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Abstract—We describe short-term swing dynamics leading
to cascading failure in an interconnected power system. The
notion of Coherent Swing Instability (CSI) was recently proposed
in which most of synchronous machines in a power system
coherently lose synchronism with the rest of the system after
being subjected to a local and finite disturbance. CSI is an escape
phenomenon from resonance in the nonlinear mode that governs
the collective motion of machines. For a network of weakly
interconnected power systems, we show that CSI happens for all
of the systems in a cascade manner and gives the mechanism
of cascading failure in the network, that is, the sequence of
escape phenomena that can occur in a class of high-dimensional
dynamical systems.

I. INTRODUCTION

Coupled swing dynamics in a population of synchronous
machines are of vital importance for power system stability.
The so-called transient stability analysis is associated with
the ability of power system to maintain synchronism when
subjected to a large disturbance [1], [2]. Loss of transient
stability is recognized as one cause of large blackouts such
as the September 2003 blackout in Italy [3]. Transient sta-
bility is mainly governed by electromechanical or rotor angle
oscillations of synchronous machines in short-term regime (0
to 10 seconds [1]) and is mathematically investigated by the
so-called nonlinear swing equations [1], [2]. Analysis of the
swing equations (see e.g. [4]–[8]), which especially deals with
global structures of phase space far from equilibria, is hence
needed for prevention of not only transient instability but also
large blackouts.

In [9]–[13] we have developed a theory of short-term swing
instability of multi-machine power systems, which we term
the Coherent Swing Instability (CSI), based on the notion of
instability occurring for general oscillatory systems described
in [14]–[17]. CSI is an undesirable and emergent phenomenon
of synchronous machines in a power system, in which ma-
chines in a subset of the system coherently lose synchronism
with the rest of the system after being subjected to a finite

and local disturbance.1 This phenomenon gives the dynamical
mechanism that explains how local plant mode oscillation,
inter-area mode instability, and multi-swing instability interact
to destabilize a power system. In [9], [11], [12], we presented
the phenomenology and mechanism of CSI for simple and
practical models of power systems. CSI occurs in a class
of dynamical systems dominated by inertia in which one
nonlinear mode is weak compared with many linear oscillatory
modes. The nonlinear mode governs the collective motion of
synchronous machines in a power system and is invisible in
normal model representations, but it can be extracted using
analytical tools of Center-Of-Angle (COA) [19] and slow-
coherency [20], or computations of proper orthonormal modes
[10] and Koopman modes [21]. With this modal perspective,
we dynamically state that CSI is an escape phenomenon
(see [22], [23]) from resonance (see [24]) in the nonlinear
mode. The nonlinear mode features a special phase space
structure of resonance: resonance of all orders [17]. The
resonant surface is a codimension-one subspace in the full
phase space. Then the escape of trajectory from the resonant
surface corresponds to CSI. A stable region of phase space in
which any trajectory does not escape is evaluated using the
ergodic partition theorem [13].

In this paper, on the basis of CSI, we describe short-
term swing dynamics leading to cascading failure in an inter-
connected power system. Cascading failure is a sequence of
dependent failures of individual components that successively
weakens the power system [25]. Understanding the physics of
cascading failures is of basic importance for design and control
of power systems. There is a large amount of past and current
work on the physics of cascading failures as reviewed in [11],
[25]. In this paper, after reviewing the theory of CSI for a

1This notion of instability is somewhat broader than the standard definition
in dynamical systems [18], in the sense that it does not happen upon
an infinitesimally small perturbation around an equilibrium of the system.
However, it encompasses the situation when the system escapes a predefined
set around the equilibrium. Thus the notion of instability that we use here is
non-local.
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Fig. 1. A model of loop power system. Small blue circles represent
synchronous generators. They operate in the AC loop network and are
connected to the infinite bus.

loop power system, we numerically present a phenomenon of
short-term swing dynamics leading to cascading failure of a
network of weakly interconnected power systems. The network
consists of multiple loop power systems, each of which is
used in the review part, coupled via weak transmission lines
in series. We study nonlinear swing equations for analysis
of short-term swing dynamics in the network. Numerical
simulation shows that CSI happens for all the loop systems
in a cascade manner. CSI in every system corresponds to its
transient instability and hence to a sub-system failure. Then
we investigate the cascading failure by projecting the full-
system dynamics onto phase planes of COA variables, thereby
describing the sequence of escape phenomena underlying in
the cascading failure. These escapes result from dynamic
interactions between loop systems. Thus we suggest that CSI
could be a part of the dynamical mechanism of cascading
failures in large-scale power systems.

II. A REVIEW OF COHERENT SWING INSTABILITY

In this section, we review the theory of Coherent Swing
Instability (CSI) using a loop power system. After introducing
the nonlinear swing equations (Sec. II-B), we present the
phenomenon and mechanism of CSI (Secs. II-C and II-D,
respectively). The contents of this section are submitted to
an archival journal [11].

A. A Model of Loop Power System

Consider the simple loop power system shown in Fig. 1.
The system consists of N identical generators, encompassed
by the dotted box, which operate in the AC loop network
and are connected to the infinite bus. We make the following
assumptions. (i) The generators are small, and the transmission
lines joining the infinite bus and a generator are much longer
than those joining two generators in the loop network. Thus
the magnitude of interaction of an individual generator with
the infinite bus is smaller than the magnitude of interaction
between any two generators. (ii) The lengths of transmission
lines between the infinite bus and individual generators are
identical. (iii) The lengths of transmission lines between
generators are identical. (iv) The power system is loss-less.
(v) The transformer inductance and synchronous reactance of

each generator are negligible. These assumptions enable us to
derive a simple mathematical model for analysis of CSI and
can be relaxed substantially, while still observing the same
phenomenon: see [9], [11], [12].

B. The Swing Equations

We introduce the equations of motion for the loop power
system. We denote by δi the angular position of rotor with
respect to the infinite bus of generators labeled with integer
values i = 1, . . . , N . The non-dimensional deviation of rotor
speed in generator i relative to the system angular frequency
(normally 2π × 50 rad/s or 2π × 60 rad/s) is denoted by ωi.
The short-term dynamics of generator i are represented by the
following nonlinear swing equations:

dδi

dt
= ωi,

dωi

dt
= pm − b sin δi − bint{sin(δi − δi−1)

+ sin(δi − δi+1)}.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1)

The loop connection of the generators induces the following
conditions:

δ0(t) = δN (t), δN+1(t) = δ1(t).

The parameters pm, b, and bint are constant in time and are
in per unit system. The constant pm is the mechanical input
power to a generator, b is the critical transmission power
between the infinite bus and a generator, and bint is the critical
transmission power between any two generators.

Now we simplify (1) in order to construct a mathematical
model of the phenomenon of interest, where the differences
between individual angular positions stay small for all time.
There are trajectories of (1) that stay on a two-dimensional
invariant manifold I in 2N -dimensional phase space of the
system, defined by the 2(N − 1) constraints δi = δi+1 and
ωi = ωi+1 for i = 1, . . . , N − 1. These are trajectories
with the common initial conditions δi(0) and ωi(0) for all
the generators. We investigate the dynamics of (1) close to
this invariant manifold. This is equivalent to the condition
that the differences δi(t) − δi+1(t) and ωi(t) − ωi+1(t) for
i = 1, . . . , N − 1 are sufficiently small. This allows us to use
the first-order approximation of the sinusoidal coupling term
bint{sin(δi−δi−1)+sin(δi−δi+1)} and to derive the following
system:

dδi

dt
= ωi,

dωi

dt
= pm − b sin δi − bint{(δi − δi−1)

+(δi − δi+1)}.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2)

The system (2) is an N degree-of-freedom Hamilto-
nian system with the following Hamiltonian function
H(δ1, . . . , δN , ω1, . . . , ωN ):

H =
N∑

i=1

ω2
i

2
−

N∑
i=1

{
pmδi + b cos δi − bint

2
(δi−1 − δi)2

}
.



In (2) the linear term is an approximation of the sinusoidal
characteristics in power transfer between nearest generators.
This approximation is physically valid under the above as-
sumption (i) that the length of transmission lines between near-
est generators is much shorter than that between the infinite
bus and an individual generator. That is, we have bint � b,
and the strong local coupling keeps the connected generators in
the loop network close in angular position and speed deviation.
Furthermore, the term pm − b sin δi represents the nonlinear
power-angle characteristics of each generator connected to the
infinite bus and suggests an inherent possibility of loss of
synchronism with the infinite bus. This nonlinearity is weak
for the above assumption (i) of small generators, that is,
pm, b � bint. Thus, we investigate coupled swing dynamics
in the power system with weak inter-system connection and
strong inter-machine one.

C. A Phenomenology

In this section, we present numerical simulations of coupled
swing dynamics represented by (2). The parameter settings for
(2) used throughout most of this paper are

pm = 0.95, b = 1, bint = 100, N = 20. (3)

The values of pm/bint = 0.0095 and b/bint = 0.01 are chosen
to satisfy the above physical assumptions that imply strong
linear coupling of generators and weak local nonlinearity
governing the dynamics of each individual generator. All
numerical integrations of the Hamiltonian system (2) were
performed using the symplectic integrator [26].

Note that if the condition pm < b holds, there are two global
equilibria of (2) at (δi, ωi) = (δc = sin−1(pm/b), 0), which is
a global energy minimum of elliptic type, and (π − δc, 0) of
the hyperbolic type. Let us consider a local disturbance given
by the following set of initial conditions, close to the elliptic
equilibrium:

(δi(0), ωi(0)) =

{
(−0.352, 0) for i = N/2,

(δc, 0) else.
(4)

Physically, generator N/2 is locally disturbed, while the other
generators are at their steady states, that is, the elliptic equilib-
rium. Fig. 2 shows sequential snapshots of angular positions δi

for coupled swing dynamics caused by the local disturbance.
The red points on the circle denote the angular positions of
N generators. At the initial time in Fig. 2(a), generator N/2
is disturbed, and its initial position δN/2(0) is denoted by the
lower red point, while all the other generators are at the same
position on the circle, denoted by the upper red point. In the
snapshots shown in Figs. 2(b)–(j), the angular positions of N
generators are in an intermediate regime of linear oscillations
around their steady states (these snapshots can be compared to
Fig. 3(a) where the average angle vs. time is plotted). These
oscillations are bounded and essentially linear. However, in
Figs. 2(j)–(n), they start to show coherent growth. Finally,
they grow unbounded in Figs. 2(n)–(t). The unbounded growth
indicates that all the generators lose synchronism with the

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 5

(e) t = 10 (f) t = 15 (g) t = 20 (h) t = 25

(i) t = 30 (j) t = 35 (k) t = 40 (l) t = 41

(m) t = 42 (n) t = 43 (o) t = 44 (p) t = 45

(q) t = 46 (r) t = 47 (s) t = 48 (t) t = 49

Fig. 2. Sequential snapshots of angular positions δi(t) for coupled swing
dynamics in the loop power system. Red points on the circle denote the angular
positions δi ∈ T

1 of N generators and move according to (2) from the initial
condition (4). At the initial time (a), generator N/2 is disturbed, and its
initial position δN/2(0) is denoted by the lower red point, while all the other
generators are at the elliptic equilibrium δi = δc, denoted by the circle ◦.
The symbol × on the circle denotes the position of the hyperbolic equilibrium
δi = π − δc.

infinite bus. This is the phenomenon that we call the Coherent
Swing Instability (CSI). It represents a dynamic transition from
a localized perturbation that initially causes linear multi-swing
(or inter-machine mode) oscillations and ultimately leads to
coherent loss of synchronism of the whole group of generators
with the infinite bus, that is, instability of inter-area mode
oscillation.

Note that in Fig. 2 we plot t in units of
√

2H/ωb where H is
the per-unit time constant of each machine, and ωb the system
angular frequency. For H = 10 s and ωb = 2π × (60Hz),
t = 50 is equal to 12 s in real time. Hence the onset time of
instability in Fig. 2 is within the short-term regime. Thus we
have discussed the terms that lead to linear oscillations and
loss of coherence at the end of the previous paragraph, and
connected them to descriptions of various types of instabilities
described in power systems literature.

D. The Mechanism

In this section, we summarize the dynamical mechanism of
CSI for the loop power system. After introducing collective
dynamics, we discuss the CSI in terms of escape phenomena



[22], [23] and dynamical systems close to internal resonance
[24].

1) Collective Dynamics and Escape Phenomenon: The
collective-phase variable δ and its time derivative ω for the
loop power system are defined as

δ =
1
N

N∑
i=1

δi, ω =
dδ

dt
=

1
N

N∑
i=1

ωi.

The variables are well known in power system stability anal-
ysis as the COA (Center-Of-Angle) [19] or COI (Center-Of-
Inertia) [1]. Time evolution of these variables, called collective
dynamics, of the loop system is given by

dδ

dt
= ω,

dω

dt
= pm − b

N

N∑
i=1

sin δi.

Fig. 3 shows examples of time evolution of collective-phase
variable δ and trajectory on δ–ω plane. The red line is for the
initial condition δN/2(0) = −0.352 and corresponds to the
CSI shown in Fig. 2. The blue line is for δN/2(0) = 0 and
does show to any instability. The two boxes (�) denote the
equilibria of the following system:

dδ

dt
= ω,

dω

dt
= pm − b sin δ. (5)

That is, the system represents local dynamics of single gen-
erator. It also describes dynamics on the two-dimensional
invariant manifold I. The variables (δ, ω) are regarded as
the local coordinates of this manifold. The system (5) with
|pm/b| < 1 has the saddle point (π− δc, 0) connected to itself
by the homoclinic orbit Γ0 as shown in Fig. 3(b).

Now we compare dynamics of the full system (2) projected
onto δ–ω plane with the dynamics of the system (5). For
the red trajectory showing the divergence in Fig. 3(b), the
intermediate linear oscillations in Figs. 2(b)–(j) appear as a
trapped motion inside Γ0, and the final coherent growth in
Figs. 2(j)–(q) appears as a divergence motion over Γ0. Trajec-
tories of (5) are bounded oscillations (librations) inside Γ0 and
never diverge, or always diverge outside of it. Therefore, the
homoclinic orbit Γ0 defines a boundary of stable region, and
we say that CSI occurs when a trajectory projected onto δ–ω
plane starts inside the region defined by Γ0, escapes it, and
diverges to infinity.

2) Escape Phenomenon and Resonance: We investigate the
escape phenomenon with dynamical systems theory close to
resonance. To do so, by using the normal mode and action-
angle variable transformations, we re-write (2) as

dIn

dt
= εFn(I1, . . . , IN−1, δ, θ1, . . . , θN−1),

dθn

dt
= Ωn + εGn(I1, . . . , IN−1, δ, θ1, . . . , θN−1),

dω

dt
= ε

(
p̃m − b̃

N

N∑
i=1

sin δi(I1, . . . , IN−1,

δ, θ1, . . . , θN−1)) ,dδ

dt
= ω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)
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Fig. 3. Collective dynamics of coupled swings in the loop power system
for the local disturbances δN/2(0) = 0 and −0.352: (a) t–δ curves and (b)
trajectories on δ–ω plane

The derivation of (6) is presented in [11]. The integer n ∈
{1, 2, . . . , N−1} stands for the label of N−1 linear oscillatory
modes under ε = 0. The variable In ∈ R

+ denotes the action
variable of the n-th linear mode, and θn ∈ T

1 its angle
variable. The angular frequency of the n-th mode is given
by Ωn = 2

√|bint|| sin(πn/N)|. The constant ε stands for the
perturbation parameter satisfying pm = εp̃m and b = εb̃, and
we choose its value such that the orders of magnitudes of
parameters Ωn, p̃m, b̃, and of functions Fn and Gn are the
same.

Consider the system (6) from a viewpoint of slow-fast
dynamics. Since the values of parameters pm and b are smaller
than bint, the perturbation parameter ε becomes small, and
the frequency Ωn becomes larger than the other parameters.
This clearly indicates that the CSI phenomenon occurs in
the dynamical system with one nonlinear mode that is weak
relative to linear oscillatory modes. Here the variables In and
ω are slow due to the presence of ε, and the variables θn are
fast. Here the remaining variable δ becomes semi-fast because
it changes fast except for the neighborhood of δ-axis, namely,
the set {(I1, . . . , IN−1, ω, θ1, . . . , θN−1, δ) ∈ (R+)N−1 ×
R × T

N =: X | ω = 0}. The set becomes the surface for
resonance of all orders2 in (6). The so-called resonant surface

2For k = (0, 0, . . . , 0, kN )T (for all kN ∈ Z \ {0}) and Ω(ω) =
(Ω1, . . . ,ΩN−1, ω)T, we have the resonance condition kTΩ(ω) = kNω =
0.



Fig. 4. A network of weakly interconnected loop power systems. The system
consists of the Ns = 4 loop power systems and weak transmission lines
joining them.

is a (2N − 1)-dimensional (codimension one) subspace in the
full phase space X. Now recall the red trajectory in Fig. 3
which describes the CSI. The trajectory starts on the resonant
surface and escapes from the region defined by Γ0. Thus we
say that the CSI occurs when a trajectory projected onto δ–ω
plane escapes from the resonant surface. Whether the escape
happens or not depends on initial conditions of (6). The region
of stability in which any trajectory does not escape is estimated
analytically [9], [11] and numerically [13].

III. COUPLED SWING DYNAMICS LEADING TO

CASCADING FAILURE

In this section, we study a phenomenon of short-term swing
dynamics leading to cascading failure in a network of weakly
interconnected loop systems. The system consists of multiple
loop power systems that are weakly coupled (Sec. III-A).
After introducing the swing equations (Sec. III-B), we present
coupled swing dynamics of the network and show that the
CSI happens for all of the loop systems in a cascade manner
(Sec. III-C). We analyze the cascading failure by projecting the
full-system dynamics onto the phase planes of COA variables
and describe simple dynamics underlying in it (Sec. III-D).
This section uses a relatively simple model of power systems
to analyze cascading failures. Detailed analysis using a realis-
tic model of power systems is submitted to an archival journal
[11].

A. A Model of Power Network

Consider the network of weakly interconnected power sys-
tems shown in Fig. 4. The system includes the Ns loop systems
and weak interconnections. We call each loop system as
the sub-system and suppose that each sub-system has the
equal specification of N synchronous generators and network
topology. The number N is supposed to be odd. The Ns

sub-systems are joined to each other in series via weak
interconnections. The bus on generator N/2+1 in sub-system
#i (i = 1, . . . , Ns − 1) and the bus on generator 1 in sub-
system #(i+1) are joined by a transmission line. For modeling
and analysis, we make the additional two assumptions. (vi)
The infinite bus is outside of the network, and it weakly and
equally interacts with every sub-system. (vii) The magnitudes
of interconnections between two sub-systems are the same and
are weak compared with those between generators within a
sub-system. Thus, we weakly interconnect the Ns sub-systems,
in each of which the N synchronous machines are strongly
connected.

B. The Swing Equations

We use the swing equations for analysis of coupled swing
dynamics. Under the assumptions (i)–(vii) the short-term
swing dynamics of generator j in sub-system #i (j = 1, . . . , N
and i = 1, . . . , Ns) are represented by

dδij

dt
= ωij ,

dωij

dt
= pm − b sin δij − bint{sin(δij − δi,j−1)

+ sin(δij − δi,j+1)}
−εbintgij(δi−1,N/2+1, δij , δi+1,N/2+1),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7)

where gij represents the coupling between sub-systems, given
by

gij =

⎧⎨
⎩

sin(δij − δi−1,N/2+1) for i �= 1, j = 1,
sin(δij − δi+1,N/2+1) for i �= Ns, j = N/2 + 1,
0 else.

The loop topology for each sub-system induces the following
conditions:

δi,0(t) = δi,N (t), δi,N+1(t) = δi,1(t),

where i = 1, . . . , Ns. The variable δij is the angular position of
rotor in generator j in sub-system #i with respect to the infinite
bus. The variable ωij is the non-dimensional deviation of rotor
speed in generator i relative to system angular frequency. The
parameters pm, b, bint, and N are the same as in the single loop
system. The parameter ε controls the magnitude of coupling
strength between sub-systems. The setting ε = 0 implies that
there is no coupling between sub-systems. We will fix ε at
a small value to explore the network of weak inter-system
connection and strong inter-machine one.

Now we simplify (7) in the same way as the single loop
system. Under the sufficiently small ε, in each sub-system
the differences between individual angular positions stay small
for all time. Thus we investigate the dynamics of each sub-
system close to the invariant manifold I. This allows us to use
the first-order approximation of the sinusoidal coupling term
bint{sin(δij − δi,j−1) + sin(δij − δi,j+1)} and to derive the
following system:

dδij

dt
= ωij ,

dωij

dt
= pm − b sin δij − bint{(δij − δi,j−1)

+(δij − δi,j+1)}
−εbintgij(δi−1,N/2+1, δij , δi+1,N/2+1).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8)

The system (8) has the nonlinearity in the local term and the
coupling term between sub-systems. We adopt (8) to analyze
short-term swing dynamics of the network in Fig. 4.

C. A Phenomenology

We numerically simulate coupled swing dynamics of the
N ×Ns generators. The parameter settings of pm, b, and bint

are the same as (3), and the parameters ε and Ns are set as
follows:

ε = 0.1, Ns = 4.



(a) t = 0

(b) t = 1

(c) t = 2

(d) t = 5

(e) t = 10

(f) t = 15

(g) t = 18

(h) t = 19

Fig. 5. Sequential snapshots of angular positions δij(t) for coupled swing
dynamics in the network of weakly interconnected loop power systems. At
the initial time (a), generator N/2 at sub-system #1 is disturbed, and its
initial position δN/2(0) is denoted by the lower blue point, while the other
generators are at the elliptic equilibrium δi = δc, denoted by the circle ◦.
The symbol × on the circle denotes the position of the hyperbolic equilibrium
δi = π − δc.

In this setting, the magnitude of interaction between machines
is larger than that between sub-systems. The magnitude of
interaction between sub-systems is larger than that of a gener-
ator with the infinite bus, characterized by pm and b. Note
that if the condition pm < b holds, there are two global
equilibria of (8) at (δi, ωi) = (δc, 0), which is a global energy
minimum of elliptic type, and (π − δc, 0). In the following,
we consider a local disturbance given by the following set of
initial conditions, close to the elliptic equilibrium:

(δij(0), ωij(0)) =

{
(−1.39, 0) for i = 1, j = 1,

(δc, 0) else.

(i) t = 20

(j) t = 21

(k) t = 22

(l) t = 23

(m) t = 24

Fig. 5. ( continued )

This initial condition physically implies a local disturbance
at generator 1 in sub-system #1. Fig. 5 shows sequential
snapshots of angular positions δij for coupled swing dynamics
caused by the local disturbance. The blue points on the circle
denote the angular positions of N generators in sub-system
#1, the green points for sub-system #2, the red points for
sub-system #3, and the cyan points for sub-system #4. The
local disturbance happens in sub-system #1. At the initial
time in Fig. 5(a), generator 1 is disturbed, and its initial
position δ1,1(0) is denoted by the lower blue point, while
the other generators are at the same position on the circle,
denoted by the upper points. In the snapshots of Figs. 5(b)–
(e), the angular positions of generators are in an intermediate
regime of bounded swings (these snapshots can be compared
to Fig. 6(a) where the average angle vs. time is plotted). In
this regime, the swings for sub-systems #2–#4 become smaller
than those for sub-system #1, because of the weakness of
interconnections. In Figs. 5(f)–(h) the angular positions for
sub-system #1, denoted by the blue points, grow coherently.
Finally, they grow unbounded in Figs. 5(i)–(m). After this,
following the coherent growth in sub-system #1, the angular
positions for sub-system #2, denoted by the green points, grow
coherently in Figs. 5(g)–(j) and finally grow unboundedly in
Figs. 5(k)–(m). In the same way, initiated by the cascade, the
angular positions for sub-system #3, denoted by the red points,
grow coherently in Figs. 5(j)–(m), and the angular positions for
sub-system #4, denoted by the cyan points, do in Figs. 5(k)–
(m). In this way, the cascade of coherent divergences continues
up to the last sub-system. The coherent divergence of each sub-
system corresponds to its transient instability and hence to a



sub-system failure. Fig. 5 demonstrates that one local and finite
disturbance causes coupled swing dynamics in the network and
initiates the cascade of sub-system failures.

D. The Mechanism

In the single loop system, we were able to capture the
motion of a hidden nonlinear mode by projecting the full-
system dynamics onto the phase plane of COA variables. We
investigate the cascade of sub-system failures using the notion
of COA. Here it is not effective to define the COA for the
full-system dynamics of N × Ns generators, because it does
not provide any insight of the interaction of different sub-
systems. In this case, we define the COA for each sub-system
i (i = 1, . . . , Ns) as

δi =
1
N

N∑
j=1

δij , ωi =
1
N

N∑
j=1

ωij , (9)

where δi is the COA of sub-system #i, and ωi its time
derivative. The variables describe the averaged motion of all
the generators in sub-system #i. Fig. 6 plots (a) the time
evolution of COA δi and (b) the trajectories of (8) on δi–
ωi planes which show the cascading dynamics in Fig. 5. In all
the sub-systems, the trajectories move in a similar way to the
escape phenomenon observed in Fig. 3(b). In sub-system #1,
the trajectory remains in the vicinity of δ1-axis for a while
and begins to diverge to the infinite. In sub-system #2, the
trajectory is kicked by the divergence of sub-system #1 and
finally diverges. We can see similar behaviors of trajectories
for sub-systems #3 and #4.

In order to investigate the collective dynamics in Fig. 6,
we present equations for the COA motions. The differential
equations of δi and ωi (i = 1, . . . , Ns) are derived in the
same way as in (5):

dδi

dt
= ωi,

dωi

dt
= pm − b

N

N∑
j=1

sin δij

−ε
bint

N
gi(δi−1,N/2+1, δi,1, δi,N/2+1, δi+1,1),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

where gi contains the interconnection terms gij , and the
magnitude is of order 1. In the current settings of parameters,
all the terms on the right-hand side of the differential equation
of ωi are of order 1 at most. The equations are close to (5)
and suggest that the COA motions of every sub-system can be
discussed with the analogy to single degree-of-freedom swing
equations with external excitations.

These observations give a dynamical mechanism of the
cascading failure in Fig. 5. In all of the sub-systems, the
dynamics are mainly governed by the dynamical system equiv-
alent to the loop power system in Sec. II and are perturbed by
weak external perturbations (of order εbint/N ) that originate
from the interaction with other sub-systems. Recall that in
the loop system, CSI occurs when a trajectory escapes from
the vicinity of the resonant surface corresponding to the set
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Fig. 6. Collective dynamics of coupled swings in the network of weakly
interconnected loop power systems: (a) t-δi curves and (b) trajectories on
δi–ωi planes. These plots correspond to the dynamics of Center-Of-Angle
(COA) variables (9).

{ω = 0}, namely, δ-axis. In sub-system #1, the trajectory
starts on δ1-axis and finally escapes it. This escape is initiated
by an external perturbation of interaction with sub-system #2.
Thus we can say that the divergent motion of COA in sub-
system #1 is the escape from resonance due to small and
temporal external perturbations. The dynamics of the other
sub-systems are essentially explained using a similar argument
of resonance. The sequence of escape phenomena results from
the interactions between sub-systems. Thus we can say that
the cascading failure in Fig. 5 occurs due to the sequence of
escape phenomena of the sub-systems consisting of the power
network.

IV. SUMMARY AND DISCUSSION

In this paper, we reported short-term swing dynamics lead-
ing to cascading failure in an interconnected power system.
The dynamics were observed for the network of multiple
loop power systems shown in Fig. 4. We numerically show
the cascade of Coherent Swing Instabilities (CSIs), which



have been studied in [9]–[13], in the power network. The
contribution of this paper is to give the dynamical mechanism
of cascading failure. The mechanism is the sequence of escape
phenomena in collective (center-of-angle or slow-coherent)
modes for every loop power system.

Cascading failures are fairly complicated phenomena
emerging in complex dynamical systems. It would be impossi-
ble to obtain a simple mechanism that can explain all dynamics
and events in cascading failures. For a power grid consisting of
many sub-grids, the instability reviewed in Sec. II describes
a failure of one sub-grid caused by transient instability. In
Sec. III we show that a sequence of sub-grid failures is induced
by a sequence of CSIs. Thus we suggest that CSI could be
a part of the dynamical mechanism of cascading failures in
power grids. The analysis which we performed here uses the
relatively simple model. Detailed analysis of the mechanism
using a realistic model of power systems is in an archival
journal paper [11].

It is often said that cascading failures happen since voltage
or frequency fluctuations cause unnecessary relay actions. This
is naturally modeled by a hybrid dynamical system. In [27]
the authors indeed use a hybrid model to analyze swing dy-
namics leading to the cascading failure in the September 2003
blackout in Italy. Analysis of the hybrid model shows that the
swing dynamics, especially desynchronization of individual
generators, result from a network switching with a simple relay
feedback control. In this paper, on the other hand, we describe
another scenario of swing dynamics leading to desynchroniza-
tion of individual generators without any network switching.
This is a counterexample to the standard argument as stated
in the beginning of this paragraph. Of course, the dynamic
phenomenon that we studied in this paper may be an extreme
example for cascading failures. Our mechanism of cascading
failures will need further research in real data on cascading
failures.
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