や特性、車体に作用する空気圧、車輪・レール間の接触特性をはじめとした車両と軌道の境界問題などがあり、これらの因子が車両運動特性に及ぼす影響について検討されている。

台車の諸元や特性が車両運動に及ぼす影響については、鉄道車両の直線走行時における車体上下振動や乗り心地に関する研究(1)~(8)があり、台車諸元や特性を適正化することにより、車体上下振動低減や乗り心地改善を図るための方策が提案されている。また、鉄道車両の曲線通過性能に関しては、曲線通過性能向上のための台車の改良や開発など(9)~(13)がすすめられている。さらに、従来から、鉄道車両の走行安定性と曲線通過性能は相反する関係にあるとされてきたが、高速車両においても、曲線通過性能を損なうことなく乗り心地を改善すること、すなわち、走行安定性と曲線通過性能の調和を図ることが求められており、両面を検討した報告(14)(15)がある。

車体に作用する空気圧が車両運動に及ぼす影響については、トンネル内での変動空気圧が乗り心地に及ぼす影響に関する研究(16)や横風による車両の走行安全性に関する研究(17)などがあり、車両の空気圧変動問題の研究がすすめられている。

車両と軌道の境界条件に着目したものとして、軌道状態が車両運動に及ぼす影響については、脱線に関する研究がある。脱線のメカニズムに関する研究(18)や走行安全性に関する研究(19)~(22)などが報告されており、脱線を防ぐための対策が提案されている。

一方で、鉄道車両がレール上を走行する場合、車輪走行速度と車輪回転速度に差が生じ、車輪とレールの接触面にすべりが発生する。このすべりによって発生するクリープ力は、車両の走行速度、車輪とレールの形状や接触状態などにより変化し、鉄道車両の蛇行動や乗り心地、走行安全性に影響を及ぼす。したがって、鉄道車両の走行性能向上を図るためには、車輪とレールの接触特性が車両運動に及ぼす影響を研究することが重要となる。

車輪とレールの接触メカニズムに関する研究としては、車輪とレールの組み合わせの最適化に関する研究(23)(24)、最適な車輪踏面形状に関する研究(25)~(28)、車輪・レール間に発生するクリープ力に関する研究(29)~(32)がある。しかしながら、車両運動に影響を及ぼす因子のうち、特に車輪・レール間に発生するクリープ力特性が大きな影響を及ぼし、その重要性が大きいにもかかわらず、車輪とレールの接触特性が鉄道車両の運動特性に及ぼす影響について体系的に検討した報告はない。
以上のよう背景から，本研究では，車両運動特性に大きな影響を及ぼす因子である，
車輪とレールの接触特性が走行安全性や走行安定性等の車両運動特性に及ぼす影響につい
て検討することを目的とする。

1.2 本論文の構成

本研究は，1章から8章で構成されている。

第1章「緒論」では，本論文の目的，論文構成の概要を述べている。

第2章「鉄道車両のダイナミクスを表す運動方程式」では，本論文で用いる理論解析の
基礎となる運動方程式を示し，固有値振動数と振動モードについて述べる。

第3章～第7章は，図1.1に示すように，鉄道車両の直線走行性能に関する第3章およ
び第4章，曲線通過性能に関する第5章～第7章に大別できる。第5章で，車輪とレールの
接触特性解析手法を示し，第6章および第7章では，第5章の接触特性解析手法を用い
て，車輪とレールの接触特性が鉄道車両の曲線走行性能に及ぼす影響について述べる。

第3章「台上走行試験における軌道不整模擬のための新しい加振方法」では，実物大
の鉄道車両1車両を模擬走行させて，乗り心地や走行安定性を観測する車両試験装置に関
して，試験装置上において本線走行時の車両応答特性を精度よく再現できる手法について
述べる。

第4章「等価踏面勾配がセミアクティブ制御の効果に及ぼす影響」では，車両の走行
距離の増大に伴い，車輪踏面が摩耗して等価踏面勾配が大きくなるが，その等価踏面勾配
がセミアクティブ制御の効果に及ぼす影響について述べる。

第5章「車輪とレールの摩耗を考慮した接触特性評価システムの開発」では，車両運
動解析に必要な車輪・レール間の接触特性値に関して，従来と異なり，摩耗した車輪とレ
ール形状を扱うことができる接触特性解析手法およびその妥当性について述べる。

第6章「スラック拡大による鉄道車両の走行性向上に関する検討」では，スラック（軌道間隔）拡大による曲線通過性能などの走行性の向上について，シミュレーションと
台上試験による検討を行った結果について述べる。

第7章「車輪とレールの接触特性が鉄道車両の曲線通過性能に及ぼす影響」では，車
輪とレールの幾何学的な接触条件を変化させることにより曲線通過性能を向上させる方策
について述べる。

第8章「結論」では，本研究により得られたものをまとめる。
第2章 鉄道車両のダイナミクスを表す運動方程式

第3章 台上走行試験における軌道不整模擬のための新しい加振方法

第4章 等価踏面配列がセミアクティブ制御の効果に及ぼす影響

第5章 車輪とレールの摩耗を考慮した接触特性評価システムの開発

第6章 スラック拡大による鉄道車両の走行性向上に関する検討

第7章 車軌とレールの接触特性が鉄道車両の曲線通過性能に及ぼす影響

Fig.1.1 Relation of each chapter
参考文献

(22) 永瀬和彦, 橋弘矩, 低速域における乗り上がり脱線防止のための一提案, 日本機械学会論文集 C 編, Vol.74, No.744 (2008), pp.2605-2612.


第 2 章 鉄道車両のダイナミクスを表す運動方程式

2.1 計算モデル

本研究の計算に用いた 1 車両の左右系のシミュレーションモデルを図 2.1 および図 2.2 に示す。車体と台車に関しては、左右、ヨーイング、ローリングおよび前後の 4 自由度、輪軸に関しては、左右、ヨーイングおよび前後の 3 自由度、中間自由度としてヨーダンパストローク、空気ばね上下変位および左右動ダンパストロークを考慮し、合計 34 自由度（車体 1×4=4、台車 2×4=8、輪軸 3×4=12、ヨーダンパストローク 4、空気バネ上下変位 2、左右動ダンパストローク 4）である。車体と台車の XY 平面図に関して、第 3 章の直線走行解析においては、図 2.1-(a)のモデル図を用いる。第 4 章では、車体と台車間にセミアクティブダンパ（詳細については第 4 章で述べる。）を考慮し、図 2.1-(a)および図 2.2-(a)の代わりにそれぞれ、図 2.1-(c)および図 2.2-(b)のモデルを用いる。第 5 章および第 6 章の曲線走行解析においては、図 2.1-(a)の代わりに図 2.1-(d)のモデル図を用いる。また、曲線走行解析に用いた座標を図 2.3 に示す。

2.2 記号

車両の進行方向を正として X 軸、まくらぎ方向で進行方向右側を正として Y 軸、上下方向は上を正として Z 軸とする。本研究で用いる記号は、表 2.1 のとおりである。ただし、

\[ i = 1 \sim 4 \text{ (軸) }, \quad j = 1 \sim 2 \text{ (台車) } \]

Fig.2.1-(a) Simulation model used for straight line running simulation
(a car body and bogies of XY plane)
Fig. 2.1-(b) Simulation model
(a bogie and wheelsets of XY plane)

Fig. 2.1-(c) Simulation model with semi-active damper
(a car body and bogies of XY plane)
Fig. 2.1-(d) Simulation model used for curve running simulation
(a car body and bogies of XY plane)

Fig. 2.2-(a) Simulation model (YZ plane)
Fig.2.2-(b) Simulation model with semi-active damper (YZ plane)

Fig.2.3 Coordinates in curving
<table>
<thead>
<tr>
<th>Notation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M$ , $M_f$ , $M_w$</td>
<td>車体質量，台車枠質量，輪軸質量</td>
</tr>
<tr>
<td>$Y_b$ , $Y_f$ , $Y_w$</td>
<td>車体左右変位，台車枠左右変位，輪軸左右変位</td>
</tr>
<tr>
<td>$X_b$ , $X_f$ , $X_w$</td>
<td>車体前後変位，台車枠前後変位，輪軸前後変位</td>
</tr>
<tr>
<td>$Y_r$</td>
<td>軌条軌左右変位，または，通り不整左右変位</td>
</tr>
<tr>
<td>$Y_{br}$ , $Y_{fr}$</td>
<td>左右動ダンパ中間自由度(前位側)，(後位側)</td>
</tr>
<tr>
<td>$X_{br}$ , $X_{fr}$</td>
<td>ヨーダンパ中間自由度(進行方向左側)，(進行方向右側)</td>
</tr>
<tr>
<td>$\phi_{bf}$</td>
<td>空気ばね上下中間自由度</td>
</tr>
<tr>
<td>$\phi_b$ , $\phi_f$ , $\phi_w$</td>
<td>車体ヨー角，台車枠ヨー角，輪軸ヨー角</td>
</tr>
<tr>
<td>$Y_{w}$ , $\phi_w$ , $\phi_{w}$</td>
<td>輪軸左右変位，輪軸ヨー角，輪軸ロール角</td>
</tr>
<tr>
<td>$I_{bx}$ , $I_{fx}$ , $I_{wx}$</td>
<td>車体ロール慣性半径，台車枠ロール慣性半径，輪軸ロール慣性半径</td>
</tr>
<tr>
<td>$I_{by}$ , $I_{fy}$ , $I_{wy}$</td>
<td>車体ヨー慣性半径，台車枠ヨー慣性半径，輪軸ヨー慣性半径</td>
</tr>
<tr>
<td>$K_{bx}$ , $K_{fy}$ , $K_{wy}$</td>
<td>軸ばね前後剛性，左右剛性，上下剛性／軸</td>
</tr>
<tr>
<td>$C_{bx}$ , $C_{fy}$ , $C_{wy}$</td>
<td>軸ばね前後減衰係数，軸ばね左右減衰係数，軸ダンパ上下減衰係数／軸</td>
</tr>
<tr>
<td>$K_{bx}$ , $K_{by}$</td>
<td>空気ばね前後剛性，左右剛性／個</td>
</tr>
<tr>
<td>$C_{bx}$ , $C_{by}$</td>
<td>空気ばね前後減衰係数，左右減衰係数／個</td>
</tr>
<tr>
<td>$K_2$</td>
<td>空気圧縮によるばね上下剛性／個</td>
</tr>
<tr>
<td>$K_3$</td>
<td>有効受圧面積変化による空気ばね上下剛性／個</td>
</tr>
<tr>
<td>$N_d$</td>
<td>空気ばね容積比／個</td>
</tr>
<tr>
<td>$C_2$</td>
<td>空気ばね絞りによる上下減衰係数／個</td>
</tr>
<tr>
<td>$K_0$ , $C_0$</td>
<td>ヨーダンパ直列剛性，ヨーダンパ減衰係数／本</td>
</tr>
<tr>
<td>$K_{pD}$ , $C_{KD}$</td>
<td>左右動ダンパ直列剛性，左右動ダンパ減衰係数／本</td>
</tr>
<tr>
<td>$K_j$ , $C_j$</td>
<td>連結器剛性，連結器減衰係数／車体</td>
</tr>
<tr>
<td>$K_1$ , $C_{xi}$</td>
<td>1本リンク前後剛性，1本リンク前後減衰係数／本</td>
</tr>
<tr>
<td>$K_{bb}$</td>
<td>1本リンク左右剛性／本</td>
</tr>
<tr>
<td>$A_{r}$</td>
<td>左右動ダンパ取付間隔</td>
</tr>
<tr>
<td>$A_{d}$</td>
<td>軸距(車軸中心間隔)</td>
</tr>
<tr>
<td>$A_{L1}$</td>
<td>軸はり長さ</td>
</tr>
<tr>
<td>$2B$</td>
<td>車輪とレールの左右接触点間隔</td>
</tr>
<tr>
<td>$2B_0$</td>
<td>ヨーダンパ取付間隔</td>
</tr>
<tr>
<td>$2B_1$</td>
<td>軸ばね取付間隔</td>
</tr>
<tr>
<td>$2B_2$</td>
<td>空気ばね取付間隔</td>
</tr>
<tr>
<td>$2B_{nD}$</td>
<td>軸ダンパ取付間隔</td>
</tr>
<tr>
<td>$2D$</td>
<td>台車中心間距離</td>
</tr>
<tr>
<td>$H_2$</td>
<td>台車重心から左右動ダンパまでの高さ</td>
</tr>
<tr>
<td>$H_3$</td>
<td>台車重心から空気ばね下面までの高さ</td>
</tr>
<tr>
<td>$H_5$</td>
<td>空気ばね上面から左右動ダンパまでの高さ</td>
</tr>
<tr>
<td>$H_s$</td>
<td>空気ばね上面から車体重心までの高さ</td>
</tr>
<tr>
<td>$H_7$</td>
<td>ヨーダンパ中間自由度(進行方向左側)，(進行方向右側)</td>
</tr>
<tr>
<td>$H_G$</td>
<td>車体重心高さ</td>
</tr>
<tr>
<td>符号</td>
<td>訳</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>$\alpha_i$</td>
<td>輪軸の重心位置における遠心加速度</td>
</tr>
<tr>
<td>$V$</td>
<td>速度</td>
</tr>
<tr>
<td>$Q_x, Q_y$</td>
<td>外軌輪横圧, 内軌輪横圧</td>
</tr>
<tr>
<td>$F_{xL}, F_{xR}$</td>
<td>縦クリープ力</td>
</tr>
<tr>
<td>$F_{yL}, F_{yR}$</td>
<td>横クリープ力</td>
</tr>
<tr>
<td>$\varepsilon_{xL}, \varepsilon_{xR}$</td>
<td>接触パラメータ</td>
</tr>
<tr>
<td>$F_{x1}, F_{y1}$</td>
<td>縦方向（前後方向）の線形クリープ係数</td>
</tr>
<tr>
<td>$S_{xL}, S_{xR}$</td>
<td>縦クリープ率</td>
</tr>
<tr>
<td>$S_{yL}, S_{yR}$</td>
<td>横クリープ率</td>
</tr>
<tr>
<td>$R_0$</td>
<td>円曲線半径</td>
</tr>
<tr>
<td>$R_{Ta}$</td>
<td>緩和曲線での曲線半径</td>
</tr>
<tr>
<td>$D_L$</td>
<td>緩和曲線長</td>
</tr>
<tr>
<td>$r_0$</td>
<td>中立位置の車輪半径</td>
</tr>
<tr>
<td>$r_{iL}, r_{iR}$</td>
<td>左右変位時の左右車輪半径</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>等価面積勾配</td>
</tr>
<tr>
<td>$\mu$</td>
<td>車輪・レール間の摩擦係数</td>
</tr>
<tr>
<td>$\beta$</td>
<td>レビ・シャルテの指数</td>
</tr>
<tr>
<td>$N_{xL}, N_{xR}$</td>
<td>車輪・レール接触時の法線力</td>
</tr>
<tr>
<td>$\alpha_{xL}, \alpha_{xR}$</td>
<td>車輪踏面の左右接触角</td>
</tr>
<tr>
<td>$R_{xy}, R_{yy}$</td>
<td>車輪の前後方向の曲率半径, 左右方向の曲率半径</td>
</tr>
<tr>
<td>$R_{zL}, R_{zR}$</td>
<td>レールの前後方向の曲率半径, 左右方向の曲率半径</td>
</tr>
<tr>
<td>$S_1$</td>
<td>1 転蛇行動波長</td>
</tr>
<tr>
<td>$H_L$</td>
<td>左車輪・左レール間の高さ方向距離の最小値</td>
</tr>
<tr>
<td>$H_R$</td>
<td>右車輪・右レール間の高さ方向距離の最小値</td>
</tr>
<tr>
<td>$C_s$</td>
<td>円曲線におけるカント</td>
</tr>
<tr>
<td>$B_R$</td>
<td>円曲線における軌道間隔</td>
</tr>
<tr>
<td>$\theta_W$</td>
<td>輪軸位置におけるカントによる軌道面の傾き角</td>
</tr>
<tr>
<td>$M_R$</td>
<td>レール質量</td>
</tr>
<tr>
<td>$K_R$</td>
<td>レールの左右ばね剛性</td>
</tr>
<tr>
<td>$C_R$</td>
<td>レールの左右減衰係数</td>
</tr>
<tr>
<td>$Y_{bL}, Y_{bR}$</td>
<td>レール左右変位</td>
</tr>
</tbody>
</table>
2.3 直線走行解析の運動方程式

第3章および第4章の直線走行解析における運動方程式を以下に示す。運動方程式はラグランジュの運動方程式を用いて求められる。

車体と台車に関しては、左右、ヨー、ロールおよび前後方向の運動方程式を、軸関係しては、左右、ヨーおよび前後方向の運動方程式を示す。車体の運動方程式は式(2.1)~(2.4)のように示される。

車体の左右方向の運動方程式

\[
M_{g} \cdot \ddot{Y}_{b} = -2K_{by} \left\{ 2Y_{b} + 2H_{b} \cdot \phi_{b} - Y_{t1} - Y_{t2} + H_{1} \cdot (\phi_{t1} + \phi_{t2}) \right\} - K_{o} \left\{ 4Y_{b} + 4(H_{b} + H_{2}) \phi_{b} - 2(Y_{t1} + Y_{t2}) + 2H_{2} \cdot (\phi_{t1} + \phi_{t2}) - Y_{o1F} - Y_{o2F} - Y_{o1R} - Y_{o2R} \right\}
\]

(2.1)

車体のヨー方向の運動方程式

\[
M_{g} \cdot \ddot{\phi}_{b} = 2D \cdot K_{by} \left\{ -2D \cdot \phi_{b} + Y_{t1} - Y_{t2} - H_{1} \cdot (\phi_{t1} - \phi_{t2}) \right\} - 2B_{2} \cdot K_{o} \left\{ 2\phi_{b} - \phi_{t1} - \phi_{t2} \right\} + (D + A1) \cdot K_{o} \left\{ -2(D + A1) \phi_{b} + Y_{t1} - Y_{t2} - H_{1} \cdot (\phi_{t1} - \phi_{t2}) + A1 \cdot (\phi_{t1} - \phi_{t2}) + Y_{o1F} - Y_{o2F} \right\} + (D - A1) \cdot K_{o} \left\{ -2(D - A1) \phi_{b} + Y_{t1} - Y_{t2} - H_{1} \cdot (\phi_{t1} - \phi_{t2}) - A1 \cdot (\phi_{t1} - \phi_{t2}) + Y_{o1F} - Y_{o2F} \right\} - B_{o} \cdot K_{o} \left\{ 2\phi_{b} - \phi_{t1} - \phi_{t2} \right\} + X_{o1L} - X_{o1R} + X_{o2L} - X_{o2R} \right\}
\]

(2.2)

車体のロール方向の運動方程式

\[
M_{g} \cdot \ddot{\phi}_{b} = -2H_{b} \cdot K_{by} \left\{ 2Y_{b} - Y_{t1} - Y_{t2} + 2H_{b} \cdot \phi_{b} + H_{1} \cdot (\phi_{t1} + \phi_{t2}) \right\} - 2B_{2} \cdot K_{o} \left\{ 2\phi_{b} - \phi_{t1} - \phi_{t2} - \phi_{o1} - \phi_{o2} \right\} - 2B_{2} \cdot K_{o} \left\{ 2\phi_{b} - \phi_{t1} - \phi_{t2} \right\} - (H_{1} + H_{2}) \cdot K_{o} \left\{ 4Y_{b} + 4(H_{1} + H_{2}) \phi_{b} - 2(Y_{t1} + Y_{t2}) + 2H_{2} \cdot (\phi_{t1} + \phi_{t2}) - Y_{o1F} - Y_{o2F} - Y_{o1R} - Y_{o2R} \right\}
\]

(2.3)

車体の前後方向の運動方程式

\[
M_{g} \cdot \ddot{X}_{b} = -2K_{sx} \left\{ 2X_{b} - X_{t1} - X_{t2} \right\} + K_{o} \left\{ 4X_{b} - 2(X_{t1} + X_{t2}) + X_{o1L} - X_{o1R} + X_{o2L} - X_{o2R} \right\} - K_{o} \left\{ 2X_{b} - X_{t1} - X_{t2} \right\} - C_{x} \cdot \ddot{X}_{b} - C_{j} \cdot \dot{X}_{b} - C_{o} \cdot X_{b} \right\}
\]

(2.4)

次に、台車についての運動方程式を式(2.5)~(2.8)に示す。以下は、前台車についてのみの式を示している。後台車ではT1をT2とし、W1、W2をそれぞれW3、W4とする。さ
らに，$D_1 F$, $D_1 R$, $0_1 L$, $0_1 R$, $0_7 1$をそれぞれ$D_2 F$, $D_2 R$, $0_2 L$, $0_2 R$, $0_7 2$として得ることができる。また，式(2.5)および式(2.7)では，$D$が$-D$となる。

前台車の左右方向の運動方程式

$$M_y \cdot \ddot{Y}_{1T} = 2K_y \{Y_y + D \cdot \phi_y + H_y \cdot \phi_y - Y_{1T} + H_1 \cdot \phi_1 \}$$

$$+ K_y \{2Y_y + 2D \cdot \phi_y + 2(H_y + H_a) \phi_y - 2Y_{1T} + 2H_1 \cdot \phi_1 - Y_{D1F} - Y_{D1R} \}$$

$$- K_v \{2Y_{1T} + 2H_1 \cdot \phi_1 - Y_{w1} - Y_{w2} + AL1 \cdot (\phi_{w1} - \phi_{w2}) \}$$

$$- C_v \{2Y_{1T} + 2H_1 \cdot \phi_1 - Y_{w1} - Y_{w2} + AL1 \cdot (\phi_{w1} - \phi_{w2}) \}$$  (2.5)

前台車のヨー方向の運動方程式

$$M_y \cdot \dot{\phi}_{1T} \cdot I_{1T} = 2B_y^2 \cdot K_{yy} (\phi_y - \phi_{w1})$$

$$+ A_1 \cdot K_{yy} \{2A_1 (\phi_y - \phi_{w1}) - Y_{D1F} + Y_{D1R} \}$$

$$+ B_6 \cdot K_{yy} \{2B_y (\phi_y - \phi_{w1}) + X_{01L} - X_{01R} \}$$

$$+ (A - AL1) \cdot K_{yy} \{-2(A - AL1) \phi_{w1} + Y_{w1} - Y_{w2} - AL1 \cdot (\phi_{w1} + \phi_{w2}) \}$$

$$+ (A - AL1) \cdot C_{yy} \{2(A - AL1) \phi_{w1} + Y_{w1} - Y_{w2} - AL1 \cdot (\phi_{w1} + \phi_{w2}) \}$$

$$- B_1 \cdot K_{xx} (\phi_{w1} - \phi_{w2})$$

$$- B_2 \cdot C_{xx} (\phi_{w1} - \phi_{w2})$$  (2.6)

前台車のロール方向の運動方程式

$$M_y \cdot \ddot{\phi}_{1T} \cdot I_{1T} = -2H_y \cdot K_{yy} \{Y_y + D \cdot \phi_y + H_y \cdot \phi_y - Y_{1T} + H_1 \cdot \phi_1 \}$$

$$- H_y \cdot K_{yy} \{2Y_y + 2D \cdot \phi_y + 2(H_y + H_a) \phi_y - 2Y_{1T} + 2H_1 \cdot \phi_1 - Y_{D1F} - Y_{D1R} \}$$

$$- H_1 \cdot K_{yy} \{2Y_{1T} + 2H_1 \cdot \phi_1 - Y_{w1} - Y_{w2} + AL1 \cdot (\phi_{w1} - \phi_{w2}) \}$$

$$- H_1 \cdot C_{yy} \{2Y_{1T} + 2H_1 \cdot \phi_1 - Y_{w1} - Y_{w2} + AL1 \cdot (\phi_{w1} - \phi_{w2}) \}$$

$$- 2K_{yy} \cdot B_2^2 \cdot \phi_{w1}$$

$$- 2C_{yy} \cdot B_2^2 \cdot \phi_{w1}$$

$$+ 2B_2^2 \cdot \{K_2 (\phi_y - \phi_{w1}) - K_3 (\phi_y - \phi_{w1}) \}$$  (2.7)

前台車の前後方向の運動方程式

$$M_y \cdot \ddot{X}_{1T} = 2K_{xx} \{X_{1T} \}$$

$$+ K_x \{2(X_{1T} - X_{01L} - X_{01R} \}$$

$$+ K_x \cdot (X_y - X_{1T})$$

$$+ C_{xx} \cdot (\dot{X}_y - \dot{X}_{1T})$$

$$- K_{xx} \{2X_{1T} - X_{w1} - X_{w2} \}$$

$$- C_{xx} \{2X_{1T} - \dot{X}_{w1} - \dot{X}_{w2} \}$$  (2.8)
次に、輪軸についての運動方程式を式(2.9)~(2.11)に示す。ここで、\(i = 1\) または \(i = 2\)のときは \(j = 1, \ i = 3\) または \(i = 4\) のときは \(j = 2\) である。

### 輪軸の左右方向の運動方程式

\[
M_w \cdot \ddot{Y}_{w} = K_w \left[ Y_{y2} - (-1)(A - AL1) \phi_{q2} + H_1 \cdot \phi_{y2} - Y_{w} - (-1) \cdot \phi_{w} \cdot AL1 \right] \\
+ C_w \left[ \ddot{Y}_{y2} - (-1)(A - AL1) \phi_{q2} + H_1 \cdot \phi_{y2} - Y_{w} - (-1) \cdot \phi_{w} \cdot AL1 \right] \\
- 2F_{w1} \left( \frac{\ddot{Y}_{w}}{V} \cdot B + \lambda \cdot \frac{r_n}{r_0} - \phi_{w} \right)
\]  (2.9)

### 輪軸のヨー方向の運動方程式

\[
M_w \cdot \ddot{\phi}_{w} = (-1) \cdot K_w \cdot AL1 \cdot Y_{y2} - (-1)(A - AL1) \phi_{q2} + H_1 \cdot \phi_{y2} - Y_{w} - (-1) \cdot AL1 \cdot \phi_{w} \\
+ (-1) \cdot C_w \cdot AL1 \cdot \ddot{Y}_{y2} - (-1)(A - AL1) \phi_{q2} + H_1 \cdot \phi_{y2} - Y_{w} - (-1) \cdot AL1 \cdot \phi_{w} \\
+ K_{w} \cdot B_{w} \cdot (\phi_{q2} - \phi_{w}) \\
+ C_{w} \cdot B_{w} \cdot (\phi_{y2} - \phi_{w}) \\
- 2F_{w1} \cdot B \cdot \lambda \cdot (Y_{w} - Y_{w})/r_0 \\
- 2F_{w1} \cdot B^2 \cdot \phi_{w}/V
\]  (2.10)

### 輪軸の前後方向の運動方程式

\[
M_w \cdot \ddot{X}_{w} = K_w \left(X_{y1} - X_{w} \right) \\
+ C_w \left( \ddot{X}_{y1} - \ddot{X}_{w} \right) \\
- 2F_{w1} \cdot \ddot{X}_{w}/V
\]  (2.11)

次に、左右動ダンパ、ヨーダンパおよび空気ばね上下方向に関する運動方程式を示す。

### 左右動ダンパに関する運動方程式

\[
C_{kd} \cdot \dot{Y}_{d1F} = K_D \cdot (Y_{a} + (D + AL) \cdot \phi_{a} + (H_3 + H_4) \phi_{a} - Y_{y1} - AL \cdot \phi_{y1} + H_1 \cdot \phi_{y2} - Y_{w} - AL \cdot \phi_{w}) \\
- 2F_{d1F} \cdot B \cdot (Y_{a} - X_{a})/r_0 \\
(2.12)
\]

### ヨーダンパに関する運動方程式

\[
C_{kd} \cdot \dot{Y}_{d2F} = K_D \cdot (Y_{a} - (D - AL) \cdot \phi_{a} + (H_3 + H_4) \phi_{a} - Y_{y2} - AL \cdot \phi_{y2} + H_1 \cdot \phi_{y2} - Y_{w} - AL \cdot \phi_{w}) \\
- 2F_{d2F} \cdot B \cdot (Y_{a} - X_{a})/r_0 \\
(2.13)
\]

### 空気ばねの上下方向に関する運動方程式

\[
C_{kd} \cdot \dot{Y}_{d3} = K_D \cdot (Y_{a} - (D + AL) \cdot \phi_{a} + (H_3 + H_4) \phi_{a} - Y_{y2} + AL \cdot \phi_{y2} + H_1 \cdot \phi_{y2} - Y_{w} + AL \cdot \phi_{w}) \\
- 2F_{d3} \cdot B \cdot (Y_{a} - X_{a})/r_0 \\
(2.14)
\]

\[
C_{kd} \cdot \dot{Y}_{d4} = K_D \cdot (Y_{a} - (D - AL) \cdot \phi_{a} + (H_3 + H_4) \phi_{a} - Y_{y2} - AL \cdot \phi_{y2} + H_1 \cdot \phi_{y2} - Y_{w} + AL \cdot \phi_{w}) \\
- 2F_{d4} \cdot B \cdot (Y_{a} - X_{a})/r_0 \\
(2.15)
\]

\[
C_{d} \cdot \ddot{X}_{a1} = -K_a \cdot B_6 \cdot \phi_{a} - X_{a} - B_6 \cdot \phi_{y1} - X_{y1} + X_{a1} \\
(2.16)
\]

\[
C_{d} \cdot \ddot{X}_{a2} = -K_a \cdot B_6 \cdot \phi_{a} - X_{a} - B_6 \cdot \phi_{y2} + X_{y2} + X_{a2} \\
(2.17)
\]

\[
C_{d} \cdot \ddot{X}_{a3} = -K_a \cdot B_6 \cdot \phi_{a} - X_{a} - B_6 \cdot \phi_{y2} - X_{y2} - X_{a3} \\
(2.18)
\]

\[
C_{d} \cdot \ddot{X}_{a4} = K_a \cdot B_6 \cdot \phi_{a} + X_{a} - B_6 \cdot \phi_{y2} - X_{y2} - X_{a4} \\
(2.19)
\]

\[
C_{d} \cdot \ddot{\phi}_{a1} = \{K_z(\phi_{a} - \phi_{y1} - \phi_{a1}) - N_z \cdot K_z \cdot \phi_{a1} \} \\
(2.20)
\]

\[
C_{d} \cdot \ddot{\phi}_{a2} = \{K_z(\phi_{a} - \phi_{y2} - \phi_{a2}) - N_z \cdot K_z \cdot \phi_{a2} \} \\
(2.21)
\]
2.3.1 車両回転試験装置を考慮した運動方程式

第3章では、車両回転試験装置（詳細は第3章で述べる。）を考慮した直線走行の車両運動解析を行う。本線レールは絶対空間に対して左右速度を持っていないが、車両回転試験装置ではレールに相当する軌条輪が左右方向に絶対速度を持つため、軸の左右方向の運動方程式である式(2.9)は、式(2.22)のように表わされる。

軸の左右方向の運動方程式

\[ M_w \ddot{Y}_{R_i} = K_w \{ (-1) (A - ALl) \varphi_{R_i} + H_1 \cdot \phi_{R_i} - Y_{R_i} - (-1) ' \cdot \varphi_{R_i} \cdot ALl \} \]

\[ + C_w \{ (-1) (A - ALl) \varphi_{R_i} + H_2 \cdot \phi_{R_i} - Y_{R_i} - (-1) ' \cdot \varphi_{R_i} \cdot ALl \} \]

\[ - 2F_{1} \cdot \left\{ \left( \begin{array}{c} \dot{Y}_{R_i} - \dot{Y}_{w} \\ \frac{B + 2 \cdot r_{w}}{B} \end{array} \right) - \varphi_{R_i} \right\} \]

(2.22)

この式(2.22)において、本線レール上では、\( \dot{Y}_{R_i} = 0 \) となるので、本線上と軌条輪上では、軸の左右方向の運動方程式が異なる。

また、前後方向の線形クリープ係数 \( F_X \) および左右方向の線形クリープ係数 \( F_Y \) は、軌条輪および本線レール上の場合それぞれにおいて、表 2.2 の値を用いて、Kalker のクリープ係数の関係式(1)より算出した。

<table>
<thead>
<tr>
<th>Table 2.2</th>
<th>Radius of curvature of wheel and rail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation</td>
<td>On actual tracks</td>
</tr>
<tr>
<td>( R_{XX} ) (m)</td>
<td>0.43</td>
</tr>
<tr>
<td>( R_{YY} ) (m)</td>
<td>( \infty )</td>
</tr>
<tr>
<td>( R_{XX} ) (m)</td>
<td>( \infty )</td>
</tr>
<tr>
<td>( R_{YY} ) (m)</td>
<td>0.60</td>
</tr>
</tbody>
</table>

2.3.2 セミアクティブダンパを考慮した運動方程式

第4章では、セミアクティブダンパを考慮した直線走行解析を行う。シミュレーションモデルは、図 2-1-(a)および図 2.2-(a)の代わりに、図 2-1-(c)および図 2.2-(b)に示す図を用い、セミアクティブダンパストロークの中間自由度を考慮し、合計 36 自由度とした。セミアクティブダンパは各台車に 2 本ずつ装備することになるが、計算上は台車中心に各 1 本ずつあるものとした。セミアクティブダンパは、実際の車両の場合は 1 台車に 2 本装備されているが、車体の左右振動加速度振幅を小さくすることを目的に、台車単位で制御されているため、1 台車当たり 1 本装備されたセミアクティブダンパの直列剛性を 2 本分として、また、2 本分の減衰力を発揮することで、ほぼ等価と考えて良いと考えられる。一方
で、実際の車両では、台車中心から前後方向にオフセットした位置にセミアクティブダンパが装備されており、これによるモーメントを再現していないことになる。しかし、オフセット量が小さいことから、これを無視することとした。ここで、各台車には、左右動ダンパ2本およびセミアクティブダンパ1本を装備することがあるが、セミアクティブ制御がアクティブ（ON）のときはセミアクティブダンパのみの装備、パッシブ（OFF）のときは左右動ダンパのみの装備となるようにした。運動方程式においては、車体では左右、ヨー、およびロール方向の式に、台車では左右およびロール方向の式にセミアクティブダンパの項が加わる。したがって、式(2.1)，(2.2)，(2.3)，(2.5)および(2.7)が、それぞれ、式(2.23)，(2.24)，(2.25)，(2.26)および(2.27)となる。式(2.23)～(2.25)に車体の運動方程式を示す。なお、セミアクティブダンパの運動方程式に関しては、第4章で示す。

車体の左右方向の運動方程式

\[ M_a \cdot \ddot{Y}_b = -2K_{by} \{ 2Y_b + 2H_o \cdot \phi_b - Y_{t1} - Y_{t2} + H_3 \cdot (\phi_{t1} + \phi_{t2}) \}
- K_o \{ 4Y_b + 4(H_o + H_3) \phi_b - 2(Y_{t1} + Y_{t2}) + 2H_2 \cdot (\phi_{t1} + \phi_{t2}) - Y_{dir} - Y_{dof} - Y_{dor} \}
- K_o \{ Y_b + 4(H_o + H_3) \phi_b - Y_{t1} - Y_{t2} + H_3 \cdot (\phi_{t1} + \phi_{t2}) - Y_{s01} - Y_{s02} \} \quad (2.23) \]

車体のヨー方向の運動方程式

\[ M_a \cdot \ddot{\phi}_b \cdot I_{yz} = 2D \cdot K_{by} \{ -2D \cdot \phi_b + Y_{t1} - Y_{t2} + H_3 \cdot (\phi_{t1} - \phi_{t2}) \}
- 2B_2 \cdot K_{by} \{ 2\phi_b - \phi_{t1} - \phi_{t2} \}
+ (D + A1) \cdot K_o \{ -2(D + A1) \phi_b + Y_{t1} - Y_{t2} - H_3 \cdot (\phi_{t1} - \phi_{t2}) + A1 \cdot (\phi_{t1} + \phi_{t2}) + Y_{dir} - Y_{dof} \}
+ (D - A1) \cdot K_o \{ -2(D - A1) \phi_b + Y_{t1} - Y_{t2} - H_3 \cdot (\phi_{t1} - \phi_{t2}) - A1 \cdot (\phi_{t1} + \phi_{t2}) + Y_{dir} - Y_{dof} \}
- B_6 \cdot K_{so} \{ 2B_6 \cdot (2\phi_b - \phi_{t1} + \phi_{t2}) + X_{dir} - X_{s01} + X_{s02} - X_{sor} \}
+ D \cdot K_{so} \{ -2D \cdot \phi_b + Y_{t1} - Y_{t2} - H_3 \cdot (\phi_{t1} - \phi_{t2}) + Y_{s01} - Y_{s02} \} \quad (2.24) \]

車体のロール方向の運動方程式

\[ M_a \cdot \ddot{\phi}_b \cdot I_{yz} = -2H_o \cdot K_{by} \{ 2Y_b - Y_{t1} - Y_{t2} + 2H_o \cdot \phi_b + H_3 \cdot (\phi_{t1} + \phi_{t2}) \}
- 2B_2 \cdot K_{by} \{ 2\phi_b - \phi_{t1} - \phi_{t2} - \phi_{s01} - \phi_{s02} \}
- 2B_2 \cdot K_{by} \{ 2\phi_b - \phi_{t1} - \phi_{t2} \}
- (H_o + H_3) \cdot K_o \{ 4Y_b + 4(H_o + H_3) \phi_b - 2(Y_{t1} + Y_{t2}) + 2H_2 \cdot (\phi_{t1} + \phi_{t2}) - Y_{dir} - Y_{dof} - Y_{dor} \}
- (H_o + H_3) \cdot K_{so} \{ 2Y_b + 2(H_o + H_3) \phi_b - Y_{t1} - Y_{t2} + H_2 \cdot (\phi_{t1} + \phi_{t2}) - Y_{s01} - Y_{s02} \} \quad (2.25) \]

次に、式(2.26)および(2.27)に、台車の左右方向およびロール方向についての運動方程式を示す。以下は、台車についてのみの式を示しており、前述のように、後台車ではT1をT2とし、W1、W2をそれぞれW3、W4とする。さらに、D1F、D1R、SD1、0T1、DをそれぞれD2F、D2R、SD2、0T2、-Dとして得ることができる。

17
前台車の左右方向の運動方程式

\[ M_T \cdot \ddot{Y}_{T_1} = 2K_{yz} (Y_y + D \cdot \varphi_y + H_y \cdot \phi_y - Y_{T_1} + H \cdot \phi_n) \]
\[ + K_{yz} [2Y_y + 2D \cdot \varphi_y + 2(H_y + H) \varphi_y - 2Y_{T_1} + 2H \cdot \phi_n - Y_{DF} - Y_{DF}] \]
\[ + K_{yz} [Y_y + D \cdot \varphi_y + (H_y + H) \varphi_y - Y_{T_1} + H \cdot \phi_n - Y_{DF}] \]
\[ - C_y [2\ddot{Y}_{T_1} + 2H \cdot \phi_n - \dot{Y}_{w_1} - \dot{Y}_{w_2} + AL \cdot (\phi_{w_1} - \phi_{w_2})] \]

(2.26)

前台車のロール方向の運動方程式

\[ M_T \cdot \ddot{\phi}_{T_1} = 2H_3 - K_{yz} (Y_y + D \cdot \varphi_y + H_y \cdot \phi_y - Y_{T_1} + H \cdot \phi_n) \]
\[ - H_3 \cdot K_{yz} [2Y_y + 2D \cdot \varphi_y + 2(H_y + H) \varphi_y - 2Y_{T_1} + 2H \cdot \phi_n - Y_{DF} - Y_{DF}] \]
\[ - H_3 \cdot K_{yz} [Y_y + D \cdot \varphi_y + (H_y + H) \varphi_y - Y_{T_1} + H \cdot \phi_n - Y_{DF}] \]
\[ - H_3 \cdot C_y [2\ddot{Y}_{T_1} + 2H \cdot \phi_n - \dot{Y}_{w_1} - \dot{Y}_{w_2} + AL \cdot (\phi_{w_1} - \phi_{w_2})] \]
\[ - 2K_{yz} \cdot B^2 \cdot \phi_{T_1} \]
\[ - 2C_{yz} \cdot B^2 \cdot \phi_{T_1} \]
\[ + 2B^2 \cdot K_2 (\phi_y - \phi_{T_1} - \phi_{w_1}) \]
\[ - H_3 \cdot K_{yz} [Y_y + D \cdot \varphi_y + (H_y + H) \varphi_y - Y_{T_1} + H \cdot \phi_n - Y_{DF}] \]

(2.27)

また、前後方向の線形クリープ係数 \( F_{x_1} \) および左右方向の線形クリープ係数 \( F_{x_1} \) は、

\( R_{wx} = 0.43m, \ R_{wy} = \infty, \ R_{ws} = \infty, \ R_{p} = 0.60m \) として、Kalker のクリープ係数の関係式より算出した。

2.4 曲線走行解析の運動方程式

第 5 章および第 6 章の曲線走行解析においては、直線走行解析のモデル図と比較して、

1 本リンク、空気ばねおよびレールに関して、次の点を考慮した。

1 本リンクは、台車枠と車体を、ゴムブッシュを介して 1 本の引張棒で連結するけん引装置に用いるリンクである。車体・台車間の上下、左右、回転運動は許容するが、前後方向は拘束するので、左右方向には、遮隔な車体支持系に影響を与えず、前後方向には駆動力や制動力をガタなく確実に伝える役割を果たしている。したがって、1 本リンクの前後方向の減衰による車両運動への影響はかなり小さいため、曲線走行解析においては、前後方向は剛性のみを考慮し、減衰は考慮しないことにした。また、曲線走行においては、遠心力を伴うため、車両運動に与える影響を精度よくするため、1 本リンク左右方向の剛性を考慮に入れた。

空気ばねは、上下方向の振動を吸収するだけでなく、左右および前後方向の振動を吸収する。左右および前後方向の減衰効果は小さいので、直線走行解析では考慮しないこととした。一方、曲線走行解析においては、特に、遠心力を伴う左右方向の車両運動特性に、
空気ばねが及ぼす影響は無視できないため、空気ばねの前後および左右方向の減衰を考慮した。

レールに関して、直線走行解析においては剛体としたが、曲線走行解析においては、車輪・レール間に発生する横圧を精度よく算出するために、レール左右方向の支持剛性および減衰を考慮した。

クリープ力は非線形クリープ力とし、遠心力は曲線通過時の超過遠心加速度によるものとし、直線走行では発生しないこととした。曲線走行解析では、直線走行解析の運動方程式(2.1)～(2.21)のうち、式(2.1)～(2.11)が、それぞれ、式(2.28)～(2.38)となる。車体の運動方程式を式(2.28)～(2.31)に示す。

車体の左右方向の運動方程式

\[ M_{a} \cdot \ddot{X}_{a} = -2K_{by} \{ 2Y_{a} + 2H_{a} \cdot \phi_{a} - Y_{r1} - Y_{r2} + H_{3} \cdot (\phi_{r1} + \phi_{r2}) \} + 2D \cdot \phi_{a} + \dot{Y}_{r1} - \dot{Y}_{r2} - H_{3} \cdot (\dot{\phi}_{r1} - \dot{\phi}_{r2}) + 2K_{m} \cdot C_{a} \{ 2\phi_{a} - \phi_{r1} - \phi_{r2} \} - 2B_{2}^{2} \cdot C_{a} \{ 2\phi_{a} - \dot{\phi}_{r1} - \dot{\phi}_{r2} \} + (D + A1) \cdot K_{a} \{ 2D \cdot \phi_{a} + Y_{r1} - Y_{r2} - H_{3} \cdot (\phi_{r1} - \phi_{r2}) + A1 \cdot (\phi_{r1} + \phi_{r2}) + Y_{DIR} - Y_{D2R} \} + (D - A1) \cdot K_{a} \{ 2D \cdot \phi_{a} + Y_{r1} - Y_{r2} - H_{3} \cdot (\phi_{r1} - \phi_{r2}) - A1 \cdot (\phi_{r1} + \phi_{r2}) + Y_{DIR} - Y_{D2R} \} - D \cdot K_{a} \{ 2D \cdot \phi_{a} - Y_{r1} + Y_{r2} - H_{3} \cdot (\phi_{r1} - \phi_{r2}) \} - B_{5} \cdot K_{a} \{ 2B_{3} \cdot (2\phi_{a} - \phi_{r1} - \phi_{r2}) + X_{oil} - X_{oil} + X_{oil} - X_{oil} \} - M_{b} \cdot g \cdot D \cdot (\phi_{r1} - \phi_{r2}) / 2 \]  

(2.28)

車体のヨー方向の運動方程式

\[ M_{a} \cdot \ddot{Y}_{a} = 2D \cdot K_{by} \{ 2D \cdot \phi_{a} + Y_{r1} - Y_{r2} - H_{3} \cdot (\phi_{r1} - \phi_{r2}) \} + 2D \cdot \phi_{a} + \dot{Y}_{r1} - \dot{Y}_{r2} - H_{3} \cdot (\dot{\phi}_{r1} - \dot{\phi}_{r2}) - 2B_{2}^{2} \cdot C_{a} \{ 2\phi_{a} - \phi_{r1} - \phi_{r2} \} + (D + A1) \cdot K_{a} \{ 2D \cdot \phi_{a} + Y_{r1} - Y_{r2} - H_{3} \cdot (\phi_{r1} - \phi_{r2}) + A1 \cdot (\phi_{r1} + \phi_{r2}) + Y_{DIR} - Y_{D2R} \} + (D - A1) \cdot K_{a} \{ 2D \cdot \phi_{a} + Y_{r1} - Y_{r2} - H_{3} \cdot (\phi_{r1} - \phi_{r2}) - A1 \cdot (\phi_{r1} + \phi_{r2}) + Y_{DIR} - Y_{D2R} \} - D \cdot K_{a} \{ 2D \cdot \phi_{a} - Y_{r1} + Y_{r2} - H_{3} \cdot (\phi_{r1} - \phi_{r2}) \} - B_{5} \cdot K_{a} \{ 2B_{3} \cdot (2\phi_{a} - \phi_{r1} - \phi_{r2}) + X_{oil} - X_{oil} + X_{oil} - X_{oil} \} - M_{b} \cdot g \cdot D \cdot (\phi_{r1} - \phi_{r2}) / 2 \]  

(2.29)

車体のロール方向の運動方程式

\[ M_{a} \cdot \ddot{\gamma}_{a} = 2H_{a} \cdot K_{by} \{ 2Y_{a} - Y_{r1} - Y_{r2} + 2H_{a} \cdot \phi_{a} + H_{3} \cdot (\phi_{r1} + \phi_{r2}) \} - 2H_{a} \cdot C_{by} \{ 2\dot{Y}_{a} - \dot{Y}_{r1} - \dot{Y}_{r2} + 2H_{a} \cdot \dot{\phi}_{a} + H_{3} \cdot (\dot{\phi}_{r1} + \dot{\phi}_{r2}) \} - 2B_{2}^{2} \cdot K_{a} \{ 2\phi_{a} - \phi_{r1} - \phi_{r2} - \phi_{oil} - \phi_{oil} \} - 2B_{2}^{2} \cdot K_{a} \{ 2\phi_{a} - \phi_{r1} - \phi_{r2} \} + (D + A1) \cdot K_{a} \{ 2D \cdot \phi_{a} - \phi_{r1} - \phi_{r2} + X_{oil} - X_{oil} + X_{oil} - X_{oil} \} - M_{b} \cdot g \cdot D \cdot (\phi_{r1} - \phi_{r2}) / 2 \]  

(2.30)
\[-(H_4 + H_5) \cdot K_0 (4\phi_0 + 4(H_4 + H_5)\phi_0 - 2(Y_{t_1} + Y_{f_2}) + 2H_2 \cdot (\phi_{t_1} + \phi_{f_2}) - Y_{oIF} - Y_{oIF} - Y_{oIF})\]

\[+ M_0 \cdot g \cdot H_6 \cdot (2\phi_0 - \phi_{t_1} - \phi_{f_2})/2 \]

(2.30)

車体の前後方向の運動方程式

\[M_0 \cdot \ddot{X}_0 \]

\[= -2K_{ex} (2X_b - X_{t_1} - X_{f_2}) \]

\[-2C_{ex} (\ddot{X}_b - \dot{X}_{t_1} - \dot{X}_{f_2})\]

\[+ K_0 \cdot \{4X_b - 2(X_{t_1} + X_{f_2}) + X_{g1} - X_{g1} + X_{g2} - X_{g2}\} \]

\[-K_1 \cdot (2X_b - X_{t_1} - X_{f_2}) \]

\[-C_1 \cdot \dot{X}_b \]

(2.31)

次に、台車についての運動方程式を式(2.32)～(2.35)に示す。以下は、前台車についてのみの式を示しており、後台車では \(T_1 \)を \(T_2 \)とし、\( W_1 \)、\( W_2 \)をそれぞれ \(W_3 \)、\( W_4 \)とする。さらには、\( DF \)、\( DR \)、\( 01 \)、\( 01 \)、\( 0T \)、\( \alpha_1 \)、\( \alpha_2 \)をそれぞれ \(DF_2 \)、\( DR_2 \)、\( 02 \)、\( 02 \)、\( 02 \)、\( \alpha_3 \)、\( \alpha_4 \)とすることで得ることができる。また、式(2.32)および式(2.34)では、\( D \)が \(-D \)となる。

前台車の左右方向の運動方程式

\[M_{f_1} \cdot \ddot{Y}_{f_1} \]

\[= 2K_{de} (Y_b + D \cdot \phi_b + H_5 \cdot \phi_b - Y_{t_1} + H_5 \cdot \phi_{t_1}) \]

\[+ 2C_{de} (\ddot{Y}_b + D \cdot \phi_b + H_5 \cdot \phi_b - \dot{Y}_{t_1} + H_5 \cdot \phi_{t_1}) \]

\[+ K_{dy} \cdot \{2Y_b + 2D \cdot \phi_b + 2(H_5 + H_5)\phi_b - 2\dot{Y}_{t_1} + 2H_2 \cdot \phi_{t_1} - Y_{oIF} - Y_{oIF} \} \]

\[+ K_{dy} \cdot \{Y_b + D \cdot \phi_b + H_5 \cdot \phi_b - Y_{t_1} - H_5 \cdot \phi_{t_1} \} \]

\[- K_{dy} \cdot \{2\dot{Y}_{t_1} + 2H_2 \cdot \phi_{t_1} - Y_{w_1} - Y_{w_2} + AL1 \cdot (\phi_{w_1} - \phi_{w_2}) \} \]

\[- C_{dy} \cdot \{2\dot{Y}_{t_1} + 2H_1 \cdot \phi_{t_1} - \dot{Y}_{w_1} - \dot{Y}_{w_2} + AL1 \cdot (\phi_{w_1} - \phi_{w_2}) \} \]

\[+ M_0 \cdot g \cdot \phi_{f_1}/2 \]

\[-M_{f_1} \cdot (\alpha_1 + \alpha_2)/2 \]

(2.32)

前台車のヨー方向の運動方程式

\[M_{f_1} \cdot \phi_{f_1} \cdot i_{12}^2 \]

\[= 2B_{d2} \cdot K_{dx} (\phi_b - \phi_{t_1}) \]

\[+ 2B_{d2} \cdot C_{dx} (\phi_b - \phi_{t_1}) \]

\[+ AL1 \cdot K_{dx} \{2A1 (\phi_b - \phi_{t_1}) - Y_{oIF} + Y_{oIF} \} \]

\[+ B_{d2} \cdot K_{dx} \{2B_{d2} (\phi_b - \phi_{t_1}) + X_{w2} - X_{o2} \} \]

\[+ (A - AL1) \cdot K_{dx} \{2(A - AL1)\phi_{t_1} + Y_{w1} - Y_{w_2} - AL1 \cdot (\phi_{w_1} + \phi_{w_2}) \} \]

\[- B_{d2} \cdot K_{dx} \{2(\phi_{t_1} - \phi_{w_1} - \phi_{w_2}) \}

\[+ B_{d2} \cdot C_{w2} (2\phi_{t_1} - \phi_{w_1} - \phi_{w_2}) \]

\[-M_{f_1} \cdot A \cdot (\alpha_1 + \alpha_2)/2 \]

(2.33)
前台車のロール方向の運動方程式

\[ M_y \cdot \ddot{\phi}_r \cdot I_{xx}^2 \]

\[ = -2H_y \cdot K_{yy} (Y_y + D \cdot \phi_y + H_o \cdot \phi_y - Y_t + \dot{H}_y \cdot \dot{\phi}_y) \]

\[ -2H_y \cdot C_{xx} (\dot{Y}_y + D \cdot \dot{\phi}_y + H_x \cdot \phi_y - \dot{Y}_t + H_y \cdot \dot{\phi}_y) \]

\[ -H_y \cdot K_y \cdot [2Y_y + 2D \cdot \phi_y + 2(H_y + H_o) \phi_y - 2Y_t + 2H_y \cdot \phi_y - Y_{01x} - Y_{02x}] \]

\[ -H_y \cdot K_{yy} \cdot [Y_y + D \cdot \phi_y + H_o \cdot \phi_y - Y_t - \dot{H}_y \cdot \dot{\phi}_y] \]

\[ -H_y \cdot K_{yy} \cdot [2Y_y + 2H_y \cdot \phi_y - Y_{01x} - \dot{H}_y \cdot \dot{\phi}_y] \]

\[ + 2B_2 \cdot \{K_2 (\phi_y - \phi_{w1}) + K_3 (\phi_y - \phi_{w1}) \} \]

\[ -K_{ww} \cdot B^2 \cdot \{2 \phi_y - \phi_{w1} + \phi_{w2} + \theta_{w1} + \theta_{w2} \} \]

\[ -C_{ww} \cdot B_1^2 \cdot \{2 \phi_y - \phi_{w1} + \phi_{w2} + \theta_{w1} + \theta_{w2} \} \]

\[ -M_y \cdot g \cdot \{Y_y + D \cdot \phi_y - Y_t + (2H_y + H_o) \cdot \phi_y + H_o \cdot \phi_y \}/2 \]  \( \text{(2.34)} \)

前台車の前後方向の運動方程式

\[ M_y \cdot \dot{X}_t \]

\[ = 2K_{ax} (X_y - X_t) \]

\[ + 2C_{ax} (\dot{X}_y - \dot{X}_t) \]

\[ + K_x \cdot (X_y - X_t) \]

\[ + K_x \cdot (X_y - X_t) \]

\[ - K_{ww} (2X_y - X_{w1} - X_{w2}) \]

\[ - C_{ww} (2 \dot{X}_y - \dot{X}_{w1} - \dot{X}_{w2}) \]  \( \text{(2.35)} \)

次に、輪軸についての運動方程式を式(2.36)~(2.38)に示す。ここで、\( i = 1 \) または \( i = 2 \) のときは \( j = 1, \ i = 3 \) または \( i = 4 \) のときは \( j = 2 \) である。

輪軸の左右方向の運動方程式

\[ M_{ww} \cdot \dot{Y}_y \]

\[ = K_{ww} \cdot [Y_y - (-1)^{i} (A - AL1) \phi_y + H_y \cdot \phi_y - Y_t - (-1)^{j} \phi_{w} \cdot AL1] \]

\[ + C_{ww} \cdot [\dot{Y}_y - (-1)^{i} (A - AL1) \dot{\phi}_y + H_y \cdot \dot{\phi}_y - Y_t - (-1)^{j} \dot{\phi}_{w} \cdot AL1] \]

\[ + Q_{i} + Q_{w} \]

\[ -M_{ww} \cdot \alpha_i \]  \( \text{(2.36)} \)

輪軸のヨー方向の運動方程式

\[ M_{ww} \cdot \dot{\phi}_{w} \cdot I_{xx}^2 \]

\[ = (-1)^{i} \cdot K_{ww} \cdot AL1 \cdot [Y_y - (-1)^{i} (A - AL1) \phi_y + H_y \cdot \phi_y - Y_t - (-1)^{j} AL1 \cdot \phi_{w}] \]

\[ + (-1)^{j} \cdot C_{ww} \cdot AL1 \cdot [\dot{Y}_y - (-1)^{i} (A - AL1) \dot{\phi}_y + H_y \cdot \dot{\phi}_y - Y_t - (-1)^{j} AL1 \cdot \dot{\phi}_{w}] \]

\[ + K_{ww} \cdot B_1^2 \cdot (\phi_{r1} - \phi_{w}) \]

\[ + C_{ww} \cdot B_1^2 \cdot (\phi_{r1} - \phi_{w}) \]
第6章では、前後方向の線形クリープ係数 $F_{x1}$ および左右方向の線形クリープ係数 $F_{y1}$ が、$R_{xx} = 0.43m$、$R_{yy} = 0.90m$、$R_{x} = \infty$、$R_{y} = 0.60m$ として、Kalker のクリープ係数の関係式より算出した。

また、車輪・レール間の摩擦係数 $\mu$ は、車輪・レール間のすべりの大きさに応じ、低下する傾向があることを考慮し、関係式(2.39)を用いて算出した。

$$\mu = 88/(V \times 3.6 + 200)$$  (2.39)

ここで、$V$：速度(m/s)である。

第7章では、車輪とレールに関して、リニアメトロ用円弧踏面および50kgNレールを考慮して、前後方向の線形クリープ係数 $F_{x1}$ および左右方向の線形クリープ係数 $F_{y1}$ が、$R_{xx} = 0.35m$、$R_{yy} = 0.35m$、$R_{x} = \infty$、$R_{y} = 0.30m$ とし、Kalker のクリープ係数の関係式より算出した。また、車輪・レール間の摩擦係数は、$\mu = 0.3$ とした。

### 2.4.1 クリープ力、軸重、横圧

クリープ力特性は非線形性を考慮し、縦クリープ力 $F_{x1}$、横クリープ力 $F_{y1}$、前後方向の線形クリープ係数 $F_{x1}$ および左右方向の線形クリープ係数 $F_{y1}$ はそれぞれ次のように示される。

$$F_{x1} = -e_{x1} \cdot F_{x1} \cdot S_{x1}$$  (2.40)
$$F_{y1} = -e_{y1} \cdot F_{y1} \cdot S_{y1}$$  (2.41)
$$F_{z1} = -e_{z1} \cdot F_{z1} \cdot S_{z1}$$  (2.42)

曲線上では車輪が軌道中心から、接触点距離ずれているため、左右車輪の速度差が生じる。内軌車輪では $- B/R_0$、外軌車輪では $B/R_0$ の前後すべりが生じるので、縦クリープ率は次のように示される。

$$S_{x1} = 1 - B/R_0 + (\dot{X}_{w1} - B \cdot \dot{\phi}_{w1} - r_{w1} \cdot V / r_0) / V$$  (2.44)
$$S_{y1} = 1 + B/R_0 + (\dot{X}_{w1} + B \cdot \dot{\phi}_{w1} - r_{w1} \cdot V / r_0) / V$$  (2.45)

ここで緩和曲線においては、$R_0 = R_{xx}$、直線においては、$R_0 = \infty$ である。

また、曲線上でアタック角を考慮すると、横クリープ率は、次のように示される。

$$S_{x1} = [(\dot{X}_{w1} + \dot{\phi}_{w1} \cdot r_{w1}) / V - (\phi_{w1} - \dot{\phi}_{w1}) / \cos \alpha_{x1}]$$  (2.46)
$$S_{y1} = [(\dot{X}_{w1} + \dot{\phi}_{w1} \cdot r_{w1}) / V - (\phi_{w1} - \dot{\phi}_{w1}) / \cos \alpha_{y1}]$$  (2.47)
また、非線形性を与える係数 $e_d, e_{ir}$ は、次式で示される。

$$e_d = \sqrt{1 + \left( \frac{F_{N2}^2 + F_{N1}^2}{\mu \cdot N_{dr}} \right)^{1/\beta}}$$  (2.48)

$$e_{ir} = \sqrt{1 + \left( \frac{F_{N2}^2 + F_{N1}^2}{\mu \cdot N_{ir}} \right)^{1/\beta}}$$  (2.49)

輪重はモーメントのつりあいから次式のように示される。

$$P_d = [-P_{Z2} (B + B_1) + P_{Z2} (B - B_1) + M_{w} - B - r_{0} \cdot (Q_{d} + Q_{ir})] / (2B)$$  (2.50)

$$P_{ir} = [-P_{Z2} (B - B_1) + P_{Z2} (B + B_1) + M_{w} \cdot B + r_{0} \cdot (Q_{d} + Q_{ir})] / (2B)$$  (2.51)

ここで、 $P_{Z2} = K_{wz} \cdot B_1 (\phi_{0} - \phi_{m}) + C_{wz} \cdot B_{1} \cdot (\phi_{0} - \phi_{m}) / B_1$ である。

横圧および法線力はそれぞれ次式で示される。

$$Q_{d} = -P_{d} \cdot \tan \alpha_{d} + F_{net} \cdot \cos \alpha_{d}$$  (2.52)

$$Q_{ir} = P_{ir} \cdot \tan \alpha_{ir} + F_{net} / \cos \alpha_{ir}$$  (2.53)

$$N_{d} = P_{d} \cdot \cos \alpha_{d} + F_{net} \cdot \tan \alpha_{d}$$  (2.54)

$$N_{ir} = P_{ir} \cdot \cos \alpha_{ir} - F_{net} \cdot \tan \alpha_{ir}$$  (2.55)

### 2.4.2 緩和曲線の曲率
図 2.3 に示す曲線通過の座標において、各軸軸の中立位置が曲線の軌道中心線上にあるように定め、点 Q を車両座標の原点とし、曲線に沿って移動する移動座標系とする。緩和曲線の曲率はサインパルス関数とし、円曲線半径を $R_0$、緩和曲線長を $D_L$、緩和曲線の曲線半径 $R_{ts}$ とする。緩和曲線始点では $R_{ts} = \infty$、終点では $R_{ts} = R_0$ となり、各軸の位置 $X_{wi}$ における曲率は、次のように示される。(3)

$$\frac{1}{R_{ts}} = \frac{1}{2R} \left( 1 - \cos \frac{\pi}{D_L} X_{wi} \right)$$  (2.56)

### 2.4.3 惯性力
円曲線において、車体、台車、軸軸の重心に作用する遠心加速度を $\alpha$ とすると、次のよう示される。

$$\alpha = \frac{V^2}{R_0} \cos \theta - g \sin \theta$$  (2.57)

$$\sin \theta = c \alpha / (2B_0)$$  (2.58)

ここで、緩和曲線においては、$R_0 = R_{ts}$、直線においては、$R_0 = \infty$ である。
2.4.4 レールに関する式
曲線走行解析におけるレールの左右支持剛性および減衰を考慮した式は以下のように表される。

\[ M_i \cdot \ddot{Y}_{\text{Rl}} = -K_i \cdot Y_{\text{Rl}} - C_i \cdot \dot{Y}_{\text{Rl}} - Q_i \]  \hfill (2.59)
\[ M_i \cdot \ddot{Y}_{\text{Rr}} = -K_i \cdot Y_{\text{Rr}} - C_i \cdot \dot{Y}_{\text{Rr}} - Q_i \]  \hfill (2.60)

2.5 シミュレーションに用いた数値
シミュレーションは、表 2.3-2.6 に示す数値を用いて行った。表 2.3-2.6 は、それぞれ、順に、3 章、4 章、6 章および 7 章で用いた数値を示している。
Table 2.3 Specifications of the calculation in chapter 3

<table>
<thead>
<tr>
<th>Notation</th>
<th>Value (Shinkansen electric car)</th>
<th>Value (Meter-gauge railway electric car)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_a$ (kg)</td>
<td>24,176</td>
<td>25,970</td>
</tr>
<tr>
<td>$M_f$ (kg)</td>
<td>2,840</td>
<td>3,190</td>
</tr>
<tr>
<td>$M_w$ (kg)</td>
<td>1,700</td>
<td>1,485</td>
</tr>
<tr>
<td>$I_{AV}$ (m)</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>$I_{BZ}$ (m)</td>
<td>6.50</td>
<td>5.90</td>
</tr>
<tr>
<td>$I_{TX}$ (m)</td>
<td>0.60</td>
<td>0.80</td>
</tr>
<tr>
<td>$I_{TG}$ (m)</td>
<td>1.00</td>
<td>0.90</td>
</tr>
<tr>
<td>$I_{M2}$ (m)</td>
<td>0.83</td>
<td>0.64</td>
</tr>
<tr>
<td>$K_{kx}$ (N/m)</td>
<td>$1.96 \times 10^7$</td>
<td>$1.43 \times 10^7$</td>
</tr>
<tr>
<td>$C_{kx}$ (Ns/m)</td>
<td>$1.96 \times 10^4$</td>
<td>$1.43 \times 10^4$</td>
</tr>
<tr>
<td>$K_{ky}$ (N/m)</td>
<td>$9.80 \times 10^6$</td>
<td>$9.80 \times 10^6$</td>
</tr>
<tr>
<td>$C_{ky}$ (Ns/m)</td>
<td>$9.80 \times 10^4$</td>
<td>$9.80 \times 10^4$</td>
</tr>
<tr>
<td>$K_{kz}$ (N/m)</td>
<td>$2.35 \times 10^6$</td>
<td>$3.84 \times 10^6$</td>
</tr>
<tr>
<td>$C_{kz}$ (Ns/m)</td>
<td>$7.84 \times 10^4$</td>
<td>$2.94 \times 10^4$</td>
</tr>
<tr>
<td>$K_{k2}$ (N/m)</td>
<td>$1.86 \times 10^5$</td>
<td>$1.57 \times 10^5$</td>
</tr>
<tr>
<td>$C_{k2}$ (Ns/m)</td>
<td>$4.90 \times 10^4$</td>
<td>$4.90 \times 10^4$</td>
</tr>
<tr>
<td>$K_{k1}$ (N/m)</td>
<td>$1.86 \times 10^5$</td>
<td>$1.57 \times 10^5$</td>
</tr>
<tr>
<td>$C_{k1}$ (Ns/m)</td>
<td>$4.90 \times 10^4$</td>
<td>$4.90 \times 10^4$</td>
</tr>
<tr>
<td>$K_{k0}$ (N/m)</td>
<td>$2.00$</td>
<td>$1.64$</td>
</tr>
<tr>
<td>$C_{k0}$ (Ns/m)</td>
<td>$2.60$</td>
<td>$1.98$</td>
</tr>
<tr>
<td>$2 A1$ (m)</td>
<td>0.40</td>
<td>1.00</td>
</tr>
<tr>
<td>$2 A2$ (m)</td>
<td>2.50</td>
<td>2.10</td>
</tr>
<tr>
<td>$AL1$ (m)</td>
<td>0.00</td>
<td>0.50</td>
</tr>
<tr>
<td>$2 B$ (m)</td>
<td>1.490</td>
<td>1.105</td>
</tr>
<tr>
<td>$2 B0$ (m)</td>
<td>2.70</td>
<td>2.51</td>
</tr>
<tr>
<td>$2 B1$ (m)</td>
<td>2.00</td>
<td>1.64</td>
</tr>
<tr>
<td>$2 B2$ (m)</td>
<td>2.60</td>
<td>1.98</td>
</tr>
<tr>
<td>$2 B3$ (m)</td>
<td>2.00</td>
<td>1.92</td>
</tr>
<tr>
<td>$2 D$ (m)</td>
<td>17.5</td>
<td>13.8</td>
</tr>
<tr>
<td>$H_2$ (m)</td>
<td>0.260</td>
<td>0.350</td>
</tr>
<tr>
<td>$H_1$ (m)</td>
<td>0.290</td>
<td>0.270</td>
</tr>
<tr>
<td>$H_0$ (m)</td>
<td>0.230</td>
<td>0.120</td>
</tr>
<tr>
<td>$H_s$ (m)</td>
<td>0.500</td>
<td>0.658</td>
</tr>
<tr>
<td>$H_f$ (m)</td>
<td>0.080</td>
<td>0.040</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>$1/16$</td>
<td>$1/10$</td>
</tr>
<tr>
<td>$r_n$ (m)</td>
<td>0.430</td>
<td>0.430</td>
</tr>
<tr>
<td>Notation</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>$M_x$ (kg)</td>
<td>24,176</td>
<td></td>
</tr>
<tr>
<td>$M_y$ (kg)</td>
<td>2,840</td>
<td></td>
</tr>
<tr>
<td>$M_w$ (kg)</td>
<td>1,700</td>
<td></td>
</tr>
<tr>
<td>$I_{by}$ (m)</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>$I_{bx}$ (m)</td>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td>$I_{tx}$ (m)</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>$I_{tz}$ (m)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>$I_{by2}$ (m)</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>$K_{wx}$ (N/m)</td>
<td>$1.96 \times 10^7$</td>
<td></td>
</tr>
<tr>
<td>$C_{wx}$ (Ns/m)</td>
<td>$1.96 \times 10^4$</td>
<td></td>
</tr>
<tr>
<td>$K_{wy}$ (N/m)</td>
<td>$9.80 \times 10^6$</td>
<td></td>
</tr>
<tr>
<td>$C_{wy}$ (Ns/m)</td>
<td>$9.80 \times 10^4$</td>
<td></td>
</tr>
<tr>
<td>$K_{wy2}$ (N/m)</td>
<td>$2.35 \times 10^6$</td>
<td></td>
</tr>
<tr>
<td>$C_{wy2}$ (Ns/m)</td>
<td>$7.84 \times 10^4$</td>
<td></td>
</tr>
<tr>
<td>$K_{wx}$ (N/m)</td>
<td>$1.86 \times 10^3$</td>
<td></td>
</tr>
<tr>
<td>$K_{wy}$ (N/m)</td>
<td>$1.86 \times 10^3$</td>
<td></td>
</tr>
<tr>
<td>$K_x^2$ (N/m)</td>
<td>$1.12 \times 10^6$</td>
<td></td>
</tr>
<tr>
<td>$K_y^2$ (N/m)</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>$N_x$</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>$C_x$ (Ns/m)</td>
<td>$4.54 \times 10^4$</td>
<td></td>
</tr>
<tr>
<td>$K_x$ (N/m)</td>
<td>$4.90 \times 10^6$</td>
<td></td>
</tr>
<tr>
<td>$C_y$ (Ns/m)</td>
<td>$7.35 \times 10^3$</td>
<td></td>
</tr>
<tr>
<td>$K_y$ (N/m)</td>
<td>$4.90 \times 10^6$</td>
<td></td>
</tr>
<tr>
<td>$C_{yD}$ (Ns/m)</td>
<td>$3.92 \times 10^4$</td>
<td></td>
</tr>
<tr>
<td>$K_y^2$ (N/m)</td>
<td>$9.80 \times 10^6$</td>
<td></td>
</tr>
<tr>
<td>$C_y^2$ (Ns/m)</td>
<td>$9.80 \times 10^3$</td>
<td></td>
</tr>
<tr>
<td>$K_y^2$ (N/m)</td>
<td>$4.90 \times 10^6$</td>
<td></td>
</tr>
<tr>
<td>$C_{yD}$ (Ns/m)</td>
<td>$4.90 \times 10^4$</td>
<td></td>
</tr>
<tr>
<td>$2A1$ (m)</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>$2A$ (m)</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>$A11$ (m)</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>$2B$ (m)</td>
<td>1.490</td>
<td></td>
</tr>
<tr>
<td>$2B_y$ (m)</td>
<td>2.70</td>
<td></td>
</tr>
<tr>
<td>$2B_z$ (m)</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>$2B_z$ (m)</td>
<td>2.60</td>
<td></td>
</tr>
<tr>
<td>$2B_{yD}$ (m)</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>$2D$ (m)</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>$H_y$ (m)</td>
<td>0.260</td>
<td></td>
</tr>
<tr>
<td>$H_z$ (m)</td>
<td>0.290</td>
<td></td>
</tr>
<tr>
<td>$H_y$ (m)</td>
<td>0.230</td>
<td></td>
</tr>
<tr>
<td>$H_z$ (m)</td>
<td>0.500</td>
<td></td>
</tr>
<tr>
<td>$H_y$ (m)</td>
<td>0.080</td>
<td></td>
</tr>
<tr>
<td>$r_y$ (m)</td>
<td>0.430</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.5 Specifications of the calculation in chapter 6

<table>
<thead>
<tr>
<th>Notation</th>
<th>Value</th>
<th>Notation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_f$ (kg)</td>
<td>25,970</td>
<td>$C_{K0}$ (Ns/m)</td>
<td>2.43×10^3</td>
</tr>
<tr>
<td>$M_p$ (kg)</td>
<td>3,190</td>
<td>$K_f$ (N/m)</td>
<td>2.45×10^6</td>
</tr>
<tr>
<td>$M_w$ (kg)</td>
<td>1,485</td>
<td>$C_f$ (Ns/m)</td>
<td>2.45×10^7</td>
</tr>
<tr>
<td>$I_{BL}$ (m)</td>
<td>1.50</td>
<td>$K_l$ (N/m)</td>
<td>4.42×10^6</td>
</tr>
<tr>
<td>$I_{BZ}$ (m)</td>
<td>5.90</td>
<td>$K_{BL}$ (N/m)</td>
<td>2.12×10^7</td>
</tr>
<tr>
<td>$I_{BZ}$ (m)</td>
<td>0.80</td>
<td>$2A_l$ (m)</td>
<td>0.24</td>
</tr>
<tr>
<td>$I_{BZ}$ (m)</td>
<td>0.90</td>
<td>$2A$ (m)</td>
<td>2.10</td>
</tr>
<tr>
<td>$I_{BZ}$ (m)</td>
<td>0.64</td>
<td>$AL_l$ (m)</td>
<td>0.50</td>
</tr>
<tr>
<td>$I_{BZ}$ (m)</td>
<td>0.64</td>
<td>$2B$ (m)</td>
<td>1.490</td>
</tr>
<tr>
<td>$K_{BZ}$ (N/m)</td>
<td>1.12×10^7</td>
<td>$2B_l$ (m)</td>
<td>2.51</td>
</tr>
<tr>
<td>$C_{BZ}$ (Ns/m)</td>
<td>1.12×10^4</td>
<td>$2B_l$ (m)</td>
<td>1.64</td>
</tr>
<tr>
<td>$K_{BZ}$ (N/m)</td>
<td>1.34×10^3</td>
<td>$2B_l$ (m)</td>
<td>1.98</td>
</tr>
<tr>
<td>$C_{BZ}$ (Ns/m)</td>
<td>1.34×10^4</td>
<td>$2B_l$ (m)</td>
<td>1.92</td>
</tr>
<tr>
<td>$K_{BZ}$ (N/m)</td>
<td>3.80×10^6</td>
<td>$2D$ (m)</td>
<td>13.8</td>
</tr>
<tr>
<td>$C_{BZ}$ (Ns/m)</td>
<td>2.84×10^4</td>
<td>$H_2$ (m)</td>
<td>0.350</td>
</tr>
<tr>
<td>$K_{BZ}$ (N/m)</td>
<td>1.50×10^3</td>
<td>$H_2$ (m)</td>
<td>0.270</td>
</tr>
<tr>
<td>$C_{BZ}$ (Ns/m)</td>
<td>1.50×10^3</td>
<td>$H_2$ (m)</td>
<td>0.180</td>
</tr>
<tr>
<td>$K_{BZ}$ (N/m)</td>
<td>1.50×10^3</td>
<td>$H_2$ (m)</td>
<td>0.600</td>
</tr>
<tr>
<td>$C_{BZ}$ (Ns/m)</td>
<td>1.50×10^3</td>
<td>$H_2$ (m)</td>
<td>0.040</td>
</tr>
<tr>
<td>$K_2$ (N/m)</td>
<td>1.85×10^6</td>
<td>$H_2$ (m)</td>
<td>1.600</td>
</tr>
<tr>
<td>$K_2$ (N/m)</td>
<td>0.00</td>
<td>$\beta$</td>
<td>1.5</td>
</tr>
<tr>
<td>$N_4$</td>
<td>0.357</td>
<td>$r_a$ (m)</td>
<td>0.430</td>
</tr>
<tr>
<td>$C_s$ (Ns/m)</td>
<td>4.02×10^4</td>
<td>$M_q$ (kg)</td>
<td>138.0</td>
</tr>
<tr>
<td>$K_s$ (N/m)</td>
<td>5.48×10^6</td>
<td>$K_{ss}$ (N/m)</td>
<td>1.47×10^7</td>
</tr>
<tr>
<td>$C_s$ (Ns/m)</td>
<td>4.21×10^4</td>
<td>$C_{ss}$ (Ns/m)</td>
<td>3.92×10^4</td>
</tr>
<tr>
<td>$K_{D0}$ (N/m)</td>
<td>8.48×10^3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6 Specifications of the calculation in chapter 7

<table>
<thead>
<tr>
<th>Notation</th>
<th>Value</th>
<th>Notation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_g$ (kg)</td>
<td>27,160</td>
<td>$C_{ed}$ (Ns/m)</td>
<td>$2.43 \times 10^5$</td>
</tr>
<tr>
<td>$M_f$ (kg)</td>
<td>3,510</td>
<td>$K_f$ (N/m)</td>
<td>$2.45 \times 10^6$</td>
</tr>
<tr>
<td>$M_w$ (kg)</td>
<td>1,540</td>
<td>$C_f$ (Ns/m)</td>
<td>$2.45 \times 10^7$</td>
</tr>
<tr>
<td>$I_{wx}$ (m)</td>
<td>1.50</td>
<td>$K_w$ (N/m)</td>
<td>$4.42 \times 10^4$</td>
</tr>
<tr>
<td>$I_{wy}$ (m)</td>
<td>5.90</td>
<td>$K_{wy}$ (N/m)</td>
<td>$2.12 \times 10^7$</td>
</tr>
<tr>
<td>$I_{x}$ (m)</td>
<td>0.80</td>
<td>2$A_l$ (m)</td>
<td>0.24</td>
</tr>
<tr>
<td>$I_{z}$ (m)</td>
<td>0.90</td>
<td>2$A$ (m)</td>
<td>2.10</td>
</tr>
<tr>
<td>$I_{wx}$ (m)</td>
<td>0.64</td>
<td>$AL1$ (m)</td>
<td>0.50</td>
</tr>
<tr>
<td>$I_{wy}$ (m)</td>
<td>0.64</td>
<td>2$B$ (m)</td>
<td>1.49</td>
</tr>
<tr>
<td>$K_{wx}$ (N/m)</td>
<td>$1.12 \times 10^7$</td>
<td>2$B_6$ (m)</td>
<td>2.51</td>
</tr>
<tr>
<td>$C_{wx}$ (Ns/m)</td>
<td>$1.12 \times 10^6$</td>
<td>2$B_7$ (m)</td>
<td>1.64</td>
</tr>
<tr>
<td>$K_{wy}$ (N/m)</td>
<td>$1.34 \times 10^7$</td>
<td>2$B_5$ (m)</td>
<td>1.98</td>
</tr>
<tr>
<td>$C_{wy}$ (Ns/m)</td>
<td>$1.34 \times 10^4$</td>
<td>2$B_{10}$ (m)</td>
<td>1.92</td>
</tr>
<tr>
<td>$K_{xz}$ (N/m)</td>
<td>$3.80 \times 10^6$</td>
<td>2$D$ (m)</td>
<td>13.8</td>
</tr>
<tr>
<td>$C_{xz}$ (Ns/m)</td>
<td>$2.84 \times 10^7$</td>
<td>$H_1$ (m)</td>
<td>0.45</td>
</tr>
<tr>
<td>$K_{yz}$ (N/m)</td>
<td>$1.50 \times 10^4$</td>
<td>$H_4$ (m)</td>
<td>0.37</td>
</tr>
<tr>
<td>$C_{yz}$ (Ns/m)</td>
<td>$1.50 \times 10^3$</td>
<td>$H_2$ (m)</td>
<td>0.18</td>
</tr>
<tr>
<td>$K_{zt}$ (N/m)</td>
<td>$1.50 \times 10^3$</td>
<td>$H_5$ (m)</td>
<td>0.60</td>
</tr>
<tr>
<td>$C_{zt}$ (Ns/m)</td>
<td>$1.50 \times 10^2$</td>
<td>$H_6$ (m)</td>
<td>0.04</td>
</tr>
<tr>
<td>$K_1$ (N/m)</td>
<td>$1.85 \times 10^6$</td>
<td>$H_7$ (m)</td>
<td>1.60</td>
</tr>
<tr>
<td>$K_2$ (N/m)</td>
<td>0.00</td>
<td>$\mu$</td>
<td>0.30</td>
</tr>
<tr>
<td>$N_4$</td>
<td>0.357</td>
<td>$\beta$</td>
<td>1.5</td>
</tr>
<tr>
<td>$C_2$ (Ns/m)</td>
<td>$4.02 \times 10^4$</td>
<td>$r_a$ (m)</td>
<td>0.33</td>
</tr>
<tr>
<td>$K_y$ (N/m)</td>
<td>$5.48 \times 10^6$</td>
<td>$M_g$ (kg)</td>
<td>138.0</td>
</tr>
<tr>
<td>$C_3$ (Ns/m)</td>
<td>$4.21 \times 10^3$</td>
<td>$K_g$ (N/m)</td>
<td>$1.47 \times 10^4$</td>
</tr>
<tr>
<td>$K_D$ (N/m)</td>
<td>$8.48 \times 10^3$</td>
<td>$C_g$ (Ns/m)</td>
<td>$3.92 \times 10^4$</td>
</tr>
</tbody>
</table>

2.6 固有値解析

図 2.1-(a) および図 2.2-(a) の車両モデルにより、表 2.3 の新幹線車両の諸元を用いて、左右振動系の固有値解析を行った。解析によって得られた固有振動数について、表 2.7 に示す。また、それに対応する主な振動モードを図 2.4 に示す。なお、本研究では、鉄道車両を剛体としているため、車体の曲げ振動は考慮していない。
<table>
<thead>
<tr>
<th>degree</th>
<th>frequency (Hz)</th>
<th>mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 次</td>
<td>0.0</td>
<td>車体，台車，輪軸左右</td>
</tr>
<tr>
<td>2 次</td>
<td>0.1</td>
<td>車体，台車，輪軸ヨーイング</td>
</tr>
<tr>
<td>3 次</td>
<td>0.9</td>
<td>車体下心ローリング</td>
</tr>
<tr>
<td>4 次</td>
<td>1.2</td>
<td>後台車ヨーイング</td>
</tr>
<tr>
<td>5 次</td>
<td>1.2</td>
<td>前台車ヨーイング</td>
</tr>
<tr>
<td>6 次</td>
<td>1.6</td>
<td>車体上心ローリング</td>
</tr>
<tr>
<td>7 次</td>
<td>1.7</td>
<td>車体ヨーイング，台車左右（逆相）</td>
</tr>
<tr>
<td>8 次</td>
<td>1.8</td>
<td>車体，台車，輪軸前後（同相）</td>
</tr>
<tr>
<td>9 次</td>
<td>4.5</td>
<td>台車前後（逆相）</td>
</tr>
<tr>
<td>10 次</td>
<td>5.8</td>
<td>車体、台車、輪軸前後（同相）</td>
</tr>
<tr>
<td>11 次</td>
<td>12.1</td>
<td>台車ローリング（前後逆相）</td>
</tr>
<tr>
<td>12 次</td>
<td>12.1</td>
<td>台車ローリング（前後同相）</td>
</tr>
<tr>
<td>13 次</td>
<td>13.8</td>
<td>1 軸，2 軸左右（逆相），ヨーイング（同相）</td>
</tr>
<tr>
<td>14 次</td>
<td>14.2</td>
<td>1 軸，2 軸左右（逆相），ヨーイング（同相）</td>
</tr>
<tr>
<td>15 次</td>
<td>15.9</td>
<td>3 軸，4 軸ヨーイング（逆相）</td>
</tr>
<tr>
<td>16 次</td>
<td>17.1</td>
<td>1 軸，2 軸前後（逆相）</td>
</tr>
<tr>
<td>17 次</td>
<td>17.1</td>
<td>3 軸，4 軸前後（逆相）</td>
</tr>
<tr>
<td>18 次</td>
<td>18.1</td>
<td>台車左右（前後逆相）</td>
</tr>
<tr>
<td>19 次</td>
<td>18.6</td>
<td>台車左右（同相），ローリング（同相）</td>
</tr>
<tr>
<td>20 次</td>
<td>25.8</td>
<td>1 軸，2 軸ヨーイング（逆相）</td>
</tr>
<tr>
<td>21 次</td>
<td>25.9</td>
<td>台車前後（逆相）</td>
</tr>
<tr>
<td>22 次</td>
<td>25.9</td>
<td>台車前後（同相）</td>
</tr>
<tr>
<td>23 次</td>
<td>28.9</td>
<td>後台車ヨーイング</td>
</tr>
<tr>
<td>24 次</td>
<td>30.1</td>
<td>前台車ヨーイング</td>
</tr>
<tr>
<td>25 次</td>
<td>2084.9</td>
<td>空気ばね上下（前後台車逆相）</td>
</tr>
<tr>
<td>26 次</td>
<td>2084.9</td>
<td>空気ばね上下（前後台車同相）</td>
</tr>
<tr>
<td>27 次</td>
<td>3558.8</td>
<td>左右動ダンパ（後台車前位側，後位側逆相）</td>
</tr>
<tr>
<td>28 次</td>
<td>3558.8</td>
<td>左右動ダンパ（前車前位側，前位側逆相）</td>
</tr>
<tr>
<td>29 次</td>
<td>3558.8</td>
<td>ヨーダンパ（前車側，後台車側同相）</td>
</tr>
<tr>
<td>30 次</td>
<td>3558.8</td>
<td>ヨーダンパ（前車側，後台車側同相）</td>
</tr>
<tr>
<td>31 次</td>
<td>3558.8</td>
<td>左右動ダンパ（全同相）</td>
</tr>
<tr>
<td>32 次</td>
<td>3558.8</td>
<td>左右動ダンパ（前台車側，後台車側逆相）</td>
</tr>
<tr>
<td>33 次</td>
<td>3558.8</td>
<td>ヨーダンパ（前車左側，後台車右側が同相，前台車左側・後台車右側が同相）</td>
</tr>
<tr>
<td>34 次</td>
<td>3558.8</td>
<td>ヨーダンパ（右側・左側逆相）</td>
</tr>
</tbody>
</table>
Fig. 2.4-(a) mode 1: 0Hz

Fig. 2.4-(b) mode 2: 0.1Hz

Fig. 2.4-(c) mode 3: 0.9Hz
Fig. 2.4-(d) mode 4: 1.2 Hz

Fig. 2.4-(e) mode 5: 1.2 Hz

Fig. 2.4-(f) mode 6: 1.6 Hz
Fig. 2.4-(g) mode 7: 1.7 Hz

Fig. 2.4-(h) mode 8: 1.8 Hz

Fig. 2.4-(i) mode 9: 4.5 Hz

Fig. 2.4-(j) mode 10: 5.8 Hz
2.7 時刻歴応答解析

ルンゲ・クッタ・ギル法による時刻歴応答解析により車両運動特性の計算を行った。直線走行解析には、図2.1-(a)、図2.1-(b)および図2.2-(a)の車両モデルにより、表2.3の新幹線車両の諸元を用いた。また、曲線走行解析は、図2.1-(b)、図2.1-(d)および図2.2-(a)の車両モデルにより、表2.4の数値を用いた。

2.7.1 直線走行解析

直線走行時における走行安定性について、振幅±5mm 波長 30m の通り不整のある軌道上を走行速度 350km/h で走行した場合を対象とし、検討を行った。

鉄道車両は高速になると、急激に揺れ始める自励振動である蛇行動が発生するおそれがある。この不安定現象である蛇行動は、主に車輪・レールの接触によるクリープ力からエネルギーを取り入れて振動を持続、成長する。蛇行動は、輪軸に適度な支持剛性を与えて抑制していても、外乱をきっかけにして臨界速度以上になると発生するため、注意が必要
である。蛇行動による振動は乗り心地を悪化させ、また、軌道を破壊し脱線にいたる危険性がある。この蛇行動を抑えるための手段の一つとして、ヨーダンパを装備することがあげられる。ヨーダンパは、台車のヨーイング運動を減衰させ、走行安定性を向上させるために有効である。そこで、ヨーダンパの走行安定性に及ぼす影響を検討した。図2.5は、ヨーダンパがありの場合となしの場合で走行したときの第1軸の左右変位を示す。図より、ヨーダンパを装備することにより、輪軸左右変位が小さくなり、蛇行動防止および走行安定性向上に有効であることがわかる。

台車と車体間にある空気ばねは、台車から伝わる振動を絶縁し、車両の乗り心地向上のために、重要な役割を担う。軌道上に高低不整がある場合は車体が上下方向に振動し、通り不整がある場合は左右方向に振動するため、空気ばねの剛性および減衰係数を適切にすることが、走行安定性および乗り心地向上のために重要となる。図2.6は、空気ばねの左右剛性について$K_{BF} = 1.86 \times 10^4 \mathrm{N/m}$のときを基準にして、その1/10倍および10倍の剛性、すなわち、$K_{BF} = 1.86 \times 10^3 \mathrm{N/m}$および$K_{BF} = 1.86 \times 10^5 \mathrm{N/m}$にした場合の前台車直上の車体左右振動加速度を算出した結果である。図より、空気ばね左右剛性を小さくすると、車体左右振動加速度が低減することが認められる。空気ばね左右剛性を10倍にした場合、顕著に車体左右振動加速度が増加するが、1/10倍にした場合は、$K_{BF} = 1.86 \times 10^4 \mathrm{N/m}$および$K_{BF} = 1.86 \times 10^5 \mathrm{N/m}$の場合を比較すると、車体左右振動加速度はわずかに減少しているものの大きさは変わらない。よって、空気ばねを柔らかくすることは乗り心地向上に有効であるが、ある程度以上に柔らかくすると効果は減少することがわかる。
2.7.2 曲線走行解析

曲線走行時の走行安全性について、走行速度 70km/h で、曲線半径 300m、カン ト 100mm の円曲線を走行した場合を対象とし、検討を行った。

鉄道車両が曲線走行する場合には、車輪がレールを横方向に押す力である横圧が大きくなり、脱線や軌道破壊の危険性がある。曲線通過中の横圧を低減させるための対策として、軸箱前後支持剛性の最適化が上げられる。図 2.7 は、軸箱前後支持剛性を $K_{by} = 1.12 \times 10^7 \text{N/m}$ を基準にして、その 1/2 倍および 2 倍の剛性、すなわち $K_{by} = 5.60 \times 10^6 \text{N/m}$ および $K_{by} = 2.24 \times 10^7 \text{N/m}$ とした場合における、曲線走行中の先頭軸外軸側横圧値を示す。軸箱前後支持剛性を小さくすると、円曲線中の横圧値は低減することが認められ、曲線通過性能の向上に寄与できることがわかる。

鉄道車両が緩和曲線を走行する際には、軌道のねじれによる輪重変動が大きくなりやすい。特に、出口緩和曲線進入時の先頭軸外軸側車輪の輪重減少が大きくなると、脱線に対する安全性が低くなることが指摘されている(9)。図 2.8 は軸箱上下支持剛性に関して、$K_{wz} = 3.80 \times 10^8 \text{N/m}$ を基準にして、その 1/2 倍および 2 倍の剛性、すなわち、$K_{wz} = 1.90 \times 10^8 \text{N/m}$ および $K_{wz} = 7.60 \times 10^8 \text{N/m}$ にした場合における、先頭軸外軸側軸重を示す。軸箱上下支持剛性が大きくなると、出口緩和曲線における先頭軸外軸側の輪重減少が大きくなることがわかる。したがって、脱線に対する安全性を確保するためには、軸箱上下支持剛性を小さくすることが有効であることが認められる。
Fig. 2.7  Lateral force of first wheelset to outside rail

Fig. 2.8  Wheel load of first wheelset to outside rail
参考文献

(2) 出村要, 粘着限界および滑走防止, 高速鉄道の研究（鉄道技術研究所監修）, 研友社, (1967), pp335-343.
第3章 台上走行試験における軌道不整模擬のための新しい加振方法

3.1 緒言

鉄道総合技術研究所が所有する車両回転試験装置は、定置で軌道上を走行する鉄道車両の特性を調査する装置である。この装置では、実物の車両を用い、実際の軌道不整を模擬して、その応答を調べることが可能である。しかし、軌条輪上を走行する試験装置の応答特性から、本線軌道上を走行した場合の応答特性を充分に予測できないという問題点があった。これは、レール上と軌条輪上ではクリープ力特性が異なることが原因である(1)。

そこで、本章では、車両回転試験装置で、本線上の車両応答特性を精度よく再現する方法について検討する。

3.2 車両回転試験装置

3.2.1 車両回転試験装置の概要

図3.1に車両回転試験装置の外観を示す。レールに相当する円盤状の軌条輪の上に試作台車、試作車体を設置した状態である。

図3.2に車両回転試験装置の模式図を示す。軌条輪上に車両を設置し、軌条輪を回転、加振することにより、軌道上の走行状態を模擬することができる。

車両回転試験装置では、固定軸距（先頭軸と最後尾軸との距離）、台車中心間距離および速度から定まる位相差を考慮して各軌条輪に強制変位を与え、軌道の通り不整を模擬する。

実際の軌道に存在する各種の不整のうち、まくらぎ方向の不整すなわち通り不整（レール軌間線の長手方向の左右の偏位）が、車両の左右方向の振動乗り心地等に主として影響を及ぼす。そのため、通り不整のある軌道上を走行する車両の車体左右振動加速度を把握することが、乗り心地等を改善するために重要である。

![Fig.3.1 The appearance of the rolling test plant](image)
3.2.2 車両回転試験装置と本線の違い

図 3.3 は、実軌道通り不整データをもとに第 2 章で述べた計算モデルおよび運動方程式により、新幹線車両の諸元を用いて、走行速度 300km/h で車両運動解析を行い、前台車直上の車体左右振動加速度を求めたものである。なお、本章では、本線レールと軌条輪ともに、剛体としている。上図が車両回転試験装置の軌条輪上を走行した場合、下図が本線軌道上を走行した場合の車体左右振動加速度である。両者の比較から明らかなように、軌条輪上では本線軌道上に比べ高周波成分が認められる。
Fig.3.3 Calculated wave forms of the lateral vibration acceleration of car body on rail wheels of the test plant and those on rails of actual tracks (V=300km/h)

本線軌道上の車両と試験装置上の車両について運動が異なるのは、本線レールと軌条輪について相違点があるためである。本線レールと軌条輪の相違点は大きく以下の2つが考えられる。

[1] 軌条輪は車両の走行方向に曲率半径をもつ。したがって、実際のレール上と軌条輪上では車輪とレールの接触状態が異なるため、接触楕円の形状やクリープ力特性が異なる。

また、軌条輪半径の影響で、軌条輪上では等価踏面勾配が本線上よりも大きくなる。等価踏面勾配とは、車輪とレールが中立点近傍において接触している場合、それぞれの断面形状を一定の曲率をもった円弧とし、踏面勾配が微小であると仮定したとき、線形定数によって近似される車輪・レール間の接触勾配である。等価踏面勾配 $\lambda$ は、

\[ \gamma : \text{車輪とレールの接触点での踏面勾配} \]
\[ \rho_r : \text{車輪踏面曲率半径} \]
\[ \rho_s : \text{軌条輪断面率半径} \]
車輪半径 \( r_t \) と軌条輪半径 \( r_r \) とすると、式(3.1)のようにあらわすことができる。

\[
\lambda = \gamma \frac{1 + \frac{\rho_r \cdot r_r}{\rho_t \cdot r_r}}{1 - \frac{\rho_r}{\rho_t}}
\]  

(3.1)

ここで、本線レール上では軌条輪半径 \( r_r = \infty \) となるので、等価踏面勾配は、軌条輪上の方が本線上よりもだけ大きくなる。

[2] 軌条輪の左右加振では、軌条輪が左右方向に絶対速度を持つため、速度を持たない実際の轨道の通り不整の場合と異なったクリープ力が作用する。車輪・レール間に作用する左右クリープ力は左右クリープ率の影響を受ける。車輪とレールの接触点近傍の左右クリープ率は、式(3.2)のように定義される。

左右クリープ率

\[
= \left\{ (\text{レール(軌条輪)の接触梢円の絶対速度}) - \text{車輪の接触梢円の絶対速度} \right\} / \text{走行速度}
\]  

(3.2)

いま、軌条輪の場合、「レール(軌条輪)の接触梢円の絶対速度」の項は、軌条輪を強制的に左右変位させるとき、軌条輪の接触梢円が絶対速度を持つ。一方、本線レール上ではこの速度が発生しないため、左右クリープ率はレール上を走行する場合と軌条輪を強制的に変位する場合で異なる。

車両回転試験装置には、高低不整（レール長手方向の上下の凸凹）を模擬する上下加振、通り不整を模擬する左右加振、水準不整（軌間の基本寸法当たりの左右レールの高さの差を水準というが、この水準の設計値に対するずれを水準不整という）を模擬するロール加振の機能がある。これらの機能のうち、クリープ力が関与しない上下、ロール加振については、不整量と同等の加振振幅により軌道不整の模擬が可能であるのに対し、左右加振については、不整量と同等の加振振幅では通り不整を模擬できない。

以上の[1] [2]の相違点から、本線レール上と軌条輪上について、等価踏面勾配を等しくし、次の2点の違いを考慮した。

・接触梢円の形状
・軌条輪が左右絶対速度を持つこと
まず、軌条輪と本線レール上での等価路面勾配を等しくし、接触楕円の形状の違いと
軌条輪が左右方向に絶対速度を持つことを考慮した場合について、シミュレーションによ
り車両応答特性を調べた。これをケース 1 とする。

次に、等価路面勾配および接触楕円の形状を等しくし、軌条輪が左右方向に絶対速度を
持つことのみを考慮して、車両応答特性を調べた。これをケース 2 とする。

本計算では、振幅±5mm で、一定波長の通り不整が存在する路面上を速度 300km/h で走
行した場合を対象とし、計算時間が 10 秒とした。車両応答特性は、通り不整のある路
上を走行したときにおける前方車直上車体床面上の車体左右振動加速度波形の定常成分を
比較した。図 3.4 ～図 3.9 に、ケース 1 の場合の車体左右振動加速度の波形例を示す。図
3.4 ～3.6 は軌条輪を走行した場合、図 3.7 ～3.9 が本線レール上を走行した場合である。

次に、それぞれの車体左右振動加速度波形に関して、5 秒経過以降の定常成分における
最大値を算出した。ケース 1 及びケース 2 の計算結果を、それぞれ図 3.10 及び図 3.11 に
示す。これによると、どちらのケースも本線上と軌条輪上の車両応答特性の差は、通り不
整の波長が約 30m 以下のものに対して、顕著である。そして、本線上と軌条輪上の車両
応答特性の差は、接触楕円形状によらず、主として軌条輪の左右絶対速度の有無に依存す
るということが明らかになった。

Fig.3.4 Lateral vibration acceleration of car body on rail wheels
(wave length of lateral irregularity: 10m)
Fig. 3.5 Lateral vibration acceleration of car body on rail wheels
(wave length of lateral irregularity: 20m)

Fig. 3.6 Lateral vibration acceleration of car body on rail wheels
(wave length of lateral irregularity: 30m)

Fig. 3.7 Lateral vibration acceleration of car body on actual tracks
(wave length of lateral irregularity: 10m)
Fig. 3.8  Lateral vibration acceleration of car body on actual tracks  
(wave length of lateral irregularity: 20m)

Fig. 3.9  Lateral vibration acceleration of car body on actual tracks  
(wave length of lateral irregularity: 30m)

Fig. 3.10  Relation of the lateral vibration acceleration of car body to wave length of lateral track irregularity (V=300km/h) (case1)
3.3 車両回転試験装置の新加振方法

3.3.1 新加振方法による試験

車両回転試験装置の加振システムは、従来は、駆動装置と加振装置、それらを制御する制御装置から構成されていた。今回開発した新加振方法を図 3.12 に示す。駆動装置は、指令した速度で軌条輪を回転させる装置である。制御装置は、駆動装置による軌条輪の回転速度や加振装置から加えられる振動振幅等を制御する。シミュレーション装置は、任意の波長で加振される軌条輪上における車体左右振動加速度と、通り不整が存在する本線上における車体左右振動加速度を算出する。そして、これら２つの車体左右振動加速度の比から、通り不整の波長をパラメータとする重み付け関数を求め、これを用いて不整量を補正した加振振幅を制御装置に与える。

Fig.3.11 Relation of the lateral vibration acceleration of car body to wave length of lateral track irregularity (V=300km/h) (case2)

Fig.3.12 Constitution of the new system to oscillate the test plant
図 3.13 に、新振動方法による試験方法を示す。シミュレーション装置は、一定振幅の通り不整がある本線上を車両が走行した場合の車体左右振動加速度を算出する。同時に、本線上を車両が走行した場合と同じ波長と振幅で軌条輪が強制変位した場合の車体左右振動加速度を算出する。そして、波長毎に、本線上と軌条輪上の車体左右振動加速度を比較する。軌条輪の加振振幅に対する補正係数 \( \eta \) を式 (3.3) から算出し、これを近似する図 3.14 に示すような重み付け関数を導出する。なお、重み付け関数は補正係数の各点を近似する多項式となり、車両諸元や走行速度によって異なる。

轨道上の通り不整の検測は軌道検測車で行われる。検測車の検測データは、通り不整の波長ごとに通り不整振幅に検測倍率をもって測定される(2)。そこで、先に求めた重み付け関数を用いて、検測データの検測倍率を補正することによって、通り不整振幅の波長毎に補正後の加振振幅を算出し、軌条輪の強制変位指令値を出力する。そして、この指令値を用いて、軌条輪上で試験を実施すれば、本線上と同等の車体応答特性が得られる。

\[
\eta = \frac{\text{本線上の車体左右振動加速度}}{\text{軌条輪上の車体左右振動加速度}} \quad (3.3)
\]
3.3.2 新加振方法による車両試験のシミュレーション

一定振幅の通り不整が存在する本線上を車両が走行した場合の車体左右振動加速度と、補正前および補正後の振幅で軌条輪を加振した場合の車体左右振動加速度を、シミュレーションによって求めた結果を図 3.15 に示す。車体左右振動加速度は前台車直上車体床面上の左右振動加速度データを比較した。(a)は、補正前の振幅で加振した場合であるが、波長約 30m 以下で車体応答特性は異なるが、(b)に示すように、補正後の振幅で加振すると両者が通り不整の全波長に亘って等しくなることが確認できる。

また、重み付け関数の補正係数が 1 なる点が存在し、この場合は波長約 30m である。この補正係数が 1 となる場合の波長は、表 3.1 に示すように、走行速度や通り不整振幅によらず、ほぼ一定になることがわかった。
3.3.3 車両回転試験装置による試験結果

試験に用いた試作台車を図 3.16 に示す。試作台車の諸元を用いたシミュレーションから、重み付け関数を算出し、通り不整を補正した実軌道加振試験を実施した。
図 3.17 の上図は補正前の、中図は補正後の通り不整を用いた場合の車体左右振動加速度の波形例である。下図に、シミュレーションにより求めた本線上を走行した場合の車体左右振動加速度を示す。補正後の通り不整を用いて車両回転試験装置で試験を行ったときの車体左右振動加速度は、補正前の通り不整を走行した場合に比べて高周波成分が除去され、本線上の波形とかなり近いことが認められる。また、それぞれについて、1 軸の輪軸左右変位の波形例を図 3.18 に示す。上図は補正前の、中図は補正後の通り不整を用いた場合の結果で、下図は、本線上を走行した場合のシミュレーション結果である。輪軸左右変位は、補正前と補正後の波形に顕著な差は認められない。
Fig. 3.17 Wave forms of the lateral vibration acceleration of car body (on rail wheels with and without compensation and on actual tracks)
Fig. 3.18 Wave forms of the lateral displacement of journal box
(on rail wheels with and without compensation and on actual tracks)
3.4 考察

図 3.15 (a)において認められるように、一定振幅の通り不整がある軌道上を鉄道車両が走行した場合の車両応答特性は、約 30m 以下の通り不整波長に対して、本線レール上と軌条輪上で異なる。また、本線レール上では波長 30m 付近に車両応答特性のピークが認められる。これらの車両応答特性に関し、以下の考察を行った。

(1) 本線レール上の車両応答特性におけるピーク（通り不整波長約30m付近）
(2) 本線レール上と軌条輪上の車両応答特性の違い（通り不整波長約30m以下）

3.4.1 本線レール上の車両応答特性におけるピーク

本線レール上の車両応答特性に関し、通り不整波長 30m 付近にピークが認められる。図 3.15 (a)について、横軸を周波数にすると、図 3.19 のようになる。ただし、図では横軸を対数表示している。ここで、車体左右振動加速度は、前台車直上であるので、次のように表される。

\[ \ddot{y}_a + D \cdot \ddot{\phi}_a + HF \cdot \dot{\phi}_b \]

ただし、HF は車体重心と車体床面の高さの差である。

図 3.19 に関して、車体左右振動加速度を各成分、すなわち、左右振動加速度、ヨーイング加速度、および、ローリング加速度成分に分解すると、それぞれ、図 3.20、図 3.21 および図 3.22 となる。図における縦軸は、それぞれ、\( \ddot{y}_a, D \cdot \ddot{\phi}_a \) および HF であり、比較のため、それぞれの図で縦軸の目盛りを同一としている。図 3.19 において、周波数の増加に伴い軌条輪上の車体左右振動加速度が増加するのは、図 3.20～3.22 のうち図 3.21 に示す車体ヨーイング加速度成分が大きいことがわかる。特に、図 3.19 において周波数 3Hz 付近にピークが認められ、また、図 3.21 から車体ヨーイングは 3Hz 付近に大きなピークが認められる。

一方で、台車蛇行動の波長 S は、次のように表される。

\[ S = 2\pi \sqrt{B \cdot r_n / \lambda - \sqrt{1 + (A/B)^2}} \]  (3.4)

本章では新品踏面として等価踏面勾配 \( 2 = 1 \) としており、蛇行動波長 \( S = 29.67m \) となるので、速度 \( V = 300km/h \) （=300/3.6 (m/s)）とすると、台車蛇行動の周波数 f は

\[ f = V/S = 300/3.6/29.67 = 3.01Hz \]

となる。

したがって、台車蛇行動の周波数は 3Hz 付近で、車体ヨーイングの周波数特性のピークと近いため、車体左右振動加速度が大きくなると考えられる。

また、本章における新幹線車両モデルの台車中心間距離は 17.5m である。車体左右振動加速度のピーク値の通り不整の波長は約 30m でその半波長は約 15m である。したがって、本線上における車体左右振動加速度のピーク値における通り不整の波長は、台車中心間距離を 2 倍したものに近い値であるといえる。さらに、図 3.21 において、車体左右振
動加速度のピークは7Hz付近にも認められる。周波数7Hzは速度300km/hのとき、通り不整波長11.9mに相当する。その1.5波長（半波長+1波長）は17.9mとなり、台車中心間距離台車中心間距離17.5mとほぼ近い値になる。以上より、通り不整波長が、台車中心間距離の2倍、2/3倍のとき、すなわち、
台車中心間距離＝通り不整波長×(2N-1)/2　（ただし、Nは整数とする）（3.5）のときに、車体ヨーグイングが大きくなる特性を示すことがわかる。
以上より、本線レール上において、通り不整波長30m付近に車両応答特性のピークが現れるのは、蛇行動波長が30m付近にあるため台車が左右方向に運動しやすくなっているところに、車体ヨーグイングの波長がこれと近いために車体ヨーグイングを伴った振動が現れやすくなったためと考えられる。

Fig.3.19 Relation of the lateral vibration acceleration of car body and frequency
Fig. 3.20 Relation of the lateral vibration acceleration of car body and frequency
(lateral acceleration element)

Fig. 3.21 Relation of the lateral vibration acceleration of car body and frequency
(yawing acceleration element)
3.4.2 本線レール上と軌条輪上の車両応答特性の違い

車輪がレール上を転走して車輪が左右方向（まくらぎ方向）にわずかにずれると、接触楕円にクリーブ（すべり）が生じる。クリーブ率は、車輪がレール上を転がるとき、接触面での車輪とレールの両物質の速度差をレール面に平行な方向への車輪の移動速度で除したものであるが、図3.23および図3.24に周波数と左右クリーブ率の関係を示す。図より、本線レール上を走行した場合と比較して、軌条輪上を走行した場合は、周波数が大きくなると、顕著に左右クリーブ率が大きくなる傾向を示すことがわかる。直線走行のように輪軸の左右移動が微少な場合を考慮するとき、クリーブ率とクリーブ力は線形の関係にあり、クリーブ係数を定数として、

$$\text{左右クリーブ力} = \text{クリーブ係数} \times \text{左右クリーブ率} \tag{3.6}$$

と表すことができる。

したがって、周波数が大きくなり、クリーブ率が増加すると、左右クリーブ力も増加する。左右クリーブ力は、輪軸の左右方向の運動に関して加振力として作用するので、輪軸の左右方向の振動加速度は大きくなる。

図3.25および図3.26に輪軸左右振動加速度の周波数応答特性を示す。図から、本線上を走行した場合、周波数の増加に伴い、輪軸左右振動加速度の応答特性は大きくなることが認められ、軌条輪上を走行した場合にはさらに大きな応答特性を示すことがわかる。また、図3.27および図3.28に輪軸ヨーイング加速度の周波数特性を示す。輪軸左右振動加速度と同様に、周波数の増加に伴い、振動加速度が大きくなる傾向があり、その傾向は本線レール上よりも軌条輪上の方が顕著である。さらに、図3.29に、前台車左右振動加速度を示す。
度の周波数応答特性を示すが、輪軸左右振動加速度と同様に、周波数の増加に伴い、応答特性が大きくなる傾向を示す。

本線上と軌条輪上の応答特性を比較すると、3Hz 付近から輪軸左右振動加速度が増大し、6~7Hz 付近から輪軸ヨーイング加速度が増大することがわかる。したがって、軌条輪では 3Hz 付近から輪軸左右振動加速度が増大することによりクリープ率を増加させ、その後 6~7Hz 付近を越える周波数では、輪軸のヨーイング運動も加わり、クリープ率はさらに増加すると考えられる。輪軸のヨーイングは左右車輪に輪径差を生じ、前後方向のすべりを発生させ、それがさらに左右方向のすべりを増加させる。その結果、軌条輪上で走行する車両は周波数が増加するにつれて、車両応答特性が増加する傾向を示すと考えられる。

Fig.3.23  Relation of lateral creepage and frequency (first wheelset)

Fig.3.24  Relation of lateral creepage and frequency (second wheelset)
Fig. 3.25  Relation of lateral vibration acceleration and frequency (first wheelset)

Fig. 3.26  Relation of lateral vibration acceleration and frequency (second wheelset)

Fig. 3.27  Relation of yawing acceleration and frequency (first wheelset)
次に、通り不整波長 10m の軌条輪上を速度 300km/h で走行した場合における、軌条輪左右変位と輪軸左右変位の波形を図 3.30~3.33 に示す。図はそれぞれ順に、第 1 軌条輪左右変位、第 2 軌条輪左右変位、第 1 輪軸左右変位および第 2 輪軸左右変位である。これらの左右変位周波数を算出すると、各軌条輪および各輪軸ともに 8.33Hz となる。一方で、台車質量と軸箱左右支持剛性のみを考慮した振動系において、固有振動数 \( f \) は、次のように表すことができる。

\[
 f = \frac{1}{2\pi} \sqrt{\frac{K_{yy}}{M_f}} \tag{3.7}
\]

ここで、\( K_{yy} = 9.80 \times 10^6 N/m \), \( M_f = 2840 kg \) とすると、\( f = 9.35 \)Hz となり、軌条輪左右変位の周波数に近くなる。また、この振動数を波長に換算すると、8.91m となる。よって、本

![Fig.3.28 Relation of yawing acceleration and frequency (second wheelset)](image)

![Fig.3.29 Relation of lateral vibration acceleration of the front bogie and frequency)](image)
線レール上の車両応答特性においても 10m 波長付近にわずかにピークが認められるのは、車両応答の振動数が、台車質量と軸箱左右支持剛性から定まる固有振動数に近くなるためであると考えられる。

本線レール上を走行した場合には、本周波数における車体左右振動加速度のピークは 3Hz 付近で認められたものより小さいが、軌条輪を走行した場合には、図 3.25、図 3.26 および図 3.29 に認められるように、周波数がより高くなるほど、軸箱左右振動加速度および台車左右振動加速度の応答倍率が顕著に大きくなるため、3Hz 付近で認められたビーク値よりも大きな応答となる。

以上から、通り不整波長 30m 以下で車両応答特性が異なるのは、軌条輪の左右強制変位による横すべり力（クリープ力）に伴う輪軸左右変位周波数と、台車質量と軸箱左右支持剛性から定まる台車枠左右の固有振動数が共振するためであると考えられる。

![Fig.3.30 Lateral displacement of first rail wheel](image1)

![Fig.3.31 Lateral displacement of second rail wheel](image2)
3.5 結言
(1) 車両回転試験装置上における走行試験において本線上的通り不整を模擬する場合、約30m波長以下の成分では、本線上と車両回転試験装置上の車両の応答が異なることがわかった。
(2) シミュレーションにより得られた本線上的応答特性と車両回転試験装置上の応答特性を比較検討し、軌条輪の左右絶対速度の影響を重み付け関数の形で補正することにより、車両回転試験装置における走行試験において、本線上を走行する車両の応答特性を精度よく再現できる方法を開発した。
参考文献

第4章 等価踏面勾配がセミアクティブ制御の効果に及ぼす影響

4.1 緒言

鉄道車両がトンネル内を高速走行する場合、車両の周りに発生する変動空気圧により、車両の左右およびヨー方向に振動が発生し、乗り心地に大きく影響を及ぼす。従来から左右方向の振動加速度振幅を低減させる方法として、セミアクティブサスペンションが提案され、500系、700系、E2系、800系などの新幹線車両で採用されている(1)。さらに、在来線車両でも試験が実施され、セミアクティブ制御により、車体左右振動加速度を約20～30％低減できることが確認されている(2)。

一方で、鉄道車両は走行距離が増すにつれて、車輪踏面が摩耗する。車輪踏面が摩耗すると等価踏面勾配が増加し、車両の運動特性に影響を及ぼす。よって、走行距離の増大に伴う等価踏面勾配の増加により、セミアクティブ制御の効果は変化すると考えられる。走行距離増大に伴い変化する等価踏面勾配とセミアクティブ制御の効果の関係について検討することは、乗り心地向上を図るために重要であるが、これに関する報告は少ない。そこで、本章では、等価踏面勾配がセミアクティブ制御の効果に及ぼす影響について、シミュレーションにより検討する。

4.2 車両運動解析

4.2.1 スカイフックの原理

鉄道車両の車体・台車間に取り付けられているダンパは、車体の振動を抑える役目を担っており、ダンパの効き目を強くすると、特に、車体質量とばねによる共振周波数付近の振動を抑えるには有効である。しかしながら、車体・台車間のダンパは、台車の振動を車体に伝える役目をも担っているため、ダンパの効き目を強くすると、台車から車体に伝わる高周波振動は増大することになる。したがって、ダンパの効き目を強くしてダンパに発生する力を大きくすることが良いとはいえない。

一方で、静止空間である空中に動かない壁があると仮定し、その壁と車体の間にダンパを取り付けることができれば、壁は動かないため、ダンパの効き目を強くしても、高周波振動は増加せず、車両は常に安定した姿勢となる。したがって、車体左右振動加速度を積分して、車体左右速度を求め、これに比例する力を車体・台車間に実際のダンパで発生させれば、車体は動かない壁とダンパで取り付けられたのと同じ状態となる。以上のようなスカイフックの原理を利用すれば、静止空間に対して仮想的なダンパを取り付けたことと同等になるため、台車から車体に伝わる振動および空気圧により車体に伝わる振動を低減するのに有効である。
4.2.2 セミアクティブサスペンション

鉄道車両にセミアクティブサスペンションが採用された理由は、次のようと考えられる。

(1) 台車から車体に伝達される振動、変動空気圧により車体が直接揺らされる振動を抑えるのに有効である。

(2) 制御がフェールした場合はパッシブとなるため、安全性を確保できる。

(3) 空気や油圧などの動力源が不要なため、装置をコンパクト、安価にできる。

図4.1にセミアクティブ制御の概要図を示す。車体・台車間のダンパの減衰係数を可変にして、車体と動かない壁に取り付けられた仮想ダンパと同等の減衰力を発生させることにより、振動の状態に応じて、車体振動を抑制する。ダンパの減衰係数を増加させても、高振動数域の振動増大を伴わないこと、広い振動数域にわたって振動を低減することが、スカイフックダンパの特徴である。スカイフックの原理を用いたセミアクティブ制御用ダンパは、加速度センサで車体左右振動加速度を測定し、それを積分して車体左右速度を求める。ここで、加速度は曲線通過中の遠心加速度が含まれるので、加速度の低周波成分を除去する。次に、車体左右速度にスカイフックゲイン（スカイフックダンパの強さ）を掛けて、必要な減衰力を算出することになる。セミアクティブ制御用ダンパの減衰係数

$$C_{SDj}(ただしj=1のときは前台車, \ j=2のときは後台車)は、式(4.1)のように表すことができる。

$$C_{SDj} = \begin{cases} \frac{C_0}{\phi} & \text{ただし} \ j=1 \ \text{のときは前台車}, \ j=2 \ \text{のときは後台車} \\ C_1 \end{cases}

$$

Fig.4.1 Conceptual diagram of sky hook damper
ここで、\( C_\alpha \) はスカイフックゲインである。また、各記号は次のとおりである。

\[
\begin{align*}
\dot{Y}_{\beta j} &= \dot{Y}_\alpha + \dot{D} \cdot \dot{\phi}_\alpha + (H_s + H_a) \cdot \dot{\phi}_\alpha \\
\dot{Y}_{\beta 2} &= \dot{Y}_\alpha - \dot{D} \cdot \dot{\phi}_\alpha + (H_s + H_a) \cdot \dot{\phi}_\alpha \\
\ddot{Y}_{TT 1} &= \ddot{Y}_{T 1} - H_2 \cdot \dot{\phi}_{T 1} \\
\ddot{Y}_{TT 2} &= \ddot{Y}_{T 2} - H_2 \cdot \dot{\phi}_{T 2}
\end{align*}
\] (4.2) (4.3) (4.4) (4.5)

図4.2に、減衰係数 \( C_{SDj} \) に関する Karnopp の切り換え則を示す。スカイフック制御は、車体の左右速度 \( \dot{Y}_{\beta j} \) と車体・台車間相対速度 \( \dot{Y}_{\beta j} - \dot{Y}_{TTj} \) の関係において、\( \dot{Y}_{\beta j} (\dot{Y}_{\beta j} - \dot{Y}_{TTj}) < 0 \) のとき、すなわち、第2、4象限にあるとき、ダンパが車体を加振することになるので、減衰係数を小さく設定し、アンロード状態とする。このとき、\( C_{SDj} = C_1 \) （\( C_1 \) はセミアクティブダンパの最小減衰係数とする）となる。また、\( \dot{Y}_{\beta j} (\dot{Y}_{\beta j} - \dot{Y}_{TTj}) \geq 0 \) のとき、すなわち、第1、3象限にあるとき、ダンパは減衰力を発生させる。このとき、\( C_{SDj} = C_\alpha \left| \dot{Y}_{\beta j} \right| / \left| \dot{Y}_{\beta j} - \dot{Y}_{TTj} \right| \) となる。

減衰係数は現実的には有限の正符号値でなければならないので、式(4.1)には絶対値を付している。なお、計算に用いたセミアクティブ制御特性を表4.1に示す。本計算では、ルンゲ・クッタ・ギル法による計算刻みを \( 1.0 \times 10^{-3} \text{S} \) とし、セミアクティブ制御周期は \( 3.0 \times 10^{-3} \text{S} \) とした。
Table 4.1 Semi-active control parameter

<table>
<thead>
<tr>
<th>Notation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control period (s)</td>
<td>$3 \times 10^{-3}$</td>
</tr>
<tr>
<td>Sky hook gain: $C_g$ (Ns/m)</td>
<td>$2.45 \times 10^7$</td>
</tr>
<tr>
<td>Maximum damping gradient: $C_{g0}$ (Ns/m)</td>
<td>$5.39 \times 10^5$</td>
</tr>
<tr>
<td>Minimum damping gradient: $C_{g0}$ (Ns/m)</td>
<td>$9.80 \times 10^3$</td>
</tr>
<tr>
<td>Series rubber stiffness: $K_{s0}$ (N/m)</td>
<td>$1.47 \times 10^7$</td>
</tr>
</tbody>
</table>

4.2.3 計算条件

新幹線車両のモデルおよび諸元を用い、走行速度は 300km/h とした。第 2 章の固有値解析結果から、左右方向の車両運動特性に大きな影響を及ぼす車体ヨーイングの固有振動数が 1.7Hz であることが示された。したがって、通り不整に関しては、振幅±5mm、周波数 1.7Hz の連続した正弦波とした。また、トンネル内走行時に車体重心周りに作用するヨーイングモーメントを、過去の走行試験において観測された結果(3)から、振幅±1.37×10^5 Nm、周波数 2.0Hz の連続した正弦波として与えた。

4.3 セミアクティブ制御の効果

4.3.1 軌道条件

走行する軌道条件の違いによるセミアクティブ制御の効果を調べるため、
(1) 通り不整がないトンネル区間
(2) 通り不整のある明かり区間
(3) 通り不整のあるトンネル区間の3つの場合について、セミアクティブ制御の有無による車体左右振動加速度振幅を比較した。計算結果の波形例を図 4.3 および図 4.4 に示す。図 4.3 は、等価踏面勾配が 1/15 のときに「セミアクティブ制御なし（パッシブ状態）」で走行した場合の計算結果であるが、順に、通り不整、変動空気圧、前台車直上車体左右振動加速度および後台車直上車体左右振動加速度を示している。図 4.4 は、同じ等価踏面勾配 1/15 のときに、「セミアクティブ制御あり（アクティブ状態）」で走行した場合であるが、順に、通り不整、変動空気圧、前台車直上車体左右振動加速度、後台車直上車体左右振動加速度、減衰係数 $C_{s01}$ および減衰係数 $C_{s02}$ を示している。また、図 4.5～図 4.10 は、等価踏面勾配を、1/15、1/10 および 1/5 とし、5 秒経過以降における前台車直上および後台車直上における車体左右振動加速度の片振幅の最大値を示したものである。前台車直上および後台車直上における車体左右振動加速度は、パッシブ状態では、通り不整のあるトンネル区間を走行した場合に、もっとも大きくなることがわかる。次に、図 4.5～図 4.10 の結果に関し、等価踏面勾配ごとに示したものを、図 4.11～図 4.13 に示す。図では、車体左右振動加速度の最大値について、制御ありと制御なしの比、すなわち、「制御あり/制御なし」を示している。図よ
り，前台車直上および後台車直上の車体左右振動加速度を比較すると，図 4.13 に示される等価踏面勾配が 1/5 のときにトンネル走行した場合を除いて，「制御あり/制御なし」，すなわち，「Control/Passive」は前台車直上より後台車直上車体左右振動加速度の方が小さくなる。よって，前台車直上より後台車直上の方が制御の効果が大きいことがわかる。また，等価踏面勾配に関わらず，通り不整のある明かり区間を走行した場合よりも，トンネル内を走行した場合に，制御の効果が大きいことが認められる。これは，車体左右振動加速度は，軌道上の通り不整の影響よりも，トンネル内を走行する変動空気圧の影響を大きく受けるためであると考えられる。

![Fig.4.3-(a)- Lateral irregularity (passive condition)](image)

![Fig.4.3-(b)- Yawing moment of unsteady aerodynamic force (passive condition)](image)
Fig. 4.3-(c)- Lateral vibration acceleration of car body on front bogie (passive condition)

Fig. 4.3-(d)- Lateral vibration acceleration of car body on rear bogie (passive condition)

Fig. 4.4-(a)- Lateral irregularity (control condition)
Fig. 4.4-(b) - Yawing moment of unsteady aerodynamic force (control condition)

Fig. 4.4-(c) - Lateral vibration acceleration of car body on front bogie (control condition)

Fig. 4.4-(d) - Lateral vibration acceleration of car body on rear bogie (control condition)
Fig. 4.4-(e)- Damping gradient $C_{SD1}$ (control condition)

Fig. 4.4-(f)- Damping gradient $C_{SD2}$ (control condition)

Fig. 4.5  Amplitude of lateral vibration acceleration on the front bogie
(equivalent conicity is 1/15)
Fig. 4.6 Amplitude of lateral vibration acceleration on the rear bogie (equivalent conicity is 1/15)

Fig. 4.7 Amplitude of lateral vibration acceleration on the front bogie (equivalent conicity is 1/10)

Fig. 4.8 Amplitude of lateral vibration acceleration on the rear bogie (equivalent conicity is 1/10)
Fig. 4.9  Amplitude of lateral vibration acceleration on the front bogie  
(equivalent conicity is 1/5)

Fig. 4.10  Amplitude of lateral vibration acceleration on the rear bogie  
(equivalent conicity is 1/5)

Fig. 4.11  Comparison of amplitude of lateral vibration acceleration on the front bogie  
with that on the rear bogie (equivalent conicity is 1/15)
4.3.2 等価踏面勾配と制御の効果の関係

4.3.2.1 等価踏面勾配と車体左右振動加速度の関係

車輪踏面の摩耗がセミアクティブ制御の効果に与える影響を検討するために、等価踏面勾配が左右振動乗り心地に与える影響をシミュレーションにより検討した。通り不整の存在するトンネル区間を走行した場合を対象とした。

前述の計算結果から、前台車直上よりも後台車直上の方が制御の効果が大きいので、等価踏面勾配が左右振動乗り心地に与える影響を示す図 4.14 に示す。制御なしの場合において、等価踏面勾配が增加するにつれて、車体左右振動加速度が低下することが認められる。
められる。さらに、図 4.14 における車体左右振動加速度の片振幅の最大値に関し、「制御なし（パッシブ状態）」から「制御あり（アクティブ状態）」の車体左右振動速度振幅の絶対値の差、すなわち、「passive - control」を算出した結果を図 4.15 に示す。
「passive - control」は、セミアクティブ制御により低減された車体左右振動加速度振幅の絶対値を示すが、等価踏面勾配が大きくなるに従い、「passive - control」は小さくなる。したがって、走行距離が増加すると、セミアクティブ制御の効果が低下することがわかる。

Fig.4.14   Amplitude of the lateral vibration acceleration of car body and equivalent conicity

Fig.4.15   Difference of amplitude of lateral vibration acceleration of car body with passive and with control and equivalent conicity
4.3.2.2 パッシブ状態の車体左右振動加速度

台車蛇行動の蛇行動波長 $S$ は、前章の式(3.4)より、
$$S = 2\pi \sqrt{B \cdot r_0 / \lambda \cdot \sqrt{1 + (A/B)^2}}$$
と表わされる。ここで、等価踏面勾配 $\lambda = 1/15, 1/10, 1/5$ のとき、蛇行動波長 $S$ は、順に、
$26.90\text{m}$、$21.97\text{m}$、$15.53\text{m}$ となる。速度 $V = 300\text{km/h} (= 300/3.6\text{ (m/s)})$ とすると、台車蛇行動の周波数 $f$ は、次のようになる。

- $\lambda = 1/15$ のとき、$f = V/S = 300/3.6/26.90 = 3.10\text{Hz}$
- $\lambda = 1/10$ のとき、$f = V/S = 300/3.6/21.97 = 3.79\text{Hz}$
- $\lambda = 1/5$ のとき、$f = V/S = 300/3.6/15.53 = 5.37\text{Hz}$

一方で、車体ヨーイングの周波数特性を図 4.16 に示す。図は、±5mm の振幅の通り不整のある軌道上を鉄道車両が走行した場合に関して、横軸に周波数を対数表示でとり、縦軸に車体ヨーイング加速度を示したものである。図 4.16 は、前述の図 3.21 の本線レール上の車両応答特性を示したものに相当するが、車体ヨーイングの周波数特性は、3Hz 付近に大きなピークが認められる。ここで、等価踏面勾配が小さい場合における台車蛇行動の周波数（例えば、等価踏面勾配 $1/15$ のとき周波数 3.10Hz）は、車体ヨーイングの周波数特性の 3Hz 付近のピークに近い。しかし、等価踏面勾配が大きくなると、台車蛇行動の周波数が高くなり、車体ヨーイングの周波数応答のピークから離れる。また、前述の固有値解析結果から、車体ヨーイングの固有振動数は、約 1.7Hz である。したがって、走行距離の増加に伴い、等価踏面勾配が大きくなると、車体ヨーイングの固有振動数から離れると考えられる。

[図 4.16 車体ヨーイングの周波数特性]
4.3.2.3 実測結果との検証
車輪転削後の走行距離と左右振動乗り心地レベルの関係について、ある在来線車両の実測結果を図4.17に示す。振動乗り心地レベルは、車両の振動加速度を乗客の体感に及ぼす影響を考慮し、等感覚曲線による重み付けを行った後、一定時間の実効値を求めて基準振動加速度との比を対数表示したものである。83dB未満を1、83~88dBを2、88~93dBを3、93~98dBを4、98dB以上を5と評価し、乗り心地レベルは小さいほど車体左右振動加速度が小さく乗り心地のいい状態であることを示す。図より、走行距離が増加するにつれて、左右振動乗り心地レベルが小さくなることが認められる。すなわち、車両の走行距離の増大に伴って、車輪踏面が摩耗し、等価踏面勾配が増加すると、車体左右振動加速度が小さくなったといえる。この実測結果の傾向は、本解析結果と一致する。

4.3.2.4 車体・台車間の左右相対速度およびモード
セミアクティブダンパ取付位置における車体と台車の相対的な運動を調べるために、後台車の車体・台車間の左右相対速度を求めた。セミアクティブ制御は前述の図4.11～図4.13より、トンネル内走行の変動空気圧により発生する車体振動を制御する場合に最も効果があらわれる。よって、通り不整のないトンネル区間を対象とし、等価踏面勾配が1/15と1/5のときに対して、左右相対速度の片振幅の最大値を求めた結果を図4.18に示す。図より、等価踏面勾配が1/5のときの左右相対速度は、1/15のときよりも小さく、走行距離が増加すると、車体・台車間の左右相対速度が小さくなることが明らかになった。これより、踏面の摩耗が進行し、等価踏面勾配が大きくなると、車体・台車間の左右相対速度は、すなわち、セミアクティブダンパによる減衰力が小さくなり、制御による効果も小さくなると考えられる。
次に、前述の車両モデル図でXY平面の前方車中心位置において、車体、台車、輪軸に関する、それぞれ重心位置高さでの左右変位を比較した。計算条件は、等価踏面勾配が1/5、通り不整のないトンネル区間を走行した場合を対象とした。車体左右変位、台車枠左右変位および輪軸左右変位の最大値をそれぞれ図 4.19～図 4.21 に示す。図より、制御により、車体左右変位、台車枠左右変位、輪軸左右変位はいずれも小さくなった。さらに、車体・台車間の左右変位の位相差を求めた結果を図 4.22 に示す。制御によって、車体・台車間の位相差が減少し、車体と台車のヨーワイング方向の運動の位相が近づくといえる。

Fig.4.18  Lateral relativity velocity between car body and bogie in tunnel running

Fig.4.19  The maximum of lateral displacement of car body in tunnel running

Fig.4.20  The maximum of lateral displacement of bogie in tunnel running
4.3.2.5 セミアクティブ制御の蛇行動への影響

鉄道車両の直線走行安定性に関する問題として蛇行動が上げられる。蛇行動による振動は振幅が非常に大きく、車両の乗り心地に影響を与えるだけでなく、脱線にもつながるおそれがある。そこで、セミアクティブ制御の蛇行動への影響を調べるために、各輪軸の左右変位への影響を検討した。

図 4.23 に示すように、一輪軸がレール上を転がっていく場合、輪軸が左右に動くと車輪踏面に勾配があるために、左右車輪に輪径差ができる。その結果、輪軸は一定の振幅で蛇行動することになるが、このときの幾何学的蛇行動波長 $S_1$ は、式(4.6)のように表せる。

$$S_1 = 2\pi \sqrt{B \cdot r_0 / \lambda}$$  \hspace{1cm} (4.6)

蛇行動を抑えるためには、蛇行動波長を大きくする必要があり、式(4.6)より、等価踏面勾配 $\lambda$ を小さくすること、車輪・レール接触点距離 $B$ および車輪半径 $r_0$ を大きくすることが有効である。ここで、走行距離增大に伴い等価踏面勾配が増加すると、蛇行動波長が短くなるため、蛇行動のより発生しやすい状況になる。そこで、セミアクティブ制御の蛇行動
動への影響を調べるため、走行距離が増大した場合に相当する等価踏面勾配 1/5 の車輪について、各輪軸の左右変位を求めた。計算結果を図 4.24 〜図 4.27 に示す。さらに、各輪軸左右変位の片振幅の最大値を図 4.28 に示す。図から、2 軸および 4 軸の輪軸左右変位はセミアクティブ制御によって大きな効果が見られるが、1 軸および 3 軸では減少する結果となった。これより、見かけ上の台車のヨーイング方向運動の中心が、各台車中心から各台車前位側に変化したと考えられる。また、制御により各輪軸の左右変位は増大しないことから、セミアクティブ制御により蛇行動を誘発する影響はない、すなわち、走行安定性を低下させることはないと考えられる。

Fig.4.23 Kinematic hunting of wheelset

Fig.4.24 Lateral displacement of first wheelset

Fig.4.25 Lateral displacement of second wheelset
Fig. 4.26  Lateral displacement of third wheelset

Fig. 4.27  Lateral displacement of fourth wheelset

Fig. 4.28  The maximum of lateral displacement of wheelset
4.4 結言

車両の走行距離の増大に伴って車輪踏面が消費し、等価踏面勾配が大きくなると、車体・台車間の左右相対速度が小さくなる。すなわち、セミアクティブダンパによる減衰力が小さくなり、制御の効果が小さくなると考えられる。その結果、等価踏面勾配の増加により、セミアクティブ制御の効果は低下する。したがって、車両踏面の状態、具体的には、車両の走行距離に対するロバスト性を高めた制御手法が必要であると考えられる。
参考文献

(1) 佐々木君章, 鴨下庄吾, 下村隆行, 鉄道車両用セミアクティブサスペンション, 鉄道総研報告, Vol.10, No5, pp.25-30, 1996.5

(2) Sasaki, K., A Lateral Semi-Active Suspension of Tilting Train, QR of RTRI, Vol.41, No.1, pp.11-15, 2000.5

第5章 車輪とレールの摩耗を考慮した接触特性評価システムの開発

5.1 緒 言
鉄道車両の運動は、車輪とレールの接触点におけるクリープ力特性の影響を大きく受ける。したがって、車両の運動特性を評価するためには、車輪とレールの接触幾何学計算から、左右車輪の接触半径、接触角などの正確な情報を得る必要がある。
また、鉄道車両がレール上を走行する場合、走行距離が増すにつれて車輪踏面、通過トン数が増すにつれてレール頭頂面が摩耗する。車輪踏面およびレール頭頂面の摩耗は、車両の運動特性に大きく影響を与えるので、摩耗した状態での車輪とレールの接触状態を解析することが重要である。

車輪とレールの接触幾何に関しては、過去に報告されている(1)〜(5)。車輪とレールの双方の摩耗を考慮したものの、佐藤らの報告(5)があるが、車輪およびレール形状の定式化（関数化）を前提としているものが多い。しかし、実際の摩耗した車輪とレールの形状はそれぞれに異なるものであるとともに、その形状データは、例えば専用の形状計測装置等によりデジタルデータとして与えられるものであり、摩耗した車輪やレールの形状を定式化することは非常に困難である。また、CADによる接触解析は多大の時間を要する。
そこで、本章では、車輪とレール双方の摩耗形状を関数化することなく、接触点情報を解析できるシステムについて検討する。

5.2 車輪とレールの接触特性評価システム
5.2.1 接触特性評価システムの概要
接触幾何学の問題は、レールに対して輪軸を左右変位させた場合の左右の車輪とレールの接触位置を求めることにある。図5.1に、今回検討した接触特性評価システムのフローチャートを示すが、流れは以下のようになる。
(1) 形状計測装置から得られた、図5.2に示す計測車輪形状データに対して、車輪厚さ方向に等間隔の補間処理を行い、厚さ方向の離散幅が0.1mmの等間隔車輪形状データに変換する。（図5.3参照）
(2) 補間処理した等間隔車輪形状データをもとに、車輪特性として、フランジ角、フランジ厚さおよび摩耗量を算出する。（図5.4参照）
(3) 形状計測装置から得られた、計測レール形状データに対して、車輪と同様に、まくらぎ方向に0.1mmの等間隔レール形状データに変換する。
(4) 車輪とレールの接触特性を算出する。つまり、等間隔車輪形状データおよび等間隔レール形状データをもとに、レール上に左右車輪を中立位置に配置し、この位置から高さ方向に所定距離（例えば30mm）移動させる。（図5.5参照）
(5) 輪軸に沿った方向への変位YWを設定する。ここで、変位YWは取りうる最小値であるYWに設定する。（図5.5参照）
(6) ロール角 \( \phi_w \) を設定し、設定したロール角 \( \phi_w \) に応じて、左右車輪の位置を変更する。そこで、ロール角 \( \phi_w \) は、初回の設定時には、ロールさせない場合に相当する「0」に設定する。（図 5.6 参照）

(7) そして、左右車輪それぞれについて、レールとの高さ方向の差分の最小値を車輪・レール間の距離 \( H_L \) 、 \( H_R \) として算出し、算出した \( H_L \) 、 \( H_R \) が等しいかどうかを判断する。具体的には、距離 \( H_L \) と \( H_R \) の差分の絶対値を算出し、この値が、1/10000 mm 以下である場合に、距離 \( H_L \) と \( H_R \) は等しいと判断する。（図 5.6 および図 5.7 参照）

(8) 距離 \( H_L \) と \( H_R \) が等しくないと判断した場合には、(6)にもどり、ロール角 \( \phi_w \) を再設定する。角度の設定は、二分法により行う。車輪とレールの左右接触点間隔と車輪のフランジ高さを考慮し、±0.05 rad のロール角を、二分法の初期設定値とした。

(9) (7) で、距離 \( H_L \) と \( H_R \) が等しいと判断した場合には、左右車輪それぞれについて、距離 \( H \) を決定した踏面の位置を接触点とする。そして、左右車輪それぞれについて、この接触点での車輪半径および接触角を算出する。（図 5.8 参照）

(10) その後、現在の \( Y_w \) の値が最大値「+ \( Y_{\text{MAX}} \)」以上であるかどうかによって、全ての \( Y_w \) についての処理を終了したかどうかを判断する。判断の結果、終了していないならば、(5)にもどり、変位 \( Y_w \) を再設定する。このとき、変位 \( Y_w \) は、現在の変位 \( Y_w \) の値に所定の変位幅 \( \Delta Y_w \) を加算した値に設定する。

(11) 全ての変位 \( Y_w \) について終了したら、算出した車輪とレールの接触特性をもとに、鍔軸の転がり波長を算出し、その算出値をもとに等価踏面勾配（車輪とレールが中立点近傍において接触している場合における接触点の車輪踏面勾配）を算出する。（5.2.4.4 参照）

以降で、接触特性評価システムの詳細について説明する。
Fig. 5.1 A flowchart of outline of the evaluation system of characteristics of contact point between wheel and rail

Start

Converting measured shape data into equal spacing data about wheels

Calculation of characteristics of wheel, flange angle, flange thickness, wearing depth from equal spacing data

Converting measured shape data into equal spacing data about rails

Setting wheels in neutral position on rails and moving wheels to direction of height

Setting lateral displacement $Y_w$ of wheel set

Setting roll angle $\phi_w$ (dichotomy)

Calculation of distance $H_L, H_R$ between wheel and rail about right and left both sides

$H_L = H_R$?

Calculation of contact point between wheel and rail

Calculation of wheel radius and contact angle on contact point

Is it finished about all $Y_w$?

Calculate of a wavelength in case a wheel set rolls simply

Calculation of equivalent conicity

End
Fig. 5.2  Measured profile of a test wheel

Fig. 5.3  Shape data of wheel with linear interpolation

Fig. 5.4  A figure showing calculation of characteristics of wheel
Fig. 5.5  A figure of arrangement of wheel and rail

Fig. 5.6  Calculation of contact point between wheel and rail

Fig. 5.7  Calculation of the minimum of distance between wheel and rail
5.2.2 形状計測データの補間処理

本システムでは、計測したデータを車輪厚さ方向に等間隔データに変換し、車輪とレールの接触点情報を算出する。なお、本システムでは、輪軸のヨー変位については考慮していない。図 5.2 は車輪の計測形状データの一例であるが、Y 方向を車輪の厚さ方向、Z 方向を半径方向としている。この場合の計測データは Y 方向に不等間隔であるので、Y 方向に等間隔の離散データに変換する。ここでは、図 5.3 に示すように離散データの Y 方向の間隔（以下、離散幅という）を 0.1mm とした。その根拠を以下に示す。

鉄道総合技術研究所保有の試作台車の走行距離 20 万キロの摩耗した車輪踏面形状を使って、フランジ角を実測し、離散幅の違いによるフランジ角の比較を行った（フランジ角の算出方法は 5.2.3 参照）。車輪踏面データから変換した離散幅と計算したフランジ角の関係を図 5.9 に示す。0.2mm 未満の離散幅におけるフランジ角は実測値と計算値でほぼ等しくなるが、離散幅が大きくなると計算値は実測値と異なる値をとる。これより、車輪踏面データから変換する離散幅は 0.2mm 未満が必要であることがわかる。よって、本システムでは、0.2mm に対して余裕をみた 0.1mm の離散幅として計算を行った。なお、レール計測データも車輪踏面の場合と同様に、車輪厚さ方向に 0.1mm 毎の離散データに変換し、変換後の形状データをもとに、車輪とレールの接触特性値を算出した。
5.2.3 車輪摩耗特性

車輪摩耗特性として、図5.4に示すように、フランジ角、フランジ厚さおよび踏面摩耗量を算出する。具体的には、車輪のバック面の位置をY = 0とし、Y = 65mmのZ方向の位置をZ = 0とする。さらに、設計形状と摩耗形状の車輪をフランジ先端で重ね合わせる。そして、例えば、在来線修正円弧踏面の場合は、Z = -12mmおよびZ = -18mmの位置となる2点間の踏面の近似直線を最小二乗法で求め、この近似直線の角度をフランジ角度とした。フランジ厚さは、摩耗車輪踏面について、Y = 65mmのZ方向の位置をZ = 0としたときにおけるZ = -10mm位置のY値とする。摩耗量は、Y = 65mmにおけるZの値と、設計形状の車輪の規格値Y = 65mmにおけるZ値の差分とした。これらの車輪摩耗特性を左右の車輪それぞれについて算出した。

5.2.4 車輪とレールの接触特性計算

5.2.4.1 車輪とレールの配置

車輪とレールの接触特性を解析するためには、車輪とレールを所定位置に配置しなければならない。したがって、個別に取り扱ってきた左右車輪およびレール形状を、軌間やタイプレート角を考慮して絶対空間に配置する。まず、左右それぞれの車輪を規定された軸軸の左右車軸間隔に配置し、左右それぞれのレールも規定された間隔に配置し、左右車輪をレール上の中立位置に配置する。次に、左右車輪をレール頭頂面の上方向に所定距離（例えば30mm）平行移動させる。図5.5は、このときの車輪およびレールの配置例である。

5.2.4.2 軸軸のローリング

所定位置に車輪とレールを配置した後、左右車輪をY軸方向にY₀だけ平行移動させたときの左右の車輪とそれぞれに対応するレールのZ方向の距離を算出する。この場合、
左右それぞれの車輪とレールは、輪軸が水平面に対して傾きを持った状態で接触するため、図 5.6 に示すように、左右車輪を輪軸として相対位置を保ったまま、車軸中心周りにローリングさせ、左右それぞれの車輪とレールとの Z 方向の距離を算出する。

5.2.4.3 接触点の算出

左右の車輪それぞれについて、レールとの Z 方向の距離 \( H_L \) （左車輪・左レール間の距離）、\( H_R \) （右車輪・右レール間の距離）を算出する。車軸・レール間の距離は、図 5.7 に示すように、車輪踏面とレール頭頂面の高さの差の最小値とした。算出した車軸・レール間の距離をそれぞれ、\( H_L \)、\( H_R \) として、その差を求める。ロール角 \( \phi_W \) を二分法により変化させ、この差が、1/10000mm 以下であれば、左右それぞれの車輪とレールとの距離が等しい。つまり、このときのロール角 \( \phi_W \) で、左右それぞれの車輪とレールが接触したと判定した。接触位置を決定すると、図 5.8 に示すように、左右の車輪それぞれについて、この接触点での車輪半径および接触角の値を算出する。接触角は、接触点での接触線の角度として与えられる。さらに、レールに対する車軸左右変位 \( Y_w \) を \( -Y_{\text{MIN}} \) （最小値）\( \sim +Y_{\text{MAX}} \) （最大値）の範囲で 0.1mm 毎の刻みで変化させて、\( Y_w \) に対する接触点の位置、車輪半径および接触角を算出する。

5.2.4.4 等価踏面勾配の算出

算出した車輪半径をもとに、図 5.10 に示すように、一組の車輪において、車軸の初期左右変位 (例えば 3mm) を与えた場合の純転がり (すべり率 =0) 波長を、例えば \( V = 30 \times 10^{3}/3.6 \text{mm/s} (=30 \text{km/h}) \)、\( r_0 = 430 \text{mm} \) とし、式 (5.1)，(5.2) を用いた時刻歴シミュレーションより算出する。この結果を、1 軸蛇行動波長を求める 式 (5.3) に代入して、等価踏面勾配を算出した。

\[
\begin{align*}
\frac{dY_w}{dt} &= V \cdot \varphi_w \\
\frac{d\varphi_w}{dt} &= \left(\frac{r_L + r_R}{r_0}\right) \cdot V / 2b \\
S_1 &= 2\pi \left(\frac{br_0}{\lambda}\right)^{1/2}
\end{align*}
\]
5.3 接触特性評価システムによる解析

5.3.1 接触状態図

鉄道総研保有の摩耗車輪（修正円弧踏面）と摩耗レール（60kg レール）を用いて接触特性の解析を行った。本システムでは、車輪とレールの接触特性を算出するが、車輪とレールの接触状態図の一例を図 5.11 に示す。同図はある位置にレールを固定し、レールに対応する輪軸左右変位を \( Y_r = 0, 5, 10, 15 \) mm とした。図 5.11 の左図は、左車輪と左レールの接触状態で、右図は、右車輪と右レールの接触状態である。図より、車輪とレールの接触状態を確認することができる。

Fig.5.11  Contact diagram of wheel and rail

5.3.2 車輪半径の増分と接触角

図 5.12 に、本接触計算により求めた、レールに対する輪軸左右変位と車輪半径の増分の関係を示す。車輪半径の増分は、設計形状の車輪半径（バック面から 65 mm の踏面での車輪半径、規格値）に対する増分として、左右の車輪について算出したものである。図 5.13 にレールに対する輪軸左右変位と接触角の関係を示す。

Fig.5.12  Relation between lateral displacement of wheel set and variations of wheel radius
5.3.3 等価踏面勾配
図5.14は、本接触計算により求めた、レールに対する輪軸左右変位と車輪半径の増分の解析結果を用いて、レールに対する輪軸の初期左右変位と等価踏面勾配の関係を計算したものである。図から輪軸の初期左右変位により、等価踏面勾配が変化することがわかる。したがって、等価踏面勾配を算出する場合、実態を表わすことのできる輪軸の初期左右変位について、検討する必要があると考えられる。

5.4 解析結果の検証
5.4.1 設計形状踏面の計算結果の検証
本接触計算では、車輪の厚さ方向（Y方向）と高さ方向（Z方向）の二次元の接触解析を行っている。設計形状の車輪とレールの接触特性解析には、従来から報告されている(4)
三次元接触計算プログラムが用いられてきた。そこで、三次元接触計算プログラムによる計算結果と今回のか触特性評価システムによる計算結果の比較を行った。車輪とレールは、在来線修正円弧踏面と60kgレールについて、レールに対する輪軸左右変位と車輪半径の増分の関係を計算した。計算結果を、それぞれ図5.15および図5.16に示す。本システムによる計算結果は、三次元接触特性評価プログラムによる計算結果と一致していることが認められる。

Fig.5.15  Calculation result by the three-dimensional contact analysis
< modified arc wheel profile and 60kg rail >
(Relation between lateral displacement and variations of wheel radius)

Fig.5.16  Calculation result by the development system
< modified arc wheel profile and 60kg rail >
(Relation between lateral displacement and variations of wheel radius)
5.4.2 摩耗踏面の計算結果の検証

鉄道総研保有の摩耗車輪および摩耗レール（曲線半径 400m に使用）を用いて、接触特性の解析を行った。解析に使用した左車輪および右車輪の形状を、それぞれ図 5.17 および図 5.18 に示す。また、左レールおよび右レールの形状を、それぞれ図 5.19 および図 5.20 に示す。これらの摩耗車輪と摩耗レールを用いて接触解析を行い、レールに対する輪軸左右変位と車輪半径の増分の関係を計算した結果を図 5.21 に示す。さらに、同車輪およびレールを用いて、CAD（ソフト名: Autodesk AutoCAD LT98）により接触点を求め、輪軸左右変位に対する車輪半径の増分の関係を同じ図上に示す。図では、レールに対して、−12.0mm～12.0mm の範囲で 2.0mm 毎に、輪軸を左右方向に移動させて比較した。図より、本システムによる接触計算の結果と CAD による結果が良く一致していることが認められ、CAD に比べて計算が容易である本システムは有効であることが示された。

![Fig.5.17 Shape of left wheel](image)

![Fig.5.18 Shape of right wheel](image)
Fig. 5.19  Shape of left rail

Fig. 5.20  Shape of right rail

Fig. 5.21  Comparison of calculation result with that by CAD
(wheel wear tread and rail wear tread)
5.4.3 等価踏面勾配の算出方法の検討

5.3.3 で示したように、軸軸の初期左右変位によって、等価踏面勾配が変化するため、実態を表すことのできる輪軸の初期左右変位について検討した。

5.4.3.1 設計形状の車輪とレールの等価踏面勾配

車輪に関しては、設計形状の在来線修正円弧踏面、在来線基本踏面、新幹線円弧踏面、レールに関しては、設計形状の 60kg レールおよび 50kgN レールを用いて、接触解析を行い、中立点近傍の等価踏面勾配を算出した。輪軸の初期左右変位と等価踏面勾配の関係を図 5.22～5.27 に示す。図は順に、在来線修正円弧踏面と 50kgN レール、在来線修正円弧踏面と 60kg レール、在来線基本踏面と 50kgN レール、在来線基本踏面と 60kg レール、新幹線基本踏面と 60kg レール、新幹線円弧踏面と 60kg レールの場合である。図 5.26 および図 5.27 より、輪軸の初期左右変位が 5mm 以上になると、新幹線基本踏面および新幹線円弧踏面ではレールとフランジ接触するため、等価踏面勾配は実態と異なり、かなり大きくなる。よって、設計形状の車輪・レール間において、等価踏面勾配を算出時の輪軸の初期左右変位は 5mm 未満である必要がある。

![Fig.5.22](image1)

Relation between lateral displacement and equivalent conicity
< modified arc wheel profile of conventional line and 50kgN rail >

![Fig.5.23](image2)

Relation between lateral displacement and equivalent conicity
< modified arc wheel profile of conventional line and 60kg rail >
Fig. 5.24  Relation between lateral displacement and equivalent conicity  
< conic wheel profile of conventional line and 50kgN rail >

Fig. 5.25  Relation between lateral displacement and equivalent conicity  
< conic wheel profile of conventional line and 60kg rail >

Fig. 5.26  Relation between lateral displacement and equivalent conicity  
< basic wheel tread of shinkansen and 60kg rail >
5.4.3.2 摩耗車輪とレールの等価踏面勾配

車輪に関しては、鉄道総研保有の3種類の摩耗車輪を対象とした。摩耗車輪の形状を、図5.28～5.30に示す。また、表5.1に設計形状の車輪と摩耗車輪の特性を示す。これらの摩耗車輪が左右同一踏面形状であるものとし、レールに関しては、設計形状の50kgNレールおよび60kgレールを用いて、接触解析を行い、等価踏面勾配を算出した。輪軸の初期左右変位と等価踏面勾配の関係を図5.31および図5.32に示す。図はそれぞれ、50kgNレールおよび60kgレールの場合である。一方、摩耗車輪とレールに関して、等価踏面勾配の最大値は、0.4であることが報告されている^{6)。図5.31より、輪軸の初期左右変位が2mm以下であると等価踏面勾配が著しく大きくなり、0.4を超える傾向にある。よって、輪軸の初期左右変位は3mm以上が必要になる。

したがって、一組の輪軸において、輪軸の初期左右変位を与えて時刻歴シミュレーションより等価踏面勾配を算出するとき、輪軸の初期左右変位は、3mm以上5mm未満が必要である可能性が示された。

Fig.5.27 Relation between lateral displacement and equivalent conicity
< arc wheel profile of shinkansen and 60kg rail >
Fig. 5.28  Shape of wheel wear tread 1

Fig. 5.29  Shape of wheel wear tread 2

Fig. 5.30  Shape of wheel wear tread 3
Table 5.1  Characteristics of wheel wear tread

<table>
<thead>
<tr>
<th>Design shape tread</th>
<th>Flange thickness (mm)</th>
<th>Flange angle (rad)</th>
<th>Wearing depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel wear tread 1</td>
<td>28.744</td>
<td>1.212</td>
<td>1.036</td>
</tr>
<tr>
<td>Wheel wear tread 2</td>
<td>28.953</td>
<td>1.189</td>
<td>1.418</td>
</tr>
<tr>
<td>Wheel wear tread 3</td>
<td>28.788</td>
<td>1.190</td>
<td>2.323</td>
</tr>
</tbody>
</table>

Fig. 5.31  Relation between lateral displacement and equivalent conicity  
< wheel wear tread and 50kgN rail >

Fig. 5.32  Relation between lateral displacement and equivalent conicity  
< wheel wear tread and 60kg rail >
5.5 結言

形状計測装置によって計測された車軸の踏面形状データおよびレールの頭頂面形状データを、車軸の厚さ方向のデータ間隔が 0.1mm の離散データに変換し、変換後の形状データを用いて、摩耗を考慮した車軸とレールとの接触特性値を市販のパーソナルコンピュータで簡易に精度よく算出できるシステムを開発した。さらに、車軸・レール間の等価踏面勾配の算出に関して、一組の軸軸に初期左右変位を与えて蛇行運動波長から等価踏面勾配を算出する場合、軸軸の初期左右変位は、3mm 以上 5mm 未満が必要である可能性が示された。
参考文献


第6章 スラック拡大による鉄道車両の走行性向上に関する検討

6.1 緒言
鉄道車両の輪軸は、左右の車輪が車軸に固定されており同一回転数で転動していくので、曲線区間においては、内外軌のレール間に生じる行路差のために、そのままでは車輪・レール間に縦方向（レール長手方向）のすべりが生じてしまう。このため、こうしたすべりを生じないように車輪の踏面には車輪厚さ方向に勾配をつけられており、外軌側車輪は回転半径の大きい部分でレールに接触し、内軌側車輪は回転半径の小さい部分で接するように設計されている（以下、この回転半径の差を「輪径差」と呼ぶ）。この踏面勾配によって輪軸は自己操舵性を持つが、踏面勾配の大小は直進安定性と曲線通過性能に影響し、かつ、これらは一般的に相反する性質を持つため、実用上、踏面勾配の取りうる値は限られている。このため急曲線では、車輪・レール間に著大な相対角（「アタック角」と呼ぶ。）や著大な横方向の接触力（「横圧」と呼ぶ。）が生じ、異常摩耗や脱線事故の原因となる。よって、鉄道車両が曲線上を安全かつ円滑に走行するためには、アタック角や横圧を低減させる必要がある。（1）

一方、曲線においては、車輪の通過を円滑にするために軌間を拡大することが一般的である（この拡大量を「スラック」と呼ぶ。）。スラックは、もともとは固定軸距の長い3軸ボギー台車が曲線を通過できるように考慮して付与されたものであり、近年の車両はほとんど2軸台車になってその本来の目的が失われたこと（2）やスラックによる弊害も一部で指摘されたこともあってスラックは縮小される傾向にある（3）。しかししながら、スラックの縮小は曲線における操舵に必要な輪径差を減少させることから、曲線通過性能の低下につながるとともに、すべりも増大する可能性があることから、波状摩耗等の異常摩耗を助长するおそれがある（3）（4）。

スラックが鉄道車両の曲線通過性能に及ぼす影響についてのこれまでの研究としては、谷藤らの報告（5）（6）（7）（8）がある。谷藤らは国鉄からJRにおいて用いられてきた踏面形状を基本に、シミュレーションに基づく解析を行い、現行の踏面ではスラック拡大による顕著な改善は見られないものの、操舵台車や踏面形状の変更により改善効果が期待できることを示唆している。

近年、リニアメトロをはじめとする地下鉄車両等では、曲線通過性能のさらなる向上が課題となっており、曲線走行時の横圧値を低減させ走行性能の向上を図るために、新円弧踏面や操舵台車の開発（9）（10）などが進められている。しかしながら、新たな車輪踏面や台車の開発は、時間やコストなどを多々り克服すべき問題があり、それらを速やかに解決することとは容易ではない。

そこで、本章では、在来構造の台車においてもスラックを従来範囲を超えて拡大することにより、曲線通過性能の向上が期待できると考え、スラック量が走行性能に与える影響について、数値シミュレーションと実台車を用いた台試験により検討する。
6.2 車輪・レール間接触特性の解析

6.2.1 接触特性の解析方法

車両運動シミュレーションを行う準備として、車輪とレールの接触幾何学計算から、輪軸の左右変位によって得られる内外軌輪径差などの接触特性値を算出した。車輪とレールの接触特性解析には、第5章で述べた接触特性評価システムを用いた。本検討で用いた車輪の踏面形状は、図6.1に示す、急曲線用円弧踏面（地下鉄銀座・丸の内線で使用）であり、レールは50kgNレールを対象とし、軌間を1435mm、スラックは0~35mmの間で5mm毎に変化させた。

Fig.6.1 Arc-shaped wheel tread for subway lines with severe curves

6.2.2 スラックと獲得可能な内外軌輪径差の関係

図6.2に、輪軸の左右変位に対して内外軌間で得られる車輪半径差の関係を示す。スラックが拡大するにつれて、フランジ遊間が広くなり、また、内外軌車輪の半径差が大きくなることがわかる（図6.2点線で囲んだ部分参照）。さらに、図6.2において、車輪半径差が急激に変化する位置が車輪とレールがフランジ接触する位置になるが、そのときのスラックと内外軌車輪半径差の関係を図6.3に示す。スラックを拡大することにより、内外軌の車輪間で獲得できる輪径差は大きくなる。特に、スラックが25mm以上になると、顕著に輪径差が大きくなる傾向を示しているのが、この車輪踏面の特徴である。
6.2.3 車輪とレールの接触特性

前述の図 6.3 に示した車輪とレールの接触解析結果によれば、スラックが 0～20mm の間
では、外軌フランジ接触までに、内外軌の輪径差は大きくは変わらないが、スラックが
20mm を超えると輪径差は大きくなる。これにより、縦方向のすべりなしに通過できる最
小曲線半径（以下、「純粋転がり曲線半径」と呼ぶ。）は小さくなり、急曲線を通過しやす
くなる。スラック量と純粋転がり曲線半径の関係を計算したものを図 6.4 に示す。この
図は車輪とレールの組合せにおいて、内外軌の輪径差により、どの程度の急曲線まで縦方
向のすべりを生じないで曲線を通過できるかを示すものである。図はスラック量が 20mm
を超えると純粋転がり曲線半径がかなり小さくなる傾向を示しており、スラック拡大によ
り、急曲線まですべりを生じないで通過できるようになることを示している。例えば、ス
ラック 0mm の時は半径 400m 以下の曲線ですべりを生じていたのに対し、スラック
30mm に拡大すると半径 160m の曲線まですべりを生じないで通過できるようになるので，急曲線におけるレール波状摩耗などの防止に寄与する可能性がある。

Fig.6.4  Relation of gauge widening and radius of curvature in perfect rolling (measured data)

6.3 車両運動解析条件
直線走行シミュレーションでは，走行速度 70km/h とし，通り不整として振幅±3mm の一定波長の連続した正弦波を与えた。車体左右振動加速度は，前台車直上車体床面上の左右振動加速度の定常成分を比較した。曲線走行シミュレーションにおいては，走行速度 30km/h，円曲線はカント 50mm，曲線半径 100~600m とした。円曲線に入っ定常状態に達したときの先頭軸外軌側横圧を比較した。

6.4 車両運動解析の結果
6.4.1 直線走行解析結果
直線部において通常はスラックを付与しないが，軌間拡大による影響を調べるため，軌間拡大（便宜的にスラックと呼ぶ。）の違いによる車軸とレールの接触特性解析結果を用いて，通り不整が存在する直線軌道を走行した場合における，前台車直上の車体左右振動加速度の最大値を算出した。軌道不整に関しては，車体蛇行動に影響があると思われる 1Hz 前後の軌道不整による車体左右振動への影響を調べるため，1Hz 前後に相当する軌道不整（走行速度 70km/h に対して，波長 10m, 20m および 30m，すなわち周波数 1.9, 1.0 および 0.65Hz に相当）がある場合を対象とし，計算時間を 20 秒とした。図 6.5 ～図 6.10 に前台車直上の車体左右振動加速度の波形例を示す。さらに，それぞれの車体左右振動加速度に関して，10 秒以内で最も出された定常成分における最大値を算出した結果を表 6.1 および図 6.11 に示す。この図によると，軌道不整の周波数より，左右振動の程度は変化するが，スラックを付けない場合に比べて，大きく増大することはない。また，図 6.12 に，接触
解析により算出したスラック量と等価踏面勾配の関係を示す。図より、スラックが増加することにより等価踏面勾配は減少することがわかる。よって、スラックの拡大によって左右振動が減少するなど直進安定性が改善される傾向にあるのは、等価踏面勾配が事実上低下されることが原因と考えられる。

Fig.6.5  横振加速度の車体 (波長: 10m, 幅: 0mm)

Fig.6.6  横振加速度の車体 (波長: 10m, 幅: 10mm)

Fig.6.7  横振加速度の車体 (波長: 20m, 幅: 0mm)
Fig. 6.8  Lateral vibration acceleration of car body  
(wave length of lateral irregularity: 20m, gauge widening: 10mm)

Fig. 6.9  Lateral vibration acceleration of car body  
(wave length of lateral irregularity: 30m, gauge widening: 0mm)

Fig. 6.10  Lateral vibration acceleration of car body  
(wave length of lateral irregularity: 30m, gauge widening: 10mm)
Table 6.1 Amplitude of lateral vibration acceleration on the front bogie (m/s²)

<table>
<thead>
<tr>
<th>wavelength of lateral irregularity</th>
<th>gauge widening</th>
</tr>
</thead>
<tbody>
<tr>
<td>10m</td>
<td>0mm 5mm 10mm 15mm 20mm 25mm 30mm 35mm</td>
</tr>
<tr>
<td>10m</td>
<td>0.233 0.243 0.198 0.125 0.109 0.090 0.062 0.043</td>
</tr>
<tr>
<td>20m</td>
<td>0.225 0.230 0.220 0.168 0.113 0.090 0.051 0.031</td>
</tr>
<tr>
<td>30m</td>
<td>0.128 0.125 0.155 0.190 0.210 0.213 0.105 0.070</td>
</tr>
</tbody>
</table>

Fig. 6.11 Relation of gauge widening and amplitude of lateral vibration acceleration of car body

Fig. 6.12 Relation of gauge widening and equivalent conicity
6.4.2 曲線走行解析結果

曲線走行解析結果より得られた先頭軸外軌側横圧の波形例を図 6.13 ～図 6.16 に示す。直線から曲線に進入すると、車輪・レール間にはアタック角が付き、これにより横クリープ力が働く。アタック角は、内外軌の車輪とも同方向であり、横クリープ力の方向も内外軌で同方向となる。曲線中で外軌側車輪に正の横圧が働くのは、主に後軸の輪径差不足による反操舵モーメントを受ける縦クリープ力の反力によるところが大きい。緩和曲線の入口で後軸がまだ曲線に入っていない時点では、この反操舵モーメントを受けないので、先頭軸外軌側車輪の横圧は、横クリープ力だけとなり、横圧値は減少する傾向を示す。その後、曲線走行し反操舵モーメントを受けると、先頭軸外軌側横圧は増加していき、円曲線で定常状態となる。さらに、曲線半径と定常状態に入った場合における横圧の関係を図 6.17 に示す。図より、スラックが 0 ～20mm の間、横圧値はスラックを拡大しても大きな変化がないが、スラックが 20mm を超えると、曲線半径の増加に伴う横圧の低下が顕著になる。これは、図 6.3 に示すように、スラックの増加に伴う内外軌車輪径差の増加量が 20mm を超えると大きくなるからであると考えられる。一方で、スラックが 20mm を超えた場合でも、図 6.4 に示す純粋転がり曲線半径より曲線半径の小さい急曲線では、スラック拡大による横圧低下効果は認められなくなる傾向が見られる。よって、車輪とレールがフランジ接触するまではスラック拡大による横圧低下効果があるが、フランジ接触後はスラック拡大によるそれ以上の横圧低下効果が生じないと考えられる。また、図 6.1 に示すように、本車輪踏面において 1/5 の勾配の踏面部分では、1/17.5 の勾配の踏面部分と比較して、曲線通過時には左右輪径差が大きく観え、スラックを 25mm 以上に設定した場合は、車輪とレールの接触位置が 1/17.5 の勾配の踏面部分から 1/5 の勾配の踏面部分に移動すると考えられる。以上より、曲線通過時の横圧値を低減するためには、スラックの大幅な増加による内外軌車輪径差の獲得が有効であることがわかる。

Fig.6.13 Wave form of outer lateral force of first wheelset
(radius of curvature: 150m, gauge widening: 0mm)
Fig. 6.14  Wave form of outer lateral force of first wheelset  
(radius of curvature: 150m, gauge widening: 30mm)

Fig. 6.15  Wave form of outer lateral force of first wheelset  
(radius of curvature: 200m, gauge widening: 0mm)

Fig. 6.16  Wave form of outer lateral force of first wheelset  
(radius of curvature: 200m, gauge widening: 30mm)
6.5 実台車による台上試験の結果

6.5.1 台上試験の概要
交通安全環境研究所が所有する台車試験機は、半車体・一台車を軌条輪上に設置し、軌条輪を回転させることにより実際の走行状態を再現できる試験機であり、軌条輪にヨー角を付与し、左右軌条輪に回転数差を付与することにより、車両の曲線通過状態を模擬することができる。
図6.18に示すように、本試験機を用いて実台車により、スラック量が横圧値に与える影響を調べた。本試験機に使用した台車は、ボルスタレス台車であり、車輪とレールは解析に使用したものと同形式のもの、すなわち、車輪踏面形状は地下鉄用円弧踏面、軌条輪は50kgNレールである。
6.5.2 試験条件
試験は、台車が直線走行状態から所定の曲線に入り、再び直線走行に戻る走行状態で実施した。曲線ではカント過不足がない状態、すなわち遠心力などの横方向力が作用しない状態で、走行速度は 30km/h、円曲線に入り定常状態に達したときの先頭軸外軌側横圧を測定した。スラックは、0~35mmの間 5mm毎に設定した。

6.5.3 試験結果
台上試験に使用した車輪と軌条輪を形状計測装置により計測し、接触特性解析を行った。接触解析より算出した左右車輪半径差最大値とスラックの関係を図 6.19 に示す。図より、スラックが 25mm を超えると、車輪半径差の増加量は顕著に大きくなる傾向が認められる。また、図 6.20 にスラック量と純粋転がり可能な半径の関係を示す。スラックが 5mm 以上の場合、スラックが増加するにつれて、純粋転がり半径は同程度の割合で小さくなった。これらの結果は図 6.3、図 6.4 の解析結果と同様の傾向を示しているが、スラック 15~20mm 付近の変化がなめらかとなっている。これは、踏面形状の変化点の形状が走行による摩耗等により平滑化されたためと考えられ、実際の車輪においてもこれに近い状態になるものと考えられる。

次に、曲線通過試験時の先頭軸横圧の測定結果を図 6.21～図 6.24 に示す。さらに、先頭軸外軌側横圧の測定結果を図 6.25 に示す。図より、スラックが 30mm、35mm においては、曲線半径の増加に伴う横圧の低下が、他のスラックに比べて顕著である。これは、スラックの増加に伴う輪径差の増加量が 25mm を超えると大きくなるからであり、曲線走行時の横圧低減に内外軌間の輪径差獲得が有効であることが示された。この結果を、シミュレーションによる解析結果と比較すると全体の傾向は似ているが、横圧の絶対値は実験値の方が小さい。これは、台上試験を台車半車体の状態で、さらに横方向力が作用していない状態で行ったための差異と考えられるので、台上試験と同様の条件にし、試験に使用した台車の車輪踏面形状データを用いてシミュレーションによる解析を行った。図 6.26～図 6.29 に、横圧値の波形例を示す。さらに、曲線半径と定常状態の横圧の関係を図 6.30 に示す。図 6.25 および図 6.30 を比較すると、スラック拡大が一定値以上になると横圧が低下していくという傾向についてはシミュレーション結果と台上試験結果は一致している。
Fig. 6.19  Relation of gauge widening and rolling radius difference (measured data)

Fig. 6.20  Relation of gauge widening and radius of curvature in perfect rolling (measured data)
Fig. 6.21 Wave form of lateral force (measured data)
(gauge widening: 0mm)

Fig. 6.22 Wave form of lateral force (measured data)
(gauge widening: 10mm)
Fig. 6.23  Wave form of lateral force (measured data)
(gauge widening: 20mm)

Fig. 6.24  Wave form of lateral force (measured data)
(gauge widening: 30mm)
Fig. 6.25  Relation of lateral force and radius of curvature
- Measured data by stand tests; Rear bogie with no lateral acceleration -

Fig. 6.26  Lateral force of outer lateral force of third wheelset
(radius of curvature: 150m, gauge widening: 0mm)

Fig. 6.27  Lateral force of outer lateral force of third wheelset
(radius of curvature: 150m, gauge widening: 30mm)
Fig. 6.28  Lateral force of outer lateral force of third wheelset
(radius of curvature: 200m, gauge widening: 0mm)

Fig. 6.29  Lateral force of outer lateral force of third wheelset
(radius of curvature: 200m, gauge widening: 30mm)

Fig. 6.30  Relation of lateral force and radius of curvature
-Simulation results; Rear bogie with no lateral acceleration -
6.6 結言

地下鉄用円弧踏面と 50kgN レールの組み合わせを用いて、スラックの拡大による曲線通過性能などの走行性の向上について、シミュレーションと台上試験による検討を行った結果、以下のような結論が得られた。

(1) 車輪とレールの接触特性解析の結果によれば、スラックの増加につれて内外軌の輪径差は増加し、より小さな曲線半径まで純粋ころがりで通過できるようになり、曲線通過性能は向上する。
(2) この傾向は、スラックを特に大きくする（20mm～35mm）と顕著になる。
(3) シミュレーション結果と台上試験結果は、どちらも上記の傾向を示している。
(4) 一定値以上のスラックを付与すると、スラックの拡大によって直進安定性が改善される傾向があり、これは、等価踏面勾配が事実上低減されるためと考えられる。
(5) 以上によれば、一定値以上のスラックの付与により、直進安定性、曲線通過性能ともに向上する可能性がある。

これらにより、従来より大きなスラック拡大を行った場合の問題点について検討し、解決できれば、台車構造等の変更なしに曲線通過性能を向上させる有効な方策になると考えられる。なお、以上のようなスラック拡大による効果が得られたのは、今回の解析に用いた地下鉄で使用されている急曲線用円弧踏面が、谷藤らが文献(6)-(8)で指摘している反フラング側を跳ね上げる踏面形状に近い形状であることも寄与しているものと考えられる。
参考文献


(2) 土木関係技術基準調査研究会編, 土木関係技術基準作業部会編, 解説；鉄道に関する技術基準（土木編）第二版, (2007), pp.115-127.

(3) 箱田厚, 角知憲, 原田稔, 池田健一, 井崎博史, 曲線転向の転がり・すべり摩擦と波状摩耗, 日本機械学会第 6 回 交通・物流部門大会講演論文集（鉄道シンポジウム編）, Vol.97, No.13 (1997), pp.141-146.


(10) 日本機械学会編, 鉄道車両のダイナミクス, 電気車研究会, (1994), pp.242-244.
第7章 車輪とレールの接触特性が鉄道車両の曲線通過性能に及ぼす影響

7.1 緒言

鉄道車両が曲線を安全かつ円滑に走行するためには、車輪とレール間の発生する横圧値を低減させなければならない。著大な横圧値は、脱線だけでなく、軌道破壊、レール波状摩耗、軌道不整、きしり音、車輪踏面およびレール頭頂面の摩耗を誘発するおそれがある。第6章で述べたように、曲線通過時の横圧値を低減するためには、内軌と外軌の車輪半径の差、すなわち、内外軌輪径差を増加させることが有効であることが示された。したがって、曲線走行時の横圧値を低減するためには、内外軌輪径差を増加させるための方策が重要であると考えられる。

そこで、本章では、新たな車輪踏面や台車構造を用いることなく、現在の車輪踏面及び台車構造を用い、車輪とレールの接触条件を変更することにより、曲線走行性能を向上させる方策について、シミュレーションにより検討する。

7.2 曲線通過性能を向上させる因子

曲線通過上の走行性能を向上させる車輪・レール間の接触特性条件として、以下の3因子を変化させた場合の効果について検討を行った。

(1) スラック量の拡大：（標準のレール頭頂面形状およびタイプレート角）

(2) タイプレート角の変更：（標準のレール頭頂面形状：スラック量0~30mm）

(3) 非対称レール頭頂面形状：（標準のタイプレート角：スラック量0~30mm）

7.2.1 スラック量の拡大

第6章の結果から、曲線軌道上に設定されるスラックを拡大すると、内外軌の輪径差が増加し、より小さな曲線半径まで純粋転がりできるようになる。したがって、スラック量の拡大は、曲線通過性能を向上させるための有効な手段になると考えられる。

7.2.2 タイプレート角の変更

レールのタイプレート角は、車輪とレールの接触点における接触特性を変化させる重要な因子となる。一般に、我が国における通常の鉄道では、図7.1に示すように、レールは1/40のタイプレート角を付けて軌道軸中心方向に傾けて設置されている。この角度は、円錐踏面と50kgNレールの組み合わせを基本にして決定されたものと考えられるが、近年、円弧踏面など各種車輪踏面が採用され円錐踏面は減少傾向にあるものの現在もこの値が標準となっている。タイプレート角は車輪とレールの接触特性に影響を与えるので、タイプレート角を1/40から変更することによって、曲線通過性能の向上に寄与できる可能性がある。そこで、タイプレート角を変更した場合における車輪とレールの接触特性の
化について検討した。タイプレート角は、両側レールまたは片側レールの角度を変更した場合（それぞれ対称タイプレート、非対称タイプレートと呼ぶ）を対象とし、車輪とレールの接触点の変化および内外軌輪径差を算出した。

Fig.7.1 Cross section of rail

7.2.3 非対称レール頭頂面形状

レール頭頂面の非対称削正による非対称レール頭頂面形状は、タイプレート角の変更と類似の効果を持ち、車輪とレールの接触特性を変化させる重要な因子となる。タイプレート角の変更に関しては、後述することによって外軌側についてはほとんど効果がないことがわかったので、レール頭頂面の削正については、内軌側レールののみを削正する非対称形状削正についてのみ、車輪とレールの接触点の変化および内外軌輪径差を算出した。

さらに、以上の 3 因子を変化させた場合について、鉄道車両の曲線走行性能に及ぼす影響について検討した。

7.3 接触点と内外軌輪径差に関する分析

7.3.1 車輪とレールの接触点における接触特性値

曲線走行性能への影響を検討するために、まず、車輪とレールの接触条件を変化させたときの接触点を算出し、獲得できる内外軌間の輪径差の変化を求めた。車輪踏面は、現在使用されている踏面の代表例として、円錐踏面（JR 在来線基本踏面）、JR 修正円弧踏面、銀丸円弧踏面およびリニアメトロ用円弧踏面（図 7.2）を、レールは 50kgN レールを対象とし、軌間は 1435mm とした。車輪とレールの接触特性は、第 5 章で述べた接触特性評価システムにより、算出した。
7.3.2 スラック量による影響

スラック量を変化させたときの車輪とレールの接触特性を算出した。スラックは0~30\(\text{mm}\)の間で5\(\text{mm}\)毎に変化させた。図7.3に、例として、リニアメトロ用円弧踏面と50kg\(\text{N}\)レールの組み合わせにおける、輪軸の左右変位に対する内外軌間で得られる車輪半径差の関係を示す。スラックが拡大するにつれて、フランジ遊間が広くなり、また、内外軌車輪の半径差が大きくなることが認められる（図7.3点線で囲んだ部分参照）。図7.3において、車輪半径差が急激に変化する位置が車輪とレールがフランジ接触する位置になる。図7.4に、各車輪踏面に関して、フランジ接触位置におけるスラックと内外軌車輪半径差の関係を示す。スラックを拡大することにより、内外軌の車輪間で獲得できる輪径差は大きくなる傾向を示す。各種の車輪踏面形状のうち、リニアメトロ用円弧踏面が最も内外軌輪径差が大きくなることが認められ、特に、スラック量を20\(\text{mm}\)以上に拡大したときに大きな内外軌輪径差が得られている。次に、スラック量と純粋転がり可能な曲線半径の関係を図7.5に示す。ここでは、車輪半径を330\(\text{mm}\)として算出した。例えば、スラック0\(\text{mm}\)の場合において、円錐踏面では半径750\(\text{m}\)以下の曲線ですべりを生じるのに対し、リニアメトロ用円弧踏面では半径150\(\text{m}\)の曲線まですべりを生じないで通過できる。図より、今回検討対象とした車輪踏面のうち、リニアメトロ用円弧踏面が、最も曲線走行性能向上に寄与できると考えられるため、以下のレール側の変更による改善効果に関する解析については、リニアメトロ用円弧踏面を対象に解析を行うこととする。
Fig. 7.3  Relation of rolling radius difference and lateral displacement of wheelset
(Arc-shaped wheel tread for linear metro)

Fig. 7.4  Relation of gauge widening and rolling radius difference

Fig. 7.5  Relation of gauge widening and radius of curvature in perfect rolling
7.3.3 タイプレート角による影響

7.3.3.1 対称タイプレート角
内外軌について，50kgN レールを対象として，タイプレート角をそれぞれ 0/40~5/40 の間で 1/40 刻みで内外軌対称に設定し，車輪とレールの接触特性解析を行った．図 7.6 に車輪とレールがフランジ接触する位置における内外軌の車輪半径差を示す．現状の 1/40 同士の組み合わせと比較して，2/40 同士の組み合わせの場合は輪径差が増加し，他の場合は輪径差が減少することが認められる．図 7.7 および図 7.8 に車輪とレールの接触状態図を示す．図は右側が外軌側，左側が内軌側で，それぞれタイプレート角が 1/40 および 5/40 の場合に外軌側でフランジ接触したときの接触状態図である．図 7.7 のように，タイプレート角が 0/40~2/40 の場合は，外軌側車輪が回転半径の大きいフランジのど元の部分でレールと接触するが，タイプレート角が 3/40 以上になると，図 7.8 のように，フランジのど元部分がレールゲージコーナーと接触しなくなるため，フランジ接触する時点での内外軌輪径差は大幅に減少する．

Fig.7.6  Rolling radius difference corresponding to angle of tie plate

Fig.7.7  Contact diagram of wheel and rail
(tie plate angle: 1/40)
非対称タイプレート角

レールを左右非対称にすることで、車輪とレールの接触点における接触特性が変化し、内外軌輪径差が増加する可能性がある。そこで、内外軌について、タイプレート角をそれぞれ 0/40~5/40 の間で 1/40 刻みで非対称に設定した場合の車輪とレールの接触特性を解析を行った。図 7.9 に車輪とレールがフランジ接触する位置における内外軌輪径差を示す。図では、前述の対称タイプレート角の場合の図 7.6 の結果もあわせて記している。また、図 7.9 の輪径差の数値を表 7.1 に示す。図 7.9 より、外軌レールのタイプレート角が 0/40~2/40 および内軌レールのタイプレート角が 1/40~5/40 の組み合わせの場合に、現行タイプレート角（内外軌とも 1/40）の組み合わせ以上の内外軌輪径差が得られることがわかる。また、外軌レールのタイプレート角が 3/40 以上になると輪径差が大きく減少することが認められる。これは、前述の対称タイプレートの結果と同様に、外軌側車輪のフランジのどの部分がレールゲージコーナーと接触しなくなるためである。
次に、外軌レールを軌道中心側に傾けると輪径差が減少する傾向が見られるため、外軌レールを軌道中心と反対側に傾けた場合を検討した。図 7.10 に外軌レールを軌道中心と反対側に傾けた場合における車輪とレールの接触状態図の例を示す。図は、タイプレート角が内軌側 1/40、外軌側 5/40 の場合において、外軌側でフランジ接触したときの接触状態図である。さらに、図 7.11 は、外軌レールについて、軌道中心と反対側にタイプレート角を設定した場合の車輪とレールがフランジ接触する位置における内外軌輪径差である。また、図 7.11 の輪径差の数値を表 7.2 に示す。外軌側タイプレート角の変化による顕著な変化がないが、軌道中心側に傾けたとき見られた輪径差の急激な落ち込みは見られなくなり、内軌側タイプレート角が大きくなると、輪径差が一般的に増加することが認めら

<table>
<thead>
<tr>
<th>inner rail</th>
<th>0/40 rad</th>
<th>1/40 rad</th>
<th>2/40 rad</th>
<th>3/40 rad</th>
<th>4/40 rad</th>
<th>5/40 rad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/40 rad</td>
<td>2.96 mm</td>
<td>3.06 mm</td>
<td>2.98 mm</td>
<td>0.04 mm</td>
<td>0.03 mm</td>
<td>0.03 mm</td>
</tr>
<tr>
<td>1/40 rad</td>
<td>3.16 mm</td>
<td>3.20 mm</td>
<td>3.25 mm</td>
<td>0.13 mm</td>
<td>0.12 mm</td>
<td>0.11 mm</td>
</tr>
<tr>
<td>2/40 rad</td>
<td>3.37 mm</td>
<td>3.32 mm</td>
<td>3.29 mm</td>
<td>0.24 mm</td>
<td>0.27 mm</td>
<td>0.24 mm</td>
</tr>
<tr>
<td>3/40 rad</td>
<td>3.63 mm</td>
<td>3.57 mm</td>
<td>3.62 mm</td>
<td>0.45 mm</td>
<td>0.44 mm</td>
<td>0.43 mm</td>
</tr>
<tr>
<td>4/40 rad</td>
<td>3.93 mm</td>
<td>3.83 mm</td>
<td>3.72 mm</td>
<td>0.65 mm</td>
<td>0.65 mm</td>
<td>0.64 mm</td>
</tr>
<tr>
<td>5/40 rad</td>
<td>3.76 mm</td>
<td>3.81 mm</td>
<td>3.86 mm</td>
<td>0.77 mm</td>
<td>0.79 mm</td>
<td>0.78 mm</td>
</tr>
</tbody>
</table>
れる。ただし、レールを軌間外側に傾けることは、レールに作用する車輪の横圧により、その作用方向にレールが傾くこと、すなわち、レール小返りなどのマイナス要因も予想されるため、現行タイプレート角に比べて大きな改善効果が見られない外側への傾斜を採用する意味は少ないと考える。

以上の検討結果から、内外軌輪径差を増加させるためには、外軌レールのタイプレート角を現行の1/40前後に設定し、内軌レールのみのタイプレート角を大きくすることが効果的であると考えられる。

Fig.7.10 Contact diagram of wheel and rail
(tie plate angle: inner; 1/40, outer; -5/40)

Fig.7.11 Relation of rolling radius difference and angles of tie plate of inner rail and outer rail
(outer rail: from -5/40 to -1/40)
Table 7.2  Value of rolling radius difference in Fig.7.11

<table>
<thead>
<tr>
<th>inner rail</th>
<th>outer rail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-5/40 rad</td>
</tr>
<tr>
<td>0/40 rad</td>
<td>3.04 mm</td>
</tr>
<tr>
<td>1/40 rad</td>
<td>3.16 mm</td>
</tr>
<tr>
<td>2/40 rad</td>
<td>3.39 mm</td>
</tr>
<tr>
<td>3/40 rad</td>
<td>3.51 mm</td>
</tr>
<tr>
<td>4/40 rad</td>
<td>3.77 mm</td>
</tr>
<tr>
<td>5/40 rad</td>
<td>3.89 mm</td>
</tr>
</tbody>
</table>

7.3.3.3 スラック量による影響

現行の内外軌 1/40 のタイプレート角よりも輪径差が拡大する場合の組み合わせ、すなわち、外軌レール 0/40~2/40、内軌レール 1/40~5/40 の角度の組み合わせについて、スラック量による影響を検討した。図 7.12～図 7.14 にスラック量と内外軌輪径差の関係を示す。図はそれぞれ外軌レールのタイプレート角が 0/40、1/40 および 2/40 の場合について、内軌レールのタイプレート角を 0/40〜5/40 の間で 1/40 ごとに変化させた場合である。図 7.12 および図 7.14 では、現行のタイプレート角（内外軌ともに 1/40）の場合の内外軌輪径差を比較のために、同図上に点線で示している。各図より、いかなるタイプレート角においても、スラック量の増加とともに獲得できる輪径差が増加することが認められる。また、内軌側タイプレート角の増加に伴い、内外軌輪径差が大きくなる傾向を示す。したがって、内軌レールのタイプレート角を大きくし、かつスラック量を拡大すると、さらに輪径差獲得に有効であることがわかる。

![Fig.7.12 Relation of rolling radius difference and gauge widening in various inner tie plate angle (tie plate angle of outer rail; 0/40)](image-url)
7.3.4 レール傾斜削正の影響

7.3.4.1 レール傾斜削正形状

前述の非対称タイプレート角の影響の検討結果から、タイプレート角について、外軌側を現状の1/40付近にし、内軌側を1/40以上に拡大することが有効であることが認められた。このようなタイプレート角では、図7.15に示すように、外軌側車輪が車輪半径の大きいフランジ側付近でレールと接触し、内軌側車輪が車輪半径の小さい反フランジ側付近でレールと接触する。その結果、外軌側車輪半径は大きくなり、内軌側車輪半径が小さくなるため、内外軌輪径差は増加すると考えられる。したがって、レール削正については、外軌側レールを削正せずに、内軌側のレール頭頂面のみを、軌道中心に下がるように斜めに削正する形状が適当と考えられる。削正形状については、図7.16に示す内軌側レール
について、レールに直角な平面において、傾きが -0.1 となる直線で削正した形状を対象に検討することとした。ここで、0.1 は、前述のタイプレート角の影響に関する検討時ににおける内軌側レールのタイプレート角を 4/40 に設定したときに近い条件となる。ただし、傾き-0.1 の直線とレール頂面との不連続な境界点で、車輪が接触することがないように、レールと傾斜削正面の境界には、R80mm の円弧を入れることとする。また、削正深さを検討するため、レール中心から鉛直下方の削正深さを、1.0mm, 1.5mm および 2.0mm に変化させて、その効果を検討した。これらの内軌側レール削正形状を用いて、車輪とレールの接触解析を行った結果を図 7.17 に示す。図では、横軸に削正深さをとり、縦軸はフランジ接触位置での内外軌輪径差を示している。现行の削正前レールを使用した場合の内外軌輪径差を太線で示してあるが、削正前と比較して、内軌レールの削正により輪径差が大きくなることが認められる。したがって、検討した内軌レール削正形状は内外軌輪径差を拡大するのに有効であると考えられる。

Fig.7.15 Contact diagram of wheel and rail
(tie plate angle: inner; 5/40, outer; 1/40)

Fig.7.16 Unsymmetrical grinding of inner rail
7.3.4.2 スラック量による影響

各レール削正形状の場合において、スラック量を変化させたときの内外軌輪径差への影響を検討した。図 7.18 に、スラック量と内外軌輪径差の関係を示す。図より、スラック量が 0~15mm の間は、削正深さが大きくなるにつれて輪径差が増加し、また、スラック量が大きくなるにつれて、輪径差が大きくなる傾向を示す。一方で、スラック量が 15mm 以上になると、削正深さによらず輪径差はほぼ変わらず、また、スラック拡大による影響は認められない。これは、スラック量が 15mm 以上になると、レールと接触する車輪踏面上の接触点がほとんど変化しないためである。

Fig. 7.17  Relation of depth of grinding and rolling radius difference

Fig. 7.18  Relation of rolling radius difference and gauge widening
(unsymmetrical grinding of inner rail)
7.4 車両運動解析

7.4.1 計算条件

車輪とレールの接触特性解析結果を用いて、曲線走行解析を行った。本計算では、曲線半径 100m のような急曲線における曲線走行性能を検討するため、曲線半径 100m の円曲線での制限速度を 30km/h とした。また、円曲線はカント 55mm、曲線半径 100〜400m とし、円曲線に入って定常状態に達したときの先頭軸外軌側横圧を比較した。前述の車輪とレールの接触特性解析結果から、曲線走行性能向上に有効であると考えられる条件、すなわち、内外軌輪径差が大きくなる車輪とレールの接触条件を考慮した。すなわち、現行の車輪とレールの組み合わせ（内外軌ともタイプレート角 1/40）に、4 条件を加えて、以下に示す計 5 条件を対象とした。また、それぞれの場合について、スラック量を 10mm 毎に拡大した場合の影響について検討した。

1) 現行条件: タイプレート角: 内外軌とも 1/40
2) 非対称タイプレート角: 内軌 5/40, 外軌 1/40
3) 非対称タイプレート角: 内軌 5/40, 外軌 2/40
4) 非対称削正: 内軌側傾斜削正深さ 1.5mm
5) 非対称削正: 内軌側傾斜削正深さ 2.0mm

7.4.2 解析結果

曲線走行解析による先頭軸外軌側横圧の波形を図 7.19〜図 7.26 に示す。図より、緩和曲線において、円曲線中よりも横圧値が大きくなることがある。しかし、曲線部で最も問題となる乗り上がり脱線の有無は、車輪がレール上に瞬間的に乗り上がるのではなく、乗り上がり量の蓄積（積分量）で決まる。したがって、緩和曲線中の横圧値の最大値が、円曲線中の定常横圧と比較して、顕著に大きくなるとは問題であるが、円曲線中の定常横圧の方が脱線に対する影響度が大きいことから、本章では、円曲線中の定常横圧を比較検討した。図 7.27〜図 7.31 は、先頭軸外軌側横圧と曲線半径の関係を示すが、それぞれ順に、前述の条件 1)〜5)の場合の解析結果である。各図より、スラックの拡大に伴い、横圧値が低下することがわかる。しかし、図 7.27 に示されるように、現行のタイプレートでは、スラックの拡大に伴い横圧値は低下するが、曲線半径 100m のような急曲線になると横圧低減効果が認められない。一方で、図 7.28〜図 7.31 では、曲線半径 100m の急曲線においても、スラックを拡大することにより、横圧値が低下することがわかる。したがって、より急曲線において、横圧値を低減するためには、タイプレート角を変更させるか、または、内軌レール非対称傾斜削正を行い、さらにスラック量を拡大することが有効である。
Fig. 7.19  Wave form of lateral force
<radius of curvature: 100m, gauge widening: 0mm>
(standard condition; tie plate angle: 1/40)

Fig. 7.20  Wave form of lateral force
<radius of curvature: 200m, gauge widening: 0mm>
(standard condition; tie plate angle: 1/40)

Fig. 7.21  Wave form of lateral force
<radius of curvature: 100m, gauge widening: 30mm>
(standard condition; tie plate angle: 1/40)
Fig. 7.22 Wave form of lateral force

<radius of curvature: 200m, gauge widening: 30mm>
(standard condition; tie plate angle: 1/40)

Fig. 7.23 Wave form of lateral force

<radius of curvature: 100m, gauge widening: 30mm>
(tie plate angle: inner; 5/40, outer; 1/40)

Fig. 7.24 Wave form of lateral force

<radius of curvature: 200m, gauge widening: 30mm>
(tie plate angle: inner; 5/40, outer; 1/40)
Fig. 7.25  Wave form of lateral force
<radius of curvature: 100m, gauge widening: 30mm>
(depth of grinding: 1.5mm)

Fig. 7.26  Wave form of lateral force
<radius of curvature: 200m, gauge widening: 30mm>
(depth of grinding: 1.5mm)

Fig. 7.27  Relation of lateral force and curve radius in various gauge widening value
(standard condition; tie plate angle: 1/40)
Fig. 7.28  Relation of lateral force and curve radius in various gauge widening value
(tie plate angle: inner; 5/40, outer; 1/40)

Fig. 7.29  Relation of lateral force and curve radius in various gauge widening value
(tie plate angle: inner; 5/40, outer; 2/40)

Fig. 7.30  Relation of lateral force and curve radius in various gauge widening value
(depth of grinding: 1.5mm)
結言

現在、使用されている車輪踏面形状を用いて、スラック量の拡大、タイプレート角の変化、レール頭頂面の非対称削正を組み合わせることにより、内外軌車輪間で獲得できる輪径差を拡大し、曲線通過性能を向上させる方策について検討した。

まず現在使用されている代表的な車輪踏面である、円錐踏面（JR在来線基本踏面）、JR修正円弧踏面、銀丸円弧踏面およびリニアメトロ用円弧踏面、レールについて、50kgNレールを対象とし、スラック量の拡大に伴う内外軌輪径差を比較した結果、リニアメトロ用円弧踏面がもっとも有効であることがわかった。このため、リニアメトロ用円弧踏面と50kgNレールを用いて検討を行った結果、以下の結論を得た。

(1) レールのタイプレート角の変更については、内外軌ともタイプレート角1/40の現状と比較して、外軌側タイプレート角を3/40以上に増加させると輪径差はかえって減少するので、内外軌のタイプレート角を対称に変化させる方法は有効でない。
(2) レールのタイプレート角を内外軌非対称に設定する場合は、外軌側レールのタイプレート角を2/40以下とし、内軌側レールのタイプレート角を現状の1/40より増加させると、現状と比較して大きな内外軌輪径差を得ることができる。また、これにスラック量の拡大を組み合わせると輪径差はさらに増加する。
(3) 内軌レールの頭頂部を傾斜削正することにより内外軌輪径差を増加させることができる。本章では、軌道中心に向けて1/10=4/40の傾きを持つ直線で削正した形状について、検討した結果、内外軌間の輪径差拡大に大きな効果があることが確かめられた。これにスラック量の拡大を組み合わせると、内外軌輪径差がさらに増加する。
(4) 内外軌輪径差が増加すると、曲線走行性能が向上する。特に、「非対称タイプレート角とスラック量の組み合わせ」または「非対称傾斜削正とスラック量の組み合わせ」
を実施した場合に、その効果は非常に顕著である。このような組み合わせにおいては、曲線走行性能を大幅に向上させることができる可能性がある。

なお、本章においては、車輪・レール間の接触幾何学的検討および車両の運動学的検討により、車両の曲線通過性能の向上について検討したが、レールの小返りへの影響や接触面におけるヘルツ圧への影響などについては、詳細な検討を行っていないので、実施にあたってはこれらの検討が必要である。しかしながら、レールの傾斜削正などについて、これまで実施された実車試験結果をもとに考えると、施工方法や維持管理方法などに関する検討の深度化は必要であるものの、実施に向けての大きな障壁はないと考えられる。

(2) 日本機械学会編，鉄道車両のダイナミクス，電気車研究会，(1996), pp.242-244.

(3) 土木関係技術基準調査研究会編，解説鉄道に関する技術基準（土木編）第二版，(2007), pp.52-76.
第8章 結論

本論文では、車輪とレールの接触特性が車両運動性能に及ぼす影響について研究した。本研究により得られた成果をまとめると下記のとおりである。

第3章 台上走行試験における軌道不整模擬のための新しい加振方法

実物大の鉄道車両1両を模擬走行させて、乗り心地や走行安定性を観測する車両回転試験装置上で、本線上の車両応答特性を精度よく再現する方法について検討した。その結果、車両回転試験装置における走行試験において本線上の通り不整模擬する場合、約30m波長以下の成分では、本線上と車両回転試験装置上の車両の応答が異なることがわかった。また、シミュレーションにより得られた本線上的応答特性と車両回転試験装置上の応答特性を比較検討し、軌条輪の左右絶対速度の影響を重み付け関数の形で補正することで、車両回転試験装置における走行試験において、本線上を走行する車両の応答特性を精度よく再現できる方法を開発した。

第4章 等価踏面勾配がセミアクティブ制御の効果に及ぼす影響

鉄道車両の走行距離の増大に伴って車輪踏面が摩耗し、等価踏面勾配が大きくなると、車体・台車間の左右相対速度が小さくなる。すなわち、セミアクティブダンパによる減衰力が小さくなり、制御の効果が小さくなることがわかった。その結果、等価踏面勾配の増加により、セミアクティブ制御の効果は低下することが示された。

第5章 車輪とレールの摩耗を考慮した接触特性評価システムの開発

車輪とレール双方の摩耗形状を関数化することなく、接触点情報を解析できるシステムについて検討した。その結果、形状計測装置によって計測された車輪の踏面形状データおよびレールの頭頂面形状データを、車輪の厚さ方向のデータ間隔が0.1mmの離散データに変換し、変換後の形状データを用いて、摩耗を考慮した車輪とレールの接触特性値を市販のパーソナルコンピュータで簡易に精度よく算出できるシステムを開発した。さらに、車輪・レール間の等価踏面勾配を算出するに際して、一組の輪軸に初期左右変位を与えて、蛇行動波長から等価踏面勾配を算出する場合、輪軸の初期左右変位については、3mm以上5mm未満が必要であることが示された。

第6章 スラック拡大による鉄道車両の走行性向上に関する検討

地下鉄用円弧踏面と50kgNレールの組み合わせを用いて、スラックの拡大による曲線通過性能などの走行性の向上について、シミュレーションと台上試験により検討した。その結果、車輪とレールの接触特性解析から、スラックの増加によって内外軌の輪径差が増加し、より小さな曲線半径まで純粋ころがりで通過できるようになり、曲線通過性能が向上した。
上することが示された。この傾向は、スラックを特に大きくすると顕著であることがわかった。また、一定値以上のスラックを付与すると、スラックの拡大によって直進安定性が改善される傾向があることがわかった。この結果、一定値以上のスラックの付与により、直進安定性、曲線通過性能ともに向上する可能性があることが示された。したがって、従来より大きなスラック拡大を行った場合の問題点について検討し、解決できれば、台車構造等の変更なしに曲線通過性能を向上させる有効な方策になると考えられる。

第7章 車輪とレールの接触特性が鉄道車両の曲線通過性能に及ぼす影響

現在使用されている代表的な車輪踏面である、円錐踏面（JR在来線基本踏面）、JR修正円弧踏面、銀丸円弧踏面およびリニアメトロ用円弧踏面、レールについて、50kgNレールを対象とし、スラック量の拡大に伴う内外軌輪径差を比較した結果、リニアメトロ用円弧踏面がもっとも有効であることがわかった。このため、リニアメトロ用円弧踏面と50kgNレールを用いて、車輪とレールの接触条件を変化させることにより、曲線通過性能を向上させる方策について検討した。その結果、レールのタイプレート角の変更については、内外軌ともタイプレート角1/40の現状と比較して、外軌側タイプレート角を3/40以上に増加させると輪径差はかえって減少するので、内外軌のタイプレート角を対称に変化させる方法は有効でないことがわかった。また、レールのタイプレート角を内外軌非対称に設定する場合は、外軌側レールのタイプレート角を2/40以下とし、内外軌レールのタイプレート角を現状の1/40より増加させると、現状と比較して大きな内外軌輪径差を得ることができ、これにスラック量の拡大を組み合わせると輪径差はさらに増加することがわかった。さらに、内軌レールの頭頂部を傾斜削正（軌道中心に向けて1/10=4/40の傾きを持つ直線で削正した形状）することにより、内外軌輪径差を増加させることができ、これにスラック量の拡大を組み合わせると、内外軌輪径差がさらに増加することがわかった。次に、車輪とレールの接触特性解析結果を用いて、車両運動解析を行った結果、内外軌輪径差が増加すると、曲線走行性能が向上することが示された。特に、「非対称タイプレート角とスラック量の組み合わせ」または「非対称傾斜削正とスラック量の組み合わせ」を実施した場合に、その効果は非常に顕著であることがわかった。このような組み合わせにおいては、曲線走行性能を大幅に向上させることができると考えられる。
謝辞

本論文は，財団法人鉄道総合技術研究所および独立行政法人交通安全環境研究所において行った研究成果をまとめたものです。

本論文を学位論文として提出するにあたり，京都大学大学院工学研究科 松久寛教授には，快くお引き受け頂き，たえず，丁寧で温かいご指導，ご鞭撻を賜りました。幅広い視野からの深い考察をはじめ，格別のご助言，ご助力を頂き，研究の醍醐味をご教授賜りました。ここに深甚なる感謝の意を表し，心より厚く御礼申し上げます。

京都大学大学院工学研究科 松原厚教授，宇津野秀夫准教授には，本論文をまとめるにあたり，貴重なご指導，ご助言を頂きました。ここに深く感謝の意を表します。

独立行政法人交通安全環境研究所 松本陽名名誉研究員（国土交通省運輸安全委員会委員）には，鉄道車両の曲線通過性能に関する大変重要なご教示，ご助言を賜りました。また，多くの貴重な議論，ご指導を賜り，たえず，温かい励ましを頂きました。ここに甚大なる感謝の意を表し，厚く御礼申し上げます。

財団法人鉄道総合技術研究所研究開発推進室 下村隆行課長には，車両運動の理論解析に関し，丁寧にご教授賜り，研究の素晴らしさ，楽しさを教えて頂きました。また，理論解析と試験に関し，多くの貴重なご指導，ご助言を賜りました。本研究の礎を築くことができました。ここに甚大なる感謝の意を表します。

前財団法人鉄道総合技術研究所車両構造技術研究部 佐藤栄作主任研究員（現株式会社テス）には，研究に対する姿勢のあり方をご教示頂き，第5章の車輪とレールの接触特性評価システムに関し，貴重なご指導，ご助言を賜りました。財団法人鉄道総合技術研究所車両構造技術研究部 飯田忠史副主任研究員には，第3章の台上走行試験に際し，多くの貴重なご意見を頂き，多くの有意義な議論をさせて頂きました。各位に心からの感謝の意を表します。

本論文をまとめるにあたり，独立行政法人交通安全環境研究所 水間毅領域長には，多大なるご尽力，ご配慮を頂きました。ここに深く感謝の意を表します。

京都大学大学院工学研究科 山田啓介助教，修士課程 戸城雅仁氏には，第2章の固有値解析を行うにあたり，貴重なご指導とご助言を頂きました。ここに深く感謝いたします。

その他，本論文をまとめるにあたり，多くの方々にご指導，ご協力を頂きました。心より御礼申し上げます。

最後に，本論文を完成するにあたり，多大な協力と支援を続けてくれた家族に心より感謝いたします。