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Abstract—We report modal analysis of coupled swing dynamics
of a multi-machine power system. The analysis is based on
the so-called Koopman operator, a linear, infinite-dimensional
operator that is defined for any nonlinear dynamical system and
captures full information of the system. The modal analysis makes
it possible to extract single-frequency modes, which are called
Koopman modes, embedded in the coupled swing dynamics and
to identify a coherent group of generators in which they swing
together in frequency and phase.

I. INTRODUCTION

Power systems exhibit complex phenomena that occur on a
wide range of scales in both space and time. Examples of such
phenomena contain synchronization of individual rotating ma-
chines, voltage dynamics and collapse, and cascading failures
leading to widespread blackouts. Direct numerical simulations
of nonlinear mathematical models have demonstrated such
complex phenomena, for example, sustained oscillation [1],
interarea oscillation [2], chaotic oscillation [3], and cascading
failures [4]. Due to high-dimensional, spatiotemporal nature
of such phenomena, it is of basic interest for practitioners to
identify a small number of dominant components or modes
that approximates the phenomena observed practically and
numerically. One notion of mode developed in power system
analysis is based on small-signal dynamics in which we inves-
tigate linearized equations around equilibria. However, since
the phenomena listed above do not happen in the neighborhood
of equilibria, it is questionable whether global modes for a
linearized system are effective for describing such phenomena.
Thus, there is a need to develop an alternative approach to
mode identification not relying on linearization.

One of the important applications of mode identification
is coherency identification in which for transient stability
analysis one finds a group of synchronous generators swinging
together with the in-phase motion. Objectives of coherency
identification include development of low-order models to
blackuce computational effort and analysis of instability mech-
anism (see [5]). Many groups of researchers have developed
methods for coherency identification. In [2], [6]–[8], the

authors studied the coherency using linear system description
and theory. In [9], [10], the authors used the energy function
to identify coherent generators. In [11] the authors used the
principal component analysis.

In this paper, we develop an alternative method for identi-
fication of modes and coherency, by using modal analysis of
short-term swing dynamics in a multi-machine power system.
Koopman pioneeblack the use of linear transformations on
Hilbert space to analyze Hamiltonian systems by introducing
the so-called Koopman operator and studying its spectrum
[12]: see [13], [14] for details. This linear, infinite-dimensional
operator is defined for any nonlinear dynamical systems [13],
[14]. Even if the governing dynamics of a system are finite-
dimensional, the Koopman operator is infinite-dimensional and
does not rely on linearization: indeed, it captures the full infor-
mation of the nonlinear dynamical system. In [15] the authors
identified a relationship between general Fourier analysis [16]
and eigenfunctions of the Koopman operator. In [17] the author
showed via spectral analysis of the Koopman operator that, like
in linear dynamics, single-frequency modes can be embedded
in highly nonlinear, spatiotemporal dynamics, later named the
Koopman Modes (KMs) [18]. In [18] the authors presented a
technique for characterizing the global behavior of complex
fluid flows by decomposing a flow profile into KMs. In this
paper, we apply the technique developed in [17], [18] to short-
term swing dynamics in the New England 39-bus test system
(NE system) [19]. We show that the modal analysis makes it
possible to extract single-frequency (spatial) modes embedded
in coupled swing dynamics of the NE system and to identify
a coherent group of generators in which they swing together
with the in-phase motion. The identification is performed on
finite-time data of the dynamics and does not require the
direct check of spatiotemporal patterns. Computation of KM
is applicable to dynamics of any power system and can be
performed purely on finite-time data of the dynamics. Thus,
the identification of modes and coherency based on the KM
is suitable for analysis of not only simulation outputs but
also data measublack in practice, for example, by wide-area
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measurement [20]. This is the first report of the application of
KM to power system analysis. The details of the application
are submitted as an archival journal paper [21].

II. MODAL ANALYSIS BASED ON THE KOOPMAN

OPERATOR

We provides an introduction to the theory of the Koopman
operator for nonlinear dynamical systems. The contents in
Secs. II-A and II-B are based on [15], [17], [18]. The def-
initions of the Koopman operator and the Koopman Mode
(KM) are presented. an algorithm for computing the KMs from
finite data is also presented. Finally we give the definition of
coherency in the context of KM.

A. The Koopman Operator, Eigenvalue, and Mode

Consider a discrete-time, nonlinear dynamical system given
by

xk+1 = F (xk), (1)

where xk ∈ M is the state variable belonging to state space
M , and F : M → M is a nonlinear, vector-valued function.
The Koopman operator is a linear operator U that acts on
scalar-valued functions on M in the following manner: for
g : M → R, U maps g into a new function Ug given by

Ug(x) = g(F (x)).

Although the dynamical system is nonlinear and evolves on
a finite-dimensional space, the Koopman operator U is linear,
but infinite-dimensional. The eigenfunctions and eigenvalues
of U are defined as follows: for functions ϕj : M → C and
constants λj ∈ C,

Uϕj(x) = λjϕj(x), j = 1, 2, . . .

We refer to ϕj as Koopman eigenfunctions and to λj as the
associated Koopman eigenvalues.

The idea in [17] is to analyze dynamics governed by (1) only
from available data using the Koopman eigenfunctions and
eigenvalues. To this end, consider a vector-valued observable
g : M → R

p. For example, if x ∈ M contains the full
information about system dynamics at a particular time, g(x)
is a vector of any quantities of interest, such as frequencies
and voltages measublack at various points in a power system.
If each of the p components of g lies within the span of
eigenfunctions ϕj , then as in [17] we may expand g as follows:

g(x) =
K∑

j=1

ϕj(x)vj ,

where K is the number of Koopman eigenfunctions and is
possibly infinite (in fact, for a finite-dimensional linear system,
the number of eigenvalues becomes countably infinite [18]).
We will refer to the vectors vj as Koopman Modes (KMs) of
the system (1), corresponding to the observable g. Then the

time series of g on the trajectory of (1) starting at x0 at time
0 is given by

g(xk) =
K∑

j=1

ϕj(xk)vj

=
K∑

j=1

ϕj(F (xk−1))vj

=
K∑

j=1

U1ϕj(xk−1)vj

=
K∑

j=1

U2ϕj(xk−2)vj

...

=
K∑

j=1

Ukϕj(x0)vj

=
K∑

j=1

λk
j ϕj(x0)vj . (2)

Therefore, the Koopman eigenvalues λj characterize the tem-
poral behavior of the corresponding KM vj : the phase of
λj determines its frequency, and the magnitude determines
the growth rate. Note that in [17] for a system evolving on
an attractor, the Koopman eigenvalues always lie on the unit
circle.

We note from [17] that the terms ϕj(x0)vj in KMs are
associated with a projection operation associated with U
applied to the observable g. Define a family of operators Pν :
for g : R

n → R,

Pνg(x0) = lim
n→∞

1
n

n−1∑
k=0

ei2πkνg(xk),

where ν ∈ [−1/2, 1/2). When the trajectory starting at x0

is on an attractor of (1), a nonzero Pν is the orthogonal
projection operator onto the eigenspace of U associated with
the Koopman eigenvalue λ = e−i2πν . The projections of the
p components g1, . . . , gp of g on the j-th eigenspace are
obtained: ⎡

⎢⎣
Pνj g1(x0)

...
Pνj gp(x0)

⎤
⎥⎦ = ϕj(x0)vj , (3)

where νj = Im[ln λj ]/2π. This formula (3) associates
ϕj(x0)vj with the projection operation based on the operator
Pν . Apparently the left-hand sides of (3) are just the Fourier
transforms of the time series, and the terms ϕj(x0)vj can be
easily computed.

Also note from [17] that, when the trajectory starting at x0

is on an attractor of (1), the general expression of g(xk) is
given as follows:

g(xk) =
K∑

j=1

λk
j ϕj(x0)vj +

∫
T1

ei2πθdE(θ)g(x0),



where E(θ) is a continuous, complex spectral measure on L2.
The last term on the right-hand side represents the contribution
of continuous spectrum of U to the observations {g(xk)} for
k ∈ N.

B. Computation of the Koopman Eigenvalues and Modes

We numerically compute the Koopman eigenvalues and
modes using the Arnoldi algorithm. Suppose that we have a
sequence of N + 1 observations {g(x0), . . . , g(xN )}. Let us
define the empirical Ritz values λ̃j and empirical Ritz vectors
ṽj of this sequence by using the following algorithm:

(i) Define constants cj such that for vector r satisfying
r⊥ span{g(x0), . . . , g(xN−1)},

r = g(xN ) −
N−1∑
j=0

cjg(xj). (4)

(ii) Define the companion matrix C as

C =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 c0

1 0 · · · 0 c1

0 1 · · · 0 c2

...
...

. . .
...

...
0 0 · · · 1 cN−1

⎤
⎥⎥⎥⎥⎥⎦ .

and find its N eigenvalues λ̃1, . . . , λ̃N .
(iii) Define the Vandermonde matrix T using λ̃j as

T =

⎡
⎢⎢⎢⎣

1 λ̃1 λ̃2
1 · · · λ̃N−1

1

1 λ̃2 λ̃2
2 · · · λ̃N−1

2
...

...
...

. . .
...

1 λ̃N λ̃2
N · · · λ̃N−1

N

⎤
⎥⎥⎥⎦ .

(iv) Define ṽj to be the columns of V =
[g(x0) g(x1) · · · g(xN−1)]T−1.

Then, we have the following equations that are originally
derived in [18]:

g(xk) =
N∑

j=1

λ̃k
j ṽj ,

g(xN ) =
N∑

j=1

λ̃N
j ṽj + r,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5)

where k = 0 . . . , N − 1. Comparing with (2), the empirical
Ritz values λ̃j and vectors ṽj precisely behave in the same
manner as the Koopman eigenvalues and modes, but for the
finite sum (5) instead of the (possibly) infinite sum (2).

C. Coherency in the Koopman Mode

Finally we define the notion of coherency in the context
of KM. The case of oscillatory KM, in which the Koopman
eigenvalue has an imaginary part, is addressed, because the
study on coherency identification in power systems normally
deals with oscillatory responses following a disturbance. For
an oscillatory KM vj , called Mode j, with the Koopman
eigenvalue λj = rjei2πνj and its complex conjugate λc

j =
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Fig. 1. The New England 39-bus test system (NE system) [19]

rje−i2πνj , the corresponding modal dynamics, denoted by
gj(xk), are given by

gj(xk) = λk
j ϕj(x0)vj + (λc

j)
k{ϕj(x0)vj}c

= 2rk
j

⎡
⎢⎣

Aj1 cos(2πkνj + αj1)
...

Ajp cos(2πkνj + αjp)

⎤
⎥⎦ , (6)

where

Aji =
√

(Re[ϕj(x0)vj ]i)2 + (Im[ϕj(x0)vj ]i)2,

tan αji =
Im[ϕj(x0)vj ]i
Re[ϕj(x0)vj ]i

.

⎫⎪⎬
⎪⎭

The notation Re[ϕj(x0)vj ]i stands for the i-th component of
vector Re[ϕj(x0)vj ]. The real part of ϕj(x0)vj determines
the initial amplitude of modal dynamics, and the imaginary
part affects their initial phase. Thus, we can say that a set
of oscillatory components I ⊆ {1, . . . , p} is coherent with
respect to Mode j if the amplitude coefficients Aji are the
same for all i ∈ I, and the initial phases αji are also the same1.
Then, for coherent identification for Mode j, it is sufficient to
check both the amplitude coefficients Aji and initial phases
αji. Numerically, it is enough to group oscillatory components
with similar amplitude coefficient Aji and initial phase αji as
a set of coherent components. When the observables {g(xk)}
contain swing dynamics of generators in a power system, we
can find a coherent group of the generators in which they
swing together in frequency and phase.

III. APPLICATION TO THE NEW ENGLAND TEST SYSTEM

We apply the above-described computation of Koopman
mode to analyze short-term swing dynamics in the New Eng-
land 39-bus test system (NE system). The NE system is shown
in Fig. 1 and contains the 10 generation units (equivalent 10

1The definition is strict compablack with the definitions of slow-coherency
[2], [6] and near-coherency [7], because it does not admit any finite, constant
phase difference of swings. It is easily relaxed and can match the definitions
of coherency proposed previously.



synchronous generators, circled numbers in the figure), the
39 buses, and AC transmission lines. Most of the buses have
constant active and reactive power loads. The details of the NE
system, such as unit rating, line data, and loading conditions,
are given in [19].

A. The Swing Equations

First, we introduce the equations of motion of generators in
the NE system. Assume that bus 39 is the infinite bus. The
short-term swing dynamics of generators 2–10 are represented
by the following nonlinear differential equations, the so-called
classical model [22]:

dδi

dt
= ωi,

Hi

πfb

dωi

dt
= −Diωi + Pmi − GiiE

2
i

−
10∑

j=1,j �=i

EiEj {Gij cos(δi − δj) + Bij sin(δi − δj)} ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

where the integer label i = 2, . . . , 10 denotes generator i. The
variable δi is the angular position of rotor in generator i with
respect to bus 1 and is in radians [rad]. The variable ωi is
the deviation of rotor speed in generator i relative to that of
bus 1 and is in radians per second [rad/s]. We set the variable
δ1 to a constant, because bus 39 is assumed to be the infinite
bus. The parameters fb, Hi, Di, Pmi, Ei, Gii, Gij , and Bij

are in per unit system except for Hi and Di in seconds [s],
and for fb in Hertz [Hz]. The mechanical input power Pmi

to generator i and the internal voltage Ei of generator i are
normally constant in short-term regime [22]. The parameter
Hi is the per unit time inertia constant of generator i, and
Di its damping coefficient. The parameter Gii is the internal
conductance, and Gij+jBij is the transfer impedance between
generators i and j. Electrical loads are modeled as passive
impedances.

B. Numerical Simulation of the Swing Equations

The setting of numerical simulation is as follows. The
voltage Ei and a stable equilibrium (δ∗i , ω∗

i = 0) for generator
i are fixed using power flow computation [22]. The constants
Hi, Pmi, and power loads are the same as in [19]. The
parameter Di is fixed at 0.01 s, and fb at 60 Hz. The elements
Gii, Gij , and Bij are calculated using the data in [19] and the
power flow computation. All numerical simulations discussed
in this paper were performed using MATLAB: the function
ode45 is adopted for numerical integration of (7).

We present an example of short-term swing dynamics in
the NE system. Fig. 2 shows the time responses of rotor speed
deviations ωi under the initial condition:

(δi(0), ωi(0)) =

{
(δ∗i + 1.5 rad, 3 rad/s) i = 8,

(δ∗i , 0 rad/s) else.
(8)

The initial condition physically corresponds to a local distur-
bance at generator 8. The generators do not show any stepping-
out in the figure, that is, they do not show any transient
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Fig. 2. Coupled swing dynamics of generators 2–10 in the NE system. These
are the trajectories of (7) for the initial condition (8).

instability for the selected disturbance. Generators 2, 3, 6, and
7 show a coherent swing excited by the local disturbance. We
call these generators the coherent group. The other generators
show incoherent swings in the figure. Generator 9 shows a
swing similar in frequency and phase to that of the coherent
group, but the swing amplitude is a little larger. Generators
8 and 10 have swings of larger amplitudes than the others,
because the initial condition is localized at generator 8, and
the two generators are geographically close. Fig. 3 shows the
Discrete Fourier Transform (DFT) of time responses shown
in Fig. 2. The computation is done by the function fft in
MATLAB, and the sampling frequency is 50 Hz. The DFT
results on generators 8 and 10 have larger magnitudes than the
others and have the same shape with two peaks (1.2 Hz and
1.4 Hz). The coherent group—generators 2, 3, 6, and 7—has
the same shape with two peaks (0.4 Hz and 1.2 Hz). Since DFT
does not consider phase information, we cannot conclude from
the DFT result that generators 2, 3, 6, and 7 swing coherently.
The shape for generator 9 has three peaks (0.4 Hz, 0.9 Hz,
and 1.2 Hz) and hence produces a swing similar to that of the
coherent group. The other generators, 4 and 5, have shapes
different from those mentioned previously.

C. Decomposition of Coupled Swing Dynamics into Koopman
Modes

We compute the Koopman modes (KMs) for the coupled
swing dynamics shown in Fig. 2. To do so, we need to
choose the observable g(δ,ω) where δ = (δ2, . . . , δ10)T

and ω = (ω2, . . . , ω10)T. The symbol T indicates complex
conjugate transpose in vectors. In this paper we use the
variables of rotor speed deviations, ω, as the observable:
g(δ,ω) = ω. This observable has a clear physical meaning
in power systems: one measures rotor speeds or frequencies
for every generation plant. Using the observable, we compute
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Fig. 3. Numerical discrete Fourier transform of time responses shown in Fig. 2
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the Koopman eigenvalues and KMs (the empirical Ritz values
λ̃j and associated vectors ṽj) from the output of numerical
simulation. We use the data shown in Fig. 2 that extracts
{ω(nT )}N

n=0 where the sampling period T = 1/(50Hz) and
the number of samples N = 501. The implementation of Step
(i) in Sec. II-B is explained in Appendix.

Figure 4 shows the empirical Ritz values λ̃j . The norm of
r in Steps (i) and (iii) is of order 10−12. Many KMs are
obtained and are close to the unit circle |λ̃j | = 1. Now let us
focus on KMs that have both large growth rates |λ̃j | and large
norms. Such modes represent sustained swing components for
the time duration of data and have dominant magnitudes in the

TABLE I
NUMERICAL RESULTS ON THE KOOPMAN MODES

Mode Growth Rate Argument [rad] Frequency [Hz] Norm
j |λ̃j | θ̃j = Im[ln λ̃j ] f̃j = |θ̃j |/(2πT ) ||ṽj ||
1 1.0011 ±0.1863 1.4829 1.4299
2 0.9994 ±0.1518 1.2077 3.5270
3 0.9990 ±0.1252 0.9963 0.7767
4 0.9974 ±0.0970 0.7717 0.3687
5 0.9972 ±0.1120 0.8913 0.6734
6 0.9969 ±0.2026 1.6120 1.0893
7 0.9965 ±0.0834 0.6637 0.5271
8 0.9963 ±0.1374 1.0930 1.2944
9 0.9963 ±0.1693 1.3474 4.5024
10 0.9958 ±0.0705 0.5607 0.8343
11 0.9958 ±0.0447 0.3559 2.5209

data. Tab. I shows numerical results on Koopman eigenvalues
and KMs, which we call Mode 1 to Mode 11. The norm for
Mode j is defined as ||ṽj || =

√
ṽT

j ṽj . The order of KMs in
Tab. I is based on the magnitudes of growth rates. Now we
pick up Mode 2, Mode 9, and Mode 11 that have large norms in
the table. Fig. 5 shows the KMs ṽj for Mode j (j = 2, 9, 11).
The amplitude coefficients Aji (j = 2, 9, 11, i = 2, . . . , 10)
and initial phases αji, defined in (6), are also shown. Fig. 6
shows the modal dynamics (6) for the three KMs. Each
KM contains single frequency by construction. For example,
Mode 9 with the frequency 1.3474 Hz has the large amplitude
coefficients Aji for generators 8 and 10 (see Fig. 5), and the
corresponding modal dynamics shown in Fig. 6(b) are indeed
localized at these generators. This KM captures the large
swings of generators 8 and 10 observed in Fig. 2, and the
mode frequency 1.3474 Hz almost coincides with one of the
dominant frequencies for generators 8 and 10, that is, 1.4 Hz,
shown in Fig. 3. Thus, we can decompose the data on coupled
swing dynamics in the NE system into a set of KMs, namely,
single-frequency, spatial modes.
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Fig. 5. The Koopman modes ṽj (j = 2, 9, 11) in Tab. I. The amplitude
coefficients Aji (i = 2, . . . , 10) and initial phases αji, defined in (6), are
shown.

D. Coherency Identification Using the Koopman Modes

The decomposition into KMs makes it possible to extract
coherent generators in the coupled swing dynamics. Now
let us consider the two KMs, Mode 2 and Mode 11. For
Mode 2, the values of amplitude coefficients Aji are close
for each of generators 2, 3, 6, 7, and 9, and their initial
phases αji are also close. Hence, generators 2, 3, 6, 7, and
9 show in-phase swings with 1.2077 Hz (see Fig. 6(a)). For
Mode 11, the values of Aji and αji are close for each of the
generators except for generator 8, and hence they show in-
phase swings with 0.3559 Hz (see Fig. 6(c)). Thus, based on
the definition of coherency in Sec.II-C, we can say that the
set of oscillatory components (generator swings) {2,3,6,7,9}
is coherent with respect to Mode 2 and Mode 11. These KMs
capture the coherent group of generators observed in Fig. 2
(these frequencies, 1.2077 Hz and 0.3559 Hz, are indeed close
to those of the coherent group, 1.2 Hz and 0.4 Hz). In this way,
we can identify coherency embedded in the coupled swings
using their decomposition into KMs.

Here we used the Arnoldi algorithm to compute the Koop-
man eigenvalues and KMs. But originally, the KM was defined
using projection operation based on Pν , namely, the Fourier
analysis. Now we consider the KMs using Pν . We use the
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Fig. 6. Mode dynamics (6) of the Koopman modes ṽ1 and ṽ2

finite-time approximation of (3) from k = 0 to N , which
is the number of samples. Fig. 7 shows the numerical results
for terms ϕj(x0)vj for ν̃j = f̃jT (j = 2, 9, 11). The results
for real parts are close to those for KMs in Fig. 5. However,
the results for imaginary parts are somewhat different from
those in Fig. 5, especially at generator 8. As mentioned in
Sec. II-C, the imaginary part of ϕj(x0)vj affects the initial
phases of associated modal dynamics. Hence we have observed
the quantitative differences in the imaginary parts. Also, for the
real parts, there are quantitative differences between the results
in Figs. 5 and 7. The difference might be due to the assumption
of (3) that dynamics are on an attractor. The current analysis is
indeed performed for transient dynamics far from an attractor
(in this case, a stable equilibrium). However, identification of
coherent generations is possible using the Fourier analysis as
well. In fact, the coherent swings of generators 2, 3, 6, 7, and
9 are captublack well.
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Fig. 6. ( continued )
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Fig. 7. Numerical results of terms ϕi(x0)vi using the projection operator
Pν

IV. SUMMARY

In this paper, we reported modal analysis of coupled swing
dynamics in the New England 39-bus test system (NE system).
The computation of Koopman Mode (KM) can be performed
purely on finite-time data of dynamics. We show that the
modal analysis makes it possible to extract single-frequency
(spatial) modes embedded in coupled swing dynamics of the
NE system and to identify a coherent group of generators
in which they swing together with the in-phase motion. An
important advantage of the proposed identification is that we
can accurately identify coherency embedded in coupled swings
without checking their waveforms. Hence the modal analysis
based on the KM provides a systematic and rigorous way for

coherency identification and is effective, in particular, when
we handle data of coupled swings from a large number of
generators, or coherency is invisible in their waveforms. This
is the first report of the application of KM to power system
analysis. Comparisons with linear global modes and proper
orthonormal modes will be presented in a forthcoming archival
journal paper [21].
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