ADENOMATOID TUMOR OF THE EPIDIDYMIS: A REVIEW OF JAPANESE LITERATURE

Author(s): Yazaki, Tsunetada; Akimoto, Masao; Konjiki, Toshimitsu; Kawai, Hiroshi

Citation: 泌尿器科紀要 (1976), 22(5): 521-527

URL: http://hdl.handle.net/2433/121968

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
ADENOMATOID TUMOR OF THE EPIDIDYMIS: A REVIEW OF JAPANESE LITERATURE

Tsunetada YAZAKI, Masao AKIMOTO,
Toshimitsu KONJIKI and Hiroshi KAWAI

From the Department of Urology, Nippon Medical School, Tokyo, Japan
(Director : Prof. H. Kawai, M. D.)

ABSTRACT: Adenomatoid tumors are the most frequently encountered tumor of the epididymis, and forty-four cases have been reported in Japan since the first case was reported by Sakaguchi. We report the 45th case with relatively abundant leiomyomatous content, a characteristic said to be found in about 3 per cent of adenomatoid tumors. We also report the results of a review of all relevant literature published in this country.

INTRODUCTION

Primary tumors of the epididymis are relatively rare, only 107 cases having been reported to date in Japan. The most frequently encountered tumor at this location is the so-called "adenomatoid tumor." The term "adenomatoid" was coined by Golden and Ash in 1945 to describe a solid benign tumor of the genital tract. Forty-four cases have been reported in this country since Sakaguchi, a Japanese physician, reported the first case in 1916, while 160 and 310 cases have been reported abroad by Broth (1968) and Czvalinge (1972) respectively.

We wish to report one such case of the adenomatoid tumor and a review of all relevant literature.

CASE REPORT

A 47-year-old male was first seen on February 6, 1964 because of a painless mass in the right scrotum. The tail of the right epididymis was thumb-tip sized, painless, elastically firm and smooth on palpation.

Urine stain and culture for Mycobacterium tuberculosis were negative. A chest x-ray was non-contributory.

A right epididymectomy was performed on February 21.

Operative findings: Only a thumb-tip sized mass with little adhesion could be found. On cut section, a soybean sized portion grayish in color was located at the center of the specimen taken from the tail of epididymis. Stain and culture for Mycobacterium tuberculosis from this specimen were negative. Findings in the head of the right epididymis and spermatic cord were non-contributory.

Microscopic findings: Hematoxylin-eosin stain revealed a proliferation of cells with clear cytoplasm, arranged in cord-like or, in some areas, canalicular patterns among fusiform smooth muscle fibers whose cytoplasm were eosinophilic in stain (Fig. 1). In PAS stain, these cells proved not to be eosinophilic (Fig. 2). These epithelioid cells were well stained with azocarmine according to the AZAN staining method (Fig. 3). PAP stain showed canalicular areas negative in staining which were compatible with the epithelioid cells whose arrangement was mentioned above (Fig. 4).

Diagnosis was made as adenomatoid tumor proliferation among smooth muscle fibers histologically.

STUDY OF LITERATURE

We collected and reviewed data on 44 reported cases of adenomatoid tumors in Japan (Table 1). The results were compared with western literature.
Fig. 1. Proliferation of cells with clear cytoplasm. H & E, reduced from ×160.

Fig. 2. Proliferating cells were not to be eosinophilic by PAS stain, reduced from ×160.

Fig. 3. Epithelioid cells stained with azocarmine. AZAN, reduced from ×400.

Fig. 4. Canalicular areas negative in staining. PAS, reduced from ×320.
Yazaki et al.: ADENOMATOID TUMOR

Table 1. All reported cases of the adenomatoid tumor in Japan.

<table>
<thead>
<tr>
<th>Case No. & Authors</th>
<th>Age</th>
<th>Side</th>
<th>Size and Location (cm)</th>
<th>Pain</th>
<th>Preoperative Diagnosis</th>
<th>Treatment</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sakaguchi</td>
<td>32</td>
<td>Lt.</td>
<td>2×1.5, tail</td>
<td>(-)</td>
<td>Epididymal tumor</td>
<td>Epididymectomy</td>
<td>1950</td>
</tr>
<tr>
<td>3. Minami et al</td>
<td>47</td>
<td>Lt.</td>
<td>Little-finger-tip, tail</td>
<td>(+)</td>
<td>Epi. tumour</td>
<td>Epididymectomy</td>
<td>1953</td>
</tr>
<tr>
<td>4. Minami et al</td>
<td>29</td>
<td>Rt.</td>
<td>2.5×1.8×1.5, tail</td>
<td>(-)</td>
<td>Epi. tumour</td>
<td>Epididymectomy</td>
<td>1964</td>
</tr>
<tr>
<td>6. Hironaka et al</td>
<td>37</td>
<td>Rt.</td>
<td>Little-finger-tip, head</td>
<td>(+)</td>
<td>Epi. tumour</td>
<td>Epididymectomy</td>
<td>1959</td>
</tr>
<tr>
<td>13. Hanada</td>
<td>18</td>
<td>Lt.</td>
<td>0.9×0.7×0.7, head</td>
<td>(+)</td>
<td>Epi. tumour</td>
<td>Epididymectomy</td>
<td>1963</td>
</tr>
<tr>
<td>32. Hiraoka et al</td>
<td>33</td>
<td>Lt.</td>
<td>Asuki-bean-sized,</td>
<td>(+)</td>
<td>Epi. tumour</td>
<td>Epididymectomy</td>
<td>1963</td>
</tr>
</tbody>
</table>
Yazaki et al.: ADENOMATOID TUMOR

34. Yamamoto et al. 22 Lt. Little-finger-sized, tail Epididymal tumor Epididymectomy 1970
36. Ishikawa et al. 33 Lt. 0.6x0.7x0.7, tail (-) Epididymectomy 1970
37. Fujita et al. 54 Lt. Little-finger-sized, tail Undifferentiated carcinoma & squamous cell ca. Orchietomy 1971
38. Horigome et al. 59 Lt. Little-finger-sized, tail Epididymectomy 1971
41. Oya 31 Lt. Thumb-sized, tail (+) Thc. epididymitis Epididymectomy 1972
42. Ota et al. 54 Lt. 5cm, tail (-) Epididymectomy 1972
43. Kudo et al. 53 Rt. Little-finger-sized, head (-) Epi. tumor Orchietomy 1972
44. Kanda 30 Rt. 2.5x2=2, tail (+) Epi. tumor Epididymectomy 1974
45. Yazaki et al. 47 Rt. Thumb-sized, tail (-) Thc. epididymitis Epididymectomy 1975

Frequency among epididymal tumors: Of 107 cases of epididymal tumors which have been reported to date in Japan, 40 cases (37 per cent) were adenomatoid tumors, the most common tumor of all. According to Mostofi, they represent 32 per cent of all tumors involving the epididymis.

Incidence: No report of the rate of incidence among the population has been prepared in Japan.

Lee et al. collected data in 1950 on 17 cases found from 800,000 patients admitted to Mayo Clinic in the 40 years from 1910 to 1949. The rate of incidence was calculated to be 1 in 47,000, while Flickinger in 1960 found 4 cases from 150,000 patients admitted to Kennedy Hospital in Memphis, Tennessee during the preceding 13 years. Frequency was presumed to be 1 in 37,000.

Age: Range in age was from 1 to 73 years. The most frequent occurrence is noted in the fourth decade. The mean age is 38 years.

Age distribution, according to Mostofi et al., is from 18 to 79 years; the tumors occurred most often during the third, fourth and fifth decades. Mean age at the time of surgery was about 36 years.

Side of involvement: Twenty-nine cases (64 per cent) occurred on the left, 13 cases (29 per cent) on the right, and 3 cases (7 per cent) were uncertain because of no description concerning the side of occurrence. A right-sided preponderance was found.

Lee et al. found 58 per cent of the tumors on the right and 42 per cent on the left, while Jackson found 56 per cent on the right and 44 per cent on the left. Bilateral involvement has been reported (Norin), but is very rare. No such cases have been reported in Japan.

Location of occurrence: Twenty-five cases (56 per cent) were found at the tail of the epididymis, and 11 cases (27 per cent) at the head. One case was found at the tail and testis. One case was described only as the left epididymis. One case was at the spermatic cord, and another was at the tunica albuginea. Precise locations in the epididymis were not described in 5 cases.

According to Mostofi et al., the lower pole predominates over the upper pole as a location of occurrence by a ratio of 3 to 2.

Size of tumors: Most authors in Japan have traditionally described the size of the tumors in similitudes instead of actual measurements. Most were less than thumb-tip size. The most frequent occurrence in size was approximately little-finger-tip
size.

According to Mostofi et al., adenomatoid tumors are small, ranging from 0.4 to 5.0 cm in diameter.

Pain: Fourteen cases (31 per cent) had pain in the lump, 16 cases (36 per cent) had no pain, and in the other 15 cases (33 per cent) this was not described in the literature.

Adenomatoid tumors are said to be nearly always asymptomatic. This, however, was not the case according to the articles we reviewed.

Preoperative diagnosis: No reported cases could be diagnosed accurately prior to the operative procedure. Preoperative diagnoses were as follows: tuberculosis in 15 cases (33 per cent), neoplasm in 9 cases (20 per cent) and other diagnoses in the remainder.

Malignant changes: We have not encountered malignancy of the type reported by Söderström and Liedberg, and by Fischer and Klieger.

HISTOLOGY

The following is microscopic description by Mostofi et al.: This tumor is characterized by two major elements: epithelial-like cells and fibrous stroma. Many of the tumors contain bundles of smooth muscle, amount of which is variable, and scattered collections of chronic inflammatory cells.

The epithelial cells may be arranged as solid strands or cords, often interlaced and producing a plexiform pattern; in tubular and/or glandular form, also interconnected on interlaced (glandular type); or as dilated spaces resembling those seen in lymphangioma.

The cells may be cuboidal or low columnar, or they may be flattened and endothelioid in appearance. In general, cuboidal or columnar cells predominate in the solid and glandular types, whereas the endothelioid cells predominate in the angiomatoid type.

While any one tumor may be classified by its predominant pattern (solid, glandular, or angiomatoid), all the patterns are usually found in any given tumor.

Another fairly common feature of adenomatoid tumors is the presence of vacuoles in the epithelioid cells.

The stroma ranges from loose connective tissue to dense, collagenized tissue which is sometimes focally hyalinized. Variations in the amount and character of the stroma are frequent.

Many adenomatoid tumors exhibit a prominent knob or bundle of muscle at one pole of the tumor replacing most of the stroma at that point. Some tumors have scattered bundles of smooth muscle dispersed throughout the tumor. In about 3 per cent of the tumors, smooth muscle is abundant throughout the tumor and is the dominant element. Tumors of this type have been reported as mixed lymphangioma and leiomyoma (Halpert; Malisoff and Helpern) or as adenomatoid leiomyoma (Wilson).

Some authors have classified these tumors into 3 or 4 histological types (Table 2).

Our case belongs to type II, i.e., "cell cord with slight vacuolation" classified by Sakatoku and Takahashi.

HISTOGENESIS

The histogenesis of this tumor is un-
known. Some theories concerning its origin have been postulated. Four major theories of its origin have been supported by many authors, i.e. endothelial, mesonephric (wolffian), mesothelial and müllerian. Among them, the latter two theories have been advocated with more plausible evidence, however not enough for conclusive proof (Table 3).

Following are the theories proposed by Japanese authors.

Sakaguchi thought that the tumor arose from the wolffian body and duct. Sakatoku and Takahashi (1962) found tumorous tissue pathologically surrounding the ductus efferentes. They postulated from their experience and a review of literature that the origin of adenomatoid tumors is in the tissue surrounding the ductus efferentes. The ductus efferentes is the embryological remnant of the mesonephric tubule. They reasoned with confidence that the tumor may have an intimate relation to the mesonephric tubule, mesonephric duct (wolffian duct) or at least to the mesenchymal tissue surrounding the mesonephric tissue. Momose (1958) ruled out the mesothelial origin by pathological comparison with the mesothelioma originating in the peritoneum.

Oya supports the müllerian tube origin theory from the histological study in which human embryos and the specimen of the appendix of the testis taken from a 31-year-old man were used.

Through their experience and a review of literature, Kubo and Murata (1969) supposed the presence of two types of adenomatoid tumors, that is, some develop from the mesonephric tissue of the epididymis and lack mesothelial characteristics with frequent continuity with the epididymal tissue, and others retain strong mesothelial characteristics without any continuity with the epididymal tissue and develop from the mesothelium of mesonephric tissue through differentiation.

Nosaka, Yamori, Morisawa and Hazama (1966) confirmed that the substance in the vacuoles of epithelial-like cells is mucopolysaccharide by using the histochemical method. Considering the presence of mucopolysaccharide, the morphological resemblance to the mesothelioma and the

<table>
<thead>
<tr>
<th>Table 3. Theories of histogenesis and their advocates.</th>
</tr>
</thead>
</table>

Endothelial origin
1. Leighton (1912)
2. Rignano-Irrera (1925)
3. Marcandier and Thomas (1930)
4. Nicod (1934)
5. Scalfi (1936)
6. Charache (1939)
7. Halpert (1941)
8. Malisoff and Helpern (1943)
9. Morehead (1946)
10. Bolche (1952)

Mesonephric (wolffian body and duct) origin
1. Naegeli (1912)
2. Sakaguchi (1916)
3. Blumer and Edwards (1941)
4. Gordon (1941)
5. Codner and Flynn (1946)
6. Falconer (1947)
7. Ragins and Crane (1948)
8. Longo et al (1951)
9. Tellum (1954)
10. Sakatoku (1962)

Mesothelial origin
1. Masson et al (1942)
2. Evans (1943)
3. Fajers (1949)
4. Lee et al (1950)
5. Ambrose (1953)
6. Mylius (1953)
7. Stavrides (1960)
8. Hertig (1961)
9. Nonaka (1964)
10. Broth (1968)
11. Abell (1968)
13. Mackay (1971)

Müllerian origin
1. Leach (1950)
2. Sundarasivarso (1953)
3. Willis (1955)
4. Rankin (1956)
5. Jackson (1958)
6. Flickinger (1960)
7. Tsuchida (1964)
8. Steger (1965)
continuity of the tumor with the serosal cavity proved by Evans; they did not discard the mesothelial theory. They, however, supported at the same time the müllerian duct theory which accounts most clearly for the site of origin. They adopted and combined the two theories, reasoning that the tumor may originate in müllerian duct vestiges whose mesothelial characteristics have not been completely lost.

Fujita, Nakauchi, Matsumoto and Seto (1971) supported a theory similar to the one proposed by Nosaka et al.

We cannot say from our experience with any confidence which theory is most plausible. From a review of the literature, however, we are inclined to support a theory similar to Nosaka’s. Adenomatoid elements might arise from the epithelioid component in the müllerian tissue and myogenic elements from the mesenchymal component in the same tissue. Hamartomatous change could be considered to be involved in the aberrant differentiation mentioned above.

SUMMARY

A case of a epididymal adenomatoid tumor with relatively abundant leiomyomatous component was reported. According to Mostofi, in about 3 per cent of the cases of adenomatoid tumors, smooth muscle is abundant throughout the tumor and is the dominant element. Data from forty-five reported cases including ours in Japan were collected and reviewed.

Some characteristics were compared with those of similar tumors in Caucasians. Theories of histogenesis proposed by the authors were mentioned. We, however, cannot support the histogenesis theories with definitive evidence.

REFERENCES

(Accepted 1976. 2. 20)