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Abstract

The cross grid encoder is a diffraction grating type encoder to measure two-dimensional
position of a optical head by using a grid plate, and is widely used in the industry
to evaluate the two-dimensional contouring performance of a machine tool. In the
graphical display of measured contouring error profiles, the error is often magnified
to some given scale with respect to the reference trajectory. The conventional algo-
rithm to compute the magnified contouring error profile, adopted in a commercial
software to analyze an error profile measured by the cross grid encoder, makes the
magnified trajectory discontinuous when the given reference trajectory is unsmooth,
which makes it difficult to understand the magnified trajectory especially at corners.
This paper proposes a new algorithm to compute the magnified trajectory of two-
dimensional contouring error profiles such that the magnified trajectory becomes
continuous even when the reference trajectory is unsmooth. Application examples
are presented with error profiles obtained by using a cross grid encoder applied to

a commercial machining center.
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1 Introduction

The international standards on the evaluation of static accuracies of
machining centers, such as the ones described in ISO 230-1 and 10791-1~4,
basically define the machine’s overall motion error as the accumulation of the
motion error of each axis. The positioning error, straightness errors, or angular
errors of each linear axis are independently measured, as well as the square-
ness error between two linear axes. On the other hand, accuracy calibration
tests for a coordinate measuring machine (CMM), defined in ISO 10360 series,
include error measurement with different concept. For a CMM, it is required
to directly evaluate its three-dimensional positioning errors at given locations
over the entire workspace by using, for example, the ball plate as an artefact.
In recent years, the evaluation of volumetric accuracy has been considered
more important even for machining centers, in order to ensure the motion
accuracy over the entire three-dimensional workspace [1]. Currently, ASME
B5 (TC52) and ISO 230 (TC39) are working on the standardization of the
definition of volumetric accuracy [2].

The cross grid encoder is a diffraction grating type encoder to measure
two-dimensional position of a optical head by using a grid plate where grids
are aligned orthogonal to each other. The configuration of one of commercially
available cross grid encoders, the KGM series by Dr. Johannes Heidenhain
GmbH, is illustrated in Fig. 1 [3]. The cross grid encoder can measure the
contouring error in the two-dimensional (2D) plane for an arbitrary reference
trajectory. It is widely used in the accuracy calibration of robot manipula-
tors [4] or machine tools [5]. Various types of other two-dimensional position
encoders have been also proposed in the literature (e.g. [6]).

Since the 2D contouring error of a machine tool is generally much smaller
in relative to the travelling distance, in its graphical display, the error is often
magnified to some given scale with respect to the reference trajectory. Sup-
pose that the given reference trajectory is represented by R, and that the
actual position of the target measured by using a cross grid encoder is given
by p(k) € R* (k =1,---,N). In commercial software to display 2D contouring

errors, the magnification of contouring error is typically done by applying the



following simple algorithm (starting from & = 1):

(1) For the actual position p(k), find the nearest point, #(k), on the reference
trajectory, R.

(2) For the given magnification constant, 7 € R, plot the point at the location
(k) +n- (p(k) — 7(k)).

(3) k — k + 1 and repeat from (1).

It is easy to see that this simple algorithm fails to make the magnified
error trajectory continuous, when the reference trajectory is not smooth. As
an illustrative example, consider the case where the reference trajectory is
given as a square corner. The algorithm above is illustrated in Fig. 2. Since
the point, 7(k), “jumps” at the point where p(k) is in the same distance from
both edges, it is clear that the magnified trajectory cannot be continuous at
any unsmooth corners.

To further illustrate this issue, its application examples to experimental
data are shown. When the reference trajectory is given as a square corner
as shown in Fig. 3(a), the two-dimensional contouring error of a commercial
vertical-type machining center is measured by using the cross grid encoder,
KGM182 by Heidenhain. Figure 3(b) shows the measured trajectory of the
spindle position within the small region shown in Fig. 3(a) (no magnification
is made). It can be observed that there is a contouring error of about 60 pm at
maximum at the corner, followed by a slight overshoot. Although it is easy on
Fig. 3(b) to intuitively understand the measured error profile at this corner,
this plot can only show a very small region. When it is needed to display the
entire error trajectory, this plot is not suitable. The magnified plot, obtained
by applying the conventional algorithm above, is shown in Fig. 3(c). It shows a
“jump” due to the discontinuity of the magnified trajectory at the corner. As a
result, it is very difficult to intuitively understand from this plot if there is an
undershoot or an overshoot at the corner. ACCOM EN 2.8 [7], a commercial
software by Dr. Johannes Heidenhain GmbH to be used with the KGM series
for the data acquisition and the visual display of its measured profiles, gives

the same plot.



Another example given in Fig. 4(a) shows an error profile measured ex-
perimentally by using the same cross grid encoder for the reference trajectory
composed of segments and arcs [5] . Similarly, there are jumps due to the
discontinuity of the magnified trajectory at all the corners. It is practically
not possible to observe how the actual trajectory looks like at these corners.

Another potentially critical problem with the conventional magnification
occurs when the reference trajectory is given as a series of small segments.
When the reference trajectory contains a free-form curve, its NC program is
typically given as a series of small straight segments. Figure 5(a) shows the
magnified error profile measured experimentally by using the same cross grid
encoder. The entire reference trajectory is given as a series of small straight
segments of the length 0.1 mm. When the region indicated in Fig. 5(a) is
zoomed in as shown in Fig. 5(b), it can be observed that the magnified profile
has many “loops.” Similarly as the jumps observed at corners, these loops
indicate the discontinuity of the magnified profile.

To address these issues, this paper presents a new algorithm to compute

the magnified trajectory of two-dimensional contouring error profiles.

2 Proposed algorithm to magnify contouring error profiles and its
application examples

Suppose that the reference trajectory is represented by R, and the mea-
sured position profile of the target is given by p(k) € R* (k = 1,---,N). The
proposed algorithm to magnify the contouring error of the profile, p(k), with

respect to the reference trajectory, R, is given as follows:

(1) Generate two contour-parallel trajectories by offsetting the reference tra-
jectory, R, to both sides of the trajectory by the given distance, § € R.
This operation can be written by:

Q; = offset (R, —9)
Q, = offset (R, +9) (1)

where the function “offset(R,z)” represents the computation of the tra-

jectory that is generated by parallel offsetting the trajectory R by the



distance x.

(2) Starting from k = 1, find the point, G(k), on either of the offset trajecto-
ries, @; and Q,, which is the closest to the point, p(k).

(3) Compute the intersection point, 7(k), of the line connecting p(k) and G(k)
and the reference trajectory R.

(4) Plot the point at the location p(k) := 7(k) +n (p(k) — 7(k)), where n € R

is the given magnification constant. £k — k + 1 and repeat from (2).

For the computation of contour-parallel offsets, there have been numerous
research efforts to build algorithms with higher robustness and smaller com-
putational complexity [8]. In this paper, we adopt the algorithm developed by
Held [9] to compute parallel offsets based on the Voronoi diagram.

As an illustrative example, Figure 6 shows the schematics of the proposed
magnification applied to error trajectories at convex and concave corners. Un-
like the conventional algorithm, in the square region of the size d x § at the
corner, the error trajectory is magnified in a radial direction. As a result, the
magnified trajectory becomes continuous even when the reference trajectory
is unsmooth.

Note that the parameter, §, must be set such that it is sufficiently larger
than the maximum contouring error. Also note that as the parameter, ¢, is
larger, the region where the error profile is magnified to the radial direction
becomes larger, as illustrated in Fig. 6.

The proposed algorithm is applied to three examples of the magnifica-
tion of experimental error profiles presented in Section 1. Figure 3(d) shows
the magnified error trajectory computed by applying the proposed algorithm
to the same experimental profile shown in Fig. 3(c). Unlike Fig. 3(c), the mag-
nified profile is continuous, and it can be observed that there is an undershoot
of the magnitude about 60 pym at maximum at the corner, followed by an
overshoot of the magnitude about 3 pum. Figure 4(b) shows the magnified er-
ror trajectory by applying the proposed algorithm to the same experimental
profile shown in Fig. 4(a). Similarly, an overshoot at all the three corners can

be more clearly observed. Figure 5(c) shows the case with the same experi-



mental profile shown in Fig. 5(a). As can be observed in the zoomed-in view
in Fig. 5(d), there is no “loop” in the magnified error trajectory.

As illustrated in these examples, the proposed magnification exaggerates
the error at a corner as a “spike,” which may lead the misunderstanding of
error geometry. It is to be noted that in the circular test, which is widely ac-
cepted in the industry for the calibration of machine tools, the “stick motion,”
or the quadrant glitch, one of the most common contouring errors observed
in a circular test caused by the friction at quadrant changes [10], is observed
as a spike in the magnified error plot. We expect that spikes observed in the

proposed magnification can be similarly understood by an operator.

3 Conclusion

The proposed algorithm makes the magnified trajectory of two-dimensional
contouring error profiles continuous, even when the reference trajectory is un-
smooth. Especially at corners, and when the reference trajectory is given by a
series of minute segments, the proposed algorithm can generate the magnified
error trajectory that is much easier to intuitively understand than the one
generated by the conventional algorithm. Application examples to error pro-
files experimentally obtained by using a cross grid encoder on a commercial

machining center clearly indicate the effectiveness of the proposed algorithm.
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Fig. 1. A schematic view of a cross grid encoder [3].
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