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Abstract

This paper is concerned with the fast-lifting approach to H∞ analysis and design of sampled-
data systems, and extends our preceding study on modified fast-sample/fast-hold (FSFH) ap-
proximation, in which the direct feedthrough matrix D11 from the disturbance w to the con-
trolled output z was assumed to be zero. More precisely, this paper removes this assumption
and shows that a γ-independent H∞ discretization is still possible in a nontrivial fashion by
applying what we call quasi-finite-rank approximation of an infinite-rank operator and then
the loop-shifting technique. As in the case of D11 = 0, the modified FSFH approach retains
the feature that both the upper and lower bounds of the H∞-norm or the frequency response
gain can be computed, where the gap between the upper and lower bounds can be bounded
with the approximation parameter N and is independent of the discrete-time controller. This
feature is significant in applying the new method especially to control system design, and this
study indeed has a very close relationship to the recent progress in the study of control system
analysis/design via noncausal linear periodically time-varying scaling. The significance of a key
lemma pertinent to the fast-lifting approach is suggested in connection with such a relationship,
and also with its application to time-delay systems.

Key words: fast-lifting, H∞ discretization, quasi-finite-rank approximation, loop-
shifting.

1 Introduction

It is essential for the analysis and design of sampled-data systems that we deal with the intersample
behavior of continuous-time signals as it is. There exist studies on the techniques for such treatment,
e.g., the lifting technique (Bamieh and Pearson, 1992; Tadmor, 1992; Toivonen, 1992; Yamamoto,
1994; Yamamoto and Khargonekar, 1996), the FR-operator technique (Araki et al., 1996), the
parametric transfer function approach (Rosenwasser and Lampe, 2000). These techniques can
be regarded as methods for manipulating infinite-dimensional operators in the definitions of the
H∞-norm and the frequency response gain of sampled-data systems and then reducing the infinite-
dimensional analysis or design problems to finite-dimensional ones in an exact fashion.

On the other hand, an approximation approach called fast-sample/fast-hold (FSFH) approxi-
mation (Yamamoto et al., 1999) was also proposed, in which the approximation error is assured to
converge to zero as the approximation parameter N tends to infinity. A somewhat similar approach
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called modified FSFH approximation was also proposed in Hagiwara and Umeda (2008) based on
what is called the fast-lifting technique (Hagiwara, 2006). This latter approach also discretizes the
continuous-time generalized plant in an approximate but γ-independent fashion as in the former
conventional FSFH approximation approach1 and leads to a discrete-time generalized plant with a
similar structure to what is obtained by the former. In contrast to the former, however, the latter
allows us to obtain both the upper and lower bounds of the H∞-norm or the frequency response
gain of sampled-data systems. The study by Hara et al. (1995) also possesses the same feature
and advantage, but the upper bound and the lower bound are obtained by different computations,
and the upper bound seems rather loose in general. Thus, it is not very suitable for control system
design. In the modified FSFH approximation approach, on the other hand, the gap between the
upper and lower bounds can be evaluated in advance for each fixed approximation parameter N .
This feature is very important particularly in control system design, and thus modified FSFH ap-
proximation can be said to provide useful features that are not present in the conventional FSFH
approximation and in the method by Hara et al. (1995). In other words, the modified FSFH ap-
proximation approach provides a promising direction toward a rigorous and less conservative study
on robustness of sampled-data systems. This observation is particularly supported by the close
relationship, suggested in the recent study (Hagiwara and Umeda, 2007), between modified FSFH
approximation and the novel technique for robustness studies called noncausal linear-periodically
time-varying (LPTV) scaling. Both techniques depend heavily on the fast-lifting technique, which
enables us to go far beyond the theoretical results that are attained by the conventional FSFH
approximation technique.

As opposed to the conventional FSFH approximation, however, the arguments about the mod-
ified FSFH approximation developed in Hagiwara and Umeda (2008) was based on the assumption
that the direct feedthrough matrix from the disturbance input w to the controlled output z, de-
noted by D11, in the sampled-data system is zero. This leads to restriction on the admissible class
of systems in H∞ analysis and design, and moreover, the admissible class of uncertainties when
we extend our arguments on modified FSFH approximation to sampled-data system analysis and
design with respect to uncertainties. The novel study on noncausal LPTV scaling (Hagiwara and
Umeda, 2007) is indeed intended for dealing with such uncertainties in a less conservative fashion
with solid theoretical bases. Thus, removing the assumption D11 = 0 in the arguments on modified
FSFH approximation is definitely an important research topic with a significant extended research
direction, yet it is not straightforward in view of the arguments developed in the preceding study
(Hagiwara and Umeda, 2008).

To get around the difficulty, this paper applies the well-known loop-shifting technique, but the
arguments are nontrivial. This is because the loop-shifting generally leads to a γ-dependent gener-
alized plant, so that simply applying the loop-shifting technique on the continuous-time generalized
plant leads to a loss of one of the most important features of the modified FSFH approximation.
Moreover, such γ-dependency will make it hard to extend the technique to the context of noncausal
LPTV scaling. Thus we develop a method for circumventing the problem by working on what we
call fast-lifted frequency response operators (Hagiwara and Umeda, 2008) and then carrying out
some special factorizations of matrices represented as operator compositions (a key lemma in Sec-
tion 3.2). The significance of this lemma is suggested also in connection with noncausal LPTV
scaling (Hagiwara and Umeda, 2007) and time-delay system analysis/design (Hagiwara, 2008),

1γ-independent discretization is such a discretization method that is required to be carried out only once inde-
pendently of the H∞ performance level γ. On the other hand, γ-dependent discretization is a standard method (e.g.,
Bamieh and Pearson (1992)), which is required to be carried out every time γ changes in the so-called γ-iteration
process.
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which shows that the scope of its possible applications is not limited to the problem dealt with in
this paper.

The contents of this paper are as follows. Section 2 reviews the lifting-based transfer operators
and frequency response operators of sampled-data systems. In Section 3, we introduce a key
technique for the modified FSFH approximation called fast-lifting, and give an extension of the H∞-
discretization method by taking nonzero D11 into consideration. Here, a key lemma is introduced
to support the arguments, and its significance on other problems is also suggested. In Section 4,
we give a numerical example and demonstrate the effectiveness of the new method, and Section 5
concludes the paper.

2 Lifting-Based Transfer Operators and Frequency Response Op-
erators

We collect in this section some definitions and fundamental results pertinent to the lifting technique
(Bamieh and Pearson, 1992; Tadmor, 1992; Toivonen, 1992; Yamamoto, 1994; Yamamoto and
Khargonekar, 1996).

Let us consider the sampled-data system Σ shown in Fig. 1, in which P represents the continuous-
time linear time-invariant (LTI) generalized plant, while Ψ , S and H represent the discrete-time
LTI controller, the ideal sampler and the zero-order hold, respectively, all operating at the sampling
period h. Suppose that P and Ψ are described by

dx

dt
= Ax + B1w + B2u, z = C1x + D11w + D12u, y = C2x (1)

and

ψk+1 = AΨψk + BΨyk, uk = CΨψk + DΨyk (2)

respectively, where yk := y(kh), u(t) = uk (kh ≤ t < (k + 1)h). We assume that x(t) ∈ Rn,
u(t) ∈ Rm, w(t) ∈ Rl and z(t) ∈ Rp, and that Σ is internally stable. Let us define xk := x(kh)
and denote by {ŵk}∞k=0 and {ẑk}∞k=0 the lifted representations of w(t) and z(t), respectively, with
the sampling period h (i.e., ŵk(θ) = w(kh + θ)). Now, let us denote by Kµ, or sometimes just by
K for simplicity, the Hilbert space (L2[0, h))µ of square integrable µ-dimensional vector functions
over the time interval [0, h) with the standard inner product. We assume that ŵk ∈ Kl and thus
ẑk ∈ Kp. The lifted representation of the system Σ is given by

ξk+1 = Aξk + Bŵk, ẑk = Cξk +Dŵk (3)

-w
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Figure 1: Sampled-data system Σ .
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with the matrix A and the operators B, C, D defined appropriately, where ξk := [xT
k , ψT

k ]T . Based
on this representation, the lifting-based transfer operator of the sampled-data system Σ is defined
by

Ĝ(ζ) = C(ζI −A)−1B +D (4)

and the frequency response operator is defined as Ĝ(ejϕh), ϕ ∈ I0 := (−ωs/2, ωs/2], where ωs :=
2π/h. Furthermore, the frequency response gain and the H∞-norm of Σ are defined respectively
as

‖Ĝ(ejϕh)‖ = supbw∈K ‖Ĝ(ejϕh)ŵ‖K
‖ŵ‖K , ‖Ĝ(ζ)‖∞ = max

ϕ∈I0

‖Ĝ(ejϕh)‖ (5)

where ‖ · ‖K denotes the norm on K.
The operator D in (4) can be represented as D = D110 + D11(= D11), where the first term on

the right-hand side is the Hilbert-Schmidt operator given by

D110 : Kl 3 w 7→ z ∈ Kp, z(θ) =
∫ θ

0
C1exp{A(θ − σ)}B1w(σ)dσ (6)

and the second term is the operator of multiplication by the matrix D11; in this paper, we use the
same symbol for the underlying matrix and the associated operator of multiplication for notational
simplicity, but they can be easily distinguished from the context. The definitions of A, B and C are
omitted due to limited space; they are found in Bamieh and Pearson (1992); Tadmor (1992); Toivo-
nen (1992); Yamamoto (1994); Yamamoto and Khargonekar (1996) but are not required explicitly
in the following, and we just mention that A involves the matrices

Ad := exp(Ah), B2d :=
∫ h

0
exp(Aσ)B2dσ, C2d := C2 (7)

3 Modified Fast-Sample/Fast-Hold Approximation for D11 6= 0

In this section, we give an extension of the modified FSFH approximation method (Hagiwara and
Umeda, 2008) with nonzero D11 taken into account, and show that the frequency response gain and
the H∞-norm can still be evaluated to any degree of accuracy with a discretized generalized plant
that is derived in a γ-independent fashion. A lemma on operator compositions provided in this
section plays a significant role in the derivation, and it is suggested that this lemma is quite useful in
the sense that it also plays a crucial role in the extended arguments on noncausal LPTV scaling of
sampled-data systems (Hagiwara and Umeda, 2007), and also in time-delay system analysis/design
with the fast-lifted monodromy operator approach (Hagiwara, 2008).

3.1 Application of the Fast-Lifting Technique and Quasi-Finite-Rank Approxi-
mation

We first introduce the fast-lifting operator LN (Hagiwara, 2006; Hagiwara and Umeda, 2008), which
plays a key role in modified FSFH approximation. For positive integers N and µ, let us define
h′ := h/N and (L2[0, h′))µ =: K′µ (which we sometimes denote K′ for simplicity). For x ∈ Kµ, we
define x(i) ∈ K′µ (i = 1, · · · , N) by

x(i)(θ′) := x((i− 1)h′ + θ′) (0 ≤ θ′ < h′) (8)
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Then, we define x̌ := [(x(1))T · · · (x(N))T ]T , and refer to the mapping from x ∈ Kµ to x̌ ∈ (K′µ)N

as fast lifting. We denote it by x̌ = LNx. It obviously follows from the definition of LN that

‖LN Ĝ(ejϕh)L−1
N ‖ = ‖Ĝ(ejϕh)‖ (9)

where the left-hand side of (9) is defined as the induced norm on K′ in a parallel fashion to (5).
We call LN Ĝ(ejϕh)L−1

N the fast-lifted frequency operator, and we study how to compute its norm,
as suggested by (9). To that end, we first recall that an explicit representation of the fast-lifted
frequency operator has been shown in Hagiwara and Umeda (2008) for the case of D11 = 0, which
we briefly review as follows.

First, as a result of applying fast-lifting to Ĝ(ejϕh) and thus to D = D110, there arises the
operator D′

110, which is nothing but D110 given by (6) with the underlying horizon [0, h) replaced by
[0, h′) (′ is used for the same meaning in the following). Then, to get around the difficulty stemming
from the infinite-rank nature of D′

110 and reduce the problem to finite-dimensional computations,
this operator was approximated by the finite-rank operator of the form M′

1XB′
1, where B′

1 and
M′

1 are the operators defined by

B′
1 : w 7→

∫ h′

0
exp{A(h′ − σ)}B1w(σ)dσ (10)

M′
1 :

[
x
u

]
7→ z′, z′(θ′) = [C1 D12] exp

([
A B2

0 0

]
θ′

)[
x
u

]
(11)

and X is a matrix introduced for the approximation purpose, which we determine later. We denote
the approximation error by

E′ = D′
110 −M′

1XB′
1 (12)

Then, the fast-lifted frequency response operator was shown to be represented by

LN Ĝ(ejϕh)L−1
N = M′

1ZN (ejϕh)B′
1 + E′ (13)

where E′ is defined as E′ = diag[E′, · · · ,E′] consisting of N copies of E′ and the operators B′
1 and

M′
1 are also defined in a parallel way; the notation (·) will be used in the same meaning throughout

the paper, not only for operators but also for matrices. The matrix ZN (ζ) in (13), on the other
hand, is given by

ZN (ζ) :=




I
...

(A′2d)
N−1


Z(ζ)[ (A′d)

N−1 · · · I ] +




X 0 · · · · · · 0

J
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

(A′2d)
N−2J · · · · · · J X




(14)

with X in (12), J := [I, 0]T and A′d, A′2d, Z(ζ) defined by

A′d := exp
(
Ah′

)
, A′2d := exp

([
A B2

0 0

]
h′

)
, Z(ζ) :=

[
I 0

DΨC2d CΨ

]
(ejϕhI−A)−1

[
I
0

]
(15)

Now, let us return to the case with D11 6= 0. In this case, we still apply the same approximation
to D′

110 = D′
11−D11. This leads to approximating the infinite-rank operator D′

11 by M′
1XB′

1+D11,
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which we call quasi-finite-rank approximation of D′
11, since D11 is generally of infinite rank. Then,

(13) only changes by D11 so that

LN Ĝ(ejϕh)L−1
N = M′

1ZN (ejϕh)B′
1 + D11 + E′ (16)

Applying the triangle inequality to (16), it follows that

‖M′
1ZN (ejϕh)B′

1 + D11‖ − γN ≤ ‖Ĝ(ejϕh)‖ ≤ ‖M′
1ZN (ejϕh)B′

1 + D11‖+ γN (17)

with γN given by

γN := ‖E′‖ = ‖E′‖ (18)

Since γN = ‖E′‖ ≤ ‖E′‖HS, we also have similar inequalities with γN replaced by ‖E′‖HS, where
‖ · ‖HS denotes the Hilbert-Schmidt norm. There exist methods for finding the matrix X in (12)
minimizing ‖E′‖ or ‖E′‖HS (Hagiwara et al., 2001; Mirkin and Palmor, 2002; Hagiwara and Umeda,
2008), together with the resulting norm of E′. In the minimization, dealing with ‖E′‖HS is much
simpler and seems numerically more reliable, and this is why we also consider ‖E′‖HS. In any case, it
is shown in Hagiwara et al. (2001) and Hagiwara and Umeda (2008) that ‖E′‖ → 0 and ‖E′‖HS → 0
as N →∞ (h′ → 0) under optimal approximation. This implies that ‖M′

1ZN (ejϕh)B′
1 +D11‖ gives

a value that is close enough to the frequency response gain if N is large enough.

3.2 Computation of ‖M′
1ZN(ejϕh)B′

1 + D11‖
The key result of the present paper is to show that ‖M′

1ZN (ejϕh)B′
1 + D11‖ can be computed

exactly if we introduce an appropriate discretized system. When D11 = 0, it follows immediately
that M′

1ZN (ejϕh)B′
1 + D11 is a finite-rank operator, and the computation reduces to a finite-

dimensional problem by a standard technique, leading to a discretized system. This essentially was
the contribution of our preceding paper (Hagiwara and Umeda, 2008). When D11 6= 0, however,
the computation becomes nontrivial. To get around the difficulty, we begin with a preliminary
result on operator compositions, which plays a crucial role in this paper.

Lemma 1 Let Fll ∈ Rl×l, Flp ∈ Rl×p and Fpp ∈ Rp×p be arbitrary matrices, and let us consider
the matrices B′

1Fll (B′
1)
∗, B′

1FlpM′
1 and (M′

1)
∗
FppM′

1 defined as the operator compositions with
the operators B′

1 and M′
1 together with the operators of multiplication by the matrices Fll, Flp and

Fpp. Then, these matrices can be equivalently represented as matrix products in such a way that
the underlying matrices Fll, Flp and Fpp are left explicitly. More specifically, we have

B′
1Fll (B′

1)
∗ = W ′ (Fll ⊗ Is) (W ′)T

B′
1FlpM′

1 = W ′ (Flp ⊗ Is) V ′

(M′
1)
∗
FppM′

1 = (V ′)T (Fpp ⊗ Is) V ′
(19)

In the above, ⊗ denotes the Kronecker product, and the matrices W ′ := [W ′
1, · · · ,W ′

l ] and V ′ :=
[(V ′

1)
T , · · · , (V ′

p)T ]T and the positive integer s are defined from the factorization

[
K ′ J ′

(J ′)T L′

]
=:




W ′
1

...
W ′

l

(V ′
1)

T

...(
V ′

p

)T




[
(W ′

1)
T · · · (W ′

l )
T V ′

1 · · · V ′
p

]
,

W ′
α ∈ Rn×s (α = 1, · · · , l), V ′

β ∈ Rs×(n+m) (β = 1, · · · , p) (20)
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where

K ′ :=
∫ h′

0
exp

{
A

(
h′ − σ

)}
b1 bT

1 exp
{
AT

(
h′ − σ

)}
dσ (21)

L′ :=
∫ h′

0
exp

(
A2

T σ
)
mT

1 m1 exp (A2σ) dσ (22)

J ′ :=
∫ h′

0
exp

{
A

(
h′ − σ

)}
b1 m1 exp (A2σ) dσ (23)

with A and A2 defined as A := Il⊗A and A2 := Ip⊗
[
A B2
0 0

]
, respectively, and b1 and m1 defined

as the column and row expansions of B1 and [C1 D12], respectively. That is,

b1 :=




b11
...

b1l


 , m1 := [ c11 d121 · · · c1p d12p ] (24)

where

B1 =: [ b11 · · · b1l ], [ C1 D12 ] =:




c11 d121
...

...
c1p d12p


 (25)

Proof. It is easy to see that
[

K ′ J ′

(J ′)T L′

]
can be represented as an integral of a nonnegative

definite matrix function, so that the factorization (20) is feasible.
Now, we only prove the first equation in (19); the other two equations can be proved similarly.

Let us denote the (α, β) entry of Fll by f
(ll)
αβ where α, β = 1, · · · , l. Then it follows from (10) and

(25) that

B′
1Fll(B′

1)
∗ =

∫ h′

0
exp

{
A(h′ − σ)

}



l∑

α=1

l∑

β=1

f
(ll)
αβ b1αbT

1β


 · exp

{
AT (h′ − σ)

}
dσ

=
l∑

α=1

l∑

β=1

f
(ll)
αβ K ′

αβ (26)

with K ′
αβ defined by

K ′
αβ =

∫ h′

0
exp

{
A(h′ − σ)

}
b1αbT

1β exp
{
AT (h′ − σ)

}
dσ (27)

Since K ′
αβ is the submatrix at the α-th block column and β-th block row of K ′ given in (21), it

follows from (20) that K ′
αβ = W ′

α(W ′
β)T and hence (26) leads to

B′
1F11(B′

1)
∗ =

[
W ′

1 · · · W ′
l

]



f
(ll)
11 Is · · · f

(ll)
1l Is

...
. . .

...
f

(ll)
l1 Is · · · f

(ll)
ll Is







(W ′
1)

T

...
(W ′

l )
T


 = W ′ (Fll ⊗ Is) (W ′)T (28)
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This is nothing but the first equation in (19). Q.E.D.

By applying the loop-shifting technique and using Lemma 1, we can obtain the following re-
sult about the computation of ‖M′

1ZN (ejϕh)B′
1 + D11‖. It is somewhat related to the results in

Braslavsky et al. (1998) but is much more general and entirely different in that a general distur-
bance w and a general controlled output z are considered and thus Lemma 1 plays a crucial role,
apart from the fast-lifting context here.

Proposition 1 Let us define

ΦN (ζ) := V ′ZN (ζ)W ′ + D11 ⊗ Is (29)

Then, we have

‖M′
1ZN (ejϕh)B′

1 + D11‖ = max
(
‖D11‖, ‖ΦN (ejϕh)‖

)
(30)

Proof. We first show that for any γ such that γ > ‖D11‖, the condition

‖M′
1ZN (ejϕh)B′

1 + D11‖ < γ (31)

is equivalent to the condition ‖ΦN (ejϕh)‖ < γ. Once this claim is established, the proposition fol-
lows readily from the well-known fact (Yamamoto and Khargonekar, 1996) that ‖M′

1ZN (ejϕh)B′
1 +

D11‖ ≥ ‖D11‖, ∀ϕ ∈ I0.
To establish the above claim, we first note that (31) is equivalent to the condition

γ2I − (M′
1ZN (ejϕh)B′

1 + D11)∗(M′
1ZN (ejϕh)B′

1 + D11) > 0 (32)

Here, we define the Hermitian matrix E (> 0) as follows.

E := γ2
(
γ2I −DT

11D11

)−1
(33)

Following the well-known technique of the loop-shifting, we multiply E1/2 from left and right of
(32), which leads to the equivalent condition

γ2I − E1/2
{(

D11

)∗
M′

1ZN (ejϕh)B′
1 +

(
B′

1

)∗
ZN (ejϕh)

∗ (
M′

1

)∗
D11

+
(
B′

1

)∗
ZN (ejϕh)

∗ (
M′

1

)∗
M′

1ZN (ejϕh)B′
1

}
E1/2 > 0 (34)

or equivalently,

γ2I −Y1Y2 > 0 (35)

with

Y1 :=
[

E1/2D∗
11 M′

1 E1/2
(
B′

1

)∗
E1/2

(
B′

1

)∗ ]

Y2 :=




ZN (ejϕh)B′
1 E1/2

ZN (ejϕh)∗
(
M′

1

)∗
D11E1/2

ZN (ejϕh)∗
(
M′

1

)∗
M′

1ZN (ejϕh)B′
1 E1/2


 (36)
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Since Y1Y2 is obviously a compact operator (in fact, a finite-rank operator), the condition (35)
is equivalent to the condition that the eigenvalues of γ2I −Y1Y2 are all positive (e.g., Ito et al.
(2001)). They are all positive if and only if the eigenvalues of γ2I−Y2Y1 are, and thus we consider
Y2Y1 instead; Y2Y1 is actually a matrix and can be computed by applying Lemma 1. In fact,
since we have

B′
1 E

(
B′

1

)∗
=

(
W ′E1/2 ⊗ Is

)(
E1/2 ⊗ Is

(
W ′)T

)
(37)

B′
1 ED∗

11 M′
1 =

(
W ′E1/2 ⊗ Is

)(
E1/2DT

11 ⊗ Is V ′
)

(38)

(
M′

1

)∗
D11ED∗

11 M′
1 =

((
V ′)T

D11E1/2 ⊗ Is

)(
E1/2DT

11 ⊗ Is V ′
)

(39)

(
M′

1

)∗
M′

1 =
(
V ′)T

V ′ (40)

by Lemma 1, we see that

Y2Y1 = Y2Y1 (41)

with the matrices

Y1 :=
[

E1/2DT
11 ⊗ Is V ′ E1/2 ⊗ Is

(
W ′)T

E1/2 ⊗ Is

(
W ′)T

]

Y2 :=




ZN (ejϕh)W ′E1/2 ⊗ Is

ZN (ejϕh)∗
(
V ′)T

D11E1/2 ⊗ Is

ZN (ejϕh)∗
(
V ′)T

V ′ZN (ejϕh)W ′E1/2 ⊗ Is


 (42)

Note that Y1 and Y2 are nothing but Y1 and Y2 with the operators B′
1 and M′

1 replaced by the
matrices W ′ and V ′ respectively and the operators E1/2 and D11E

1/2 replaced by the matrices
E1/2 ⊗ Is and D11E

1/2 ⊗ Is respectively. Since the eigenvalues of γ2I −Y2Y1 = γ2I − Y2Y1 are
all positive if and only if those of γ2I − Y1Y2 are and since Y1Y2 is a Hermitian matrix, we readily
have the equivalent condition γ2I − Y1Y2 > 0. If we write down Y1Y2 explicitly, it is easy to see
that this condition is nothing but (34) with the same replacement as above. Hence, it is easy to
see that multiplying E−1/2 ⊗ Is from left and right leads to the equivalent condition

γ2I −
(
V ′ZN (ejϕh)W ′ + D11 ⊗ Is

)∗ (
V ′ZN (ejϕh)W ′ + D11 ⊗ Is

)
> 0 (43)

which naturally has a form of (32) with the same replacement of B′
1 and M′

1 as above, together
with the replacement of the operator D11 with the matrix D11 ⊗ Is. Hence, by the definition of
ΦN (ζ), the claim has been established. Q.E.D.

3.3 γ-Independent H∞-Discretization

We are now ready to give a γ-independent H∞-discretization method via modified FSFH approx-
imation; the following arguments are mostly the same as those in the case of D11 = 0 (Hagiwara
and Umeda, 2008), but are given explicitly to make the discussions clearer.
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It follows by (14) and the definitions of W ′ and V ′ that ΦN (ζ) in (29) can be rewritten as

ΦN (ζ) =
[

V1N V2N

]
Z(ζ)WN + ∆ND (44)

with WN , V1N , V2N and ∆ND given by

WN :=
[

(A′d)
N−1 W ′ · · · W ′

]
,

[
V1N V2N

]
:=




V ′
...

V ′ (A′2d)
N−1


 (45)

∆ND := ∆N + D11 ⊗ Is (46)

respectively; in the above, ∆N is given by

∆N :=




V ′XW ′ 0 · · · · · · 0

V ′
AW ′ . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0

V ′
A (A′d)

N−2 W ′ · · · · · · V ′
AW ′ V ′XW ′




(47)

with V ′
A defined by partitioning V ′ into V ′ = [V ′

A, V ′
B] according to the partitioning of A′2d in (15).

Now, let us consider the discrete-time system shown in Fig. 2 with the discrete-time generalized
plant ΠN given by

xk+1 = Adxk + WNρk + B2duk, υk = V1Nxk + ∆NDρk + V2Nuk, yk = C2dxk (48)

Then, it can be seen that the discrete-time transfer matrix from ρ to υ is equal to ΦN (ζ) defined
in (29). Thus, ‖M′

1ZN (ejϕh)B′
1 + D11‖ can be evaluated exactly with the discrete-time frequency

response gain ‖ΦN (ejϕh)‖ by Proposition 1. Taking account of the inequality (17), together with
the fact that ‖D11‖ ≤ ‖Ĝ(ejϕh)‖,∀ϕ ∈ I0 (Yamamoto and Khargonekar, 1996), we readily obtain
the following main result that gives the γ-independent H∞-discretization method for the case of
D11 6= 0 with modified FSFH approximation.

Theorem 1 Consider the discrete-time system shown in Fig. 2, where ΠN is given by (48) with
X determined appropriately, and let γN be defined by (12) and (18). Then, with the closed-loop
transfer matrix ΦN (ζ) from ρ to υ, we have the following inequalities for the frequency response
gain and H∞ norm of the sampled-data system Σ in Fig. 1.

max (‖D11‖, ‖ΦN (ejϕh)‖ − γN ) ≤ ‖Ĝ(ejϕh)‖ ≤ max (‖D11‖, ‖ΦN (ejϕh)‖) + γN , ∀ϕ ∈ I0 (49)

max (‖D11‖, ‖ΦN (ζ)‖∞ − γN ) ≤ ‖Ĝ(ζ)‖∞ ≤ max (‖D11‖, ‖ΦN (ζ)‖∞) + γN (50)

-
ρ

ΠN

-υ

y

¾Ψ

-u

Figure 2: Discrete-time system Σd.
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Remark 1 The matrix X is usually chosen to minimize either ‖E′‖ or ‖E′‖HS. See the last
paragraph of Section 3.1 (also recall that γN ≤ ‖E′‖HS); the above inequalities ensure that the
method is asymptotically exact in the sense that the H∞-norm and the frequency response gain can
be computed to any degree of accuracy by choosing N that is large enough. In the context of designing
the H∞ controller Ψ for the sampled-data system Σ, on the other hand, the above theorem still
implies that we can simply deal with the H∞ controller design problem for the discrete-time system
Σd in Fig. 2. This is because the H∞ norm of the sampled-data system Σ cannot be less than ‖D11‖
whatever Ψ we may take, so that we always assume that γ > ‖D11‖ in the H∞ design ‖Ĝ(ζ)‖∞ < γ.
Hence, it follows from the proof of Proposition 1 that the H∞ controller design minimizing the H∞-
norm of Σd is equivalent to minimizing maxϕ∈I0 ‖M′

1ZN (ejϕh)B′
1+D11‖, which in turn is equivalent

to minimizing the upper bound of ‖Ĝ(ζ)‖∞ that follows readily from (17). Since γN is independent
of the controller Ψ, the minimization of ‖Ĝ(ζ)‖∞ can be carried out within the error by γN with
the discrete-time system Σd, where the only point is that the necessary condition γ > ‖D11‖ must
be imposed explicitly in the γ-iteration process with Σd.

Remark 2 When X is determined to minimize ‖E′‖HS, we have

‖ΦN (ejϕh)‖ ≤ ‖Ĝ(ejϕh)‖ ≤
(
‖ΦN (ejϕh)‖2 + ‖E′‖2

HS

)1/2
, ∀ϕ ∈ I0 (51)

provided that D11 = 0 (Hagiwara and Umeda, 2008), which gives sharper evaluation than (49) with
γN replaced by ‖E′‖HS. A parallel result, however, seems hard to derive when D11 6= 0 since the
existence of nonzero D11 prevents us from developing an orthogonality argument, which plays a
crucial role in the derivation of (51) under D11 = 0.

Remark 3 The discretized generalized plant (48) is similar to that given in Hagiwara and Umeda
(2008) under the assumption D11 = 0, and at a glance, the appearance of the second term on
the right-hand side of (46) might look the only difference. This, however, is not the case; when
D11 = 0, the matrices W ′ and V ′ are given simply by the Cholesky factors of the matrices B′

1(B
′
1)
∗

and (M′
1)
∗M′

1, respectively, so that we do not have to consider the coupling between the operators
B′

1 and M′
1 and thus Lemma 1 is irrelevant. The existence of D11 6= 0, on the other hand, leads

to such coupling as well as other more involved operator compositions, for which Lemma 1 plays a
crucial role. The resulting W ′ and V ′ are thus different from those in the case D11 = 0 in spite of
the same notations.

The operator D11 6= 0 is noncompact and whatever sort of finite-rank approximation one may
apply to D11 alone, the approximation error cannot be less than ‖D11‖. Hence, such an approach
always fails to give an asymptotically exact result. In this sense, no simple interpretation will be
possible even as to the reason why D11 appears in ΠN only in the second term on the right-hand
side of (46); at least, this term is not a result of some independent finite-rank approximation of the
operator D11 alone. As such, the treatment of D11 6= 0 in this paper is a nontrivial extension of
the previous result under the assumption D11 = 0 (Hagiwara and Umeda, 2008).

3.4 Significance of Lemma 1 in Other Problems

The idea of employing such key relations as in Lemma 1 is actually closely related to the technique
employed in the recent studies on analysis and design of sampled-data systems (Hagiwara and
Umeda, 2007) called noncausal linear periodically time-varying (LPTV) scaling (Hagiwara, 2006),
which is developed under the framework of the fast-lifting technique. Indeed, roughly speaking,
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we can establish that under the general setting D11 6= 0, the optimization problem of noncausal
LPTV scaling for less conservative treatment of uncertainties can be reduced to that of conventional
LTI scaling applied to the discrete-time system Σd in Fig. 2 with the same discretized generalized
plant ΠN as that derived in this paper (the details of the arguments will be reported elsewhere
independently). This implies that the use of Lemma 1 leads to a more general result than our
preceding study (Hagiwara and Umeda, 2008) under the assumption D11 = 0 on modified FSFH
approximation, in the sense that the generalized result can be viewed as a sort of unified result on
unscaled treatment and noncausally scaled treatment. In arriving at such a unified result, Lemma 1
plays a key role since, when D11 = 0 under which Lemma 1 can be dispensed with (see Remark 3),
the resulting H∞-discretization based on modified FSFH approximation (Hagiwara and Umeda,
2008) is different from the discretized generalized plant used for optimizing noncausal LPTV scaling
(Hagiwara and Umeda, 2007), except for a special case (see Remark 1 of Hagiwara and Umeda
(2008) for details). In other words, applying the conventional LTI scaling on the H∞-discretization
based on modified FSFH approximation derived under the assumption D11 = 0 (Hagiwara and
Umeda, 2008) cannot lead to any theoretically rigorous treatment about robustness studies. The
unified result mentioned above derived through Lemma 1 can be regarded as successfully filling
such a gap (possibly at a sacrifice of increasing computational load when D11 = 0).

As a side remark, we mention that Lemma 1 is very important also in the fast-lifted monodromy
operator approach to time-delay systems recently developed in Hagiwara (2008) when an infinite-
dimensional operator Lyapunov inequality is reduced to a finite-dimensional LMI problem via fast-
lifting. Various types of operator compositions arise in the reduction process, for which Lemma 1
plays a crucial role.

4 Numerical Example

In this section, we give a numerical example of H∞ analysis with modified FSFH approximation, and
demonstrate its effectiveness in comparison with the conventional FSFH approximation (Yamamoto
et al., 1999). For sampled-data systems with D11 = 0, however, the new method introduced in this
paper is essentially equivalent to the one proposed in Hagiwara and Umeda (2008) (except for those
differences described in Remarks 2 and 3), and the effectiveness has already been verified there.
Thus, we consider a slightly modified numerical example of Hagiwara and Umeda (2008) so that
D11 becomes nonzero. More precisely, let us consider the continuous-time system shown in Fig. 3
(Anderson and Moore, 1990) so that we have z = [w − u, y]T and thus D11 = [1, 0]T , where the
plant G(s) and the controller Cr(s) are given respectively by

G(s) =
1
s2
· (s/a + 1)

∏1
i=0{(s/ωi)

2 + 2ζi (s/ωi) + 1}∏4
i=2{(s/ωi)

2 + 2ζi (s/ωi) + 1}

a = 4.84, ζ0 = 0.02, ζ1 = −0.4, ζ2 = ζ3 = ζ4 = 0.02,

ω0 = 1, ω1 = 5.65, ω2 = 0.765, ω3 = 1.41, ω4 = 1.85

Cr(s) =
0.0513s3 + 0.00424s2 + 0.0296s + 0.00157
s4 + 0.693s3 + 0.779s2 + 0.293s + 0.0739

We then discretize the controller Cr(s) by the Tustin transformation with h = 8, and consider the
sampled-data system shown in Fig. 4. We analyze its H∞-norm from w to z. As in Hagiwara and
Umeda (2008), we determine the matrix X minimizing the Hilbert-Schmidt norm ‖E′‖HS with the
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Table 1: H∞-norm analysis.
N 1 2 3 4 5

conv. FSFH 102.8916 111.2174 110.8725 111.1307 111.4949
mod. FSFH (upper) 112.0104 111.9774 111.9771 111.9771 111.9771
mod. FSFH (lower) 111.9437 111.9768 111.9770 111.9771 111.9771

||E′||HS 0.0334 2.7891× 10−4 3.1299× 10−5 1.0757× 10−5 5.4312× 10−6

Table 2: Comparison of the computation time.
N 1 2 3 4 5

conv. FSFH 0.060 0.070 0.070 0.070 0.070
mod. FSFH 0.080 0.090 0.100 0.110 0.110

method of Hagiwara et al. (2001) and evaluate the H∞-norm based on (50) with γN replaced by
‖E′‖HS. All computations are executed with MATLAB on a PC with Pentium 4, 3.0GHz.

Table 1 shows the results of H∞ analysis by the conventional and modified FSFH approximation.
The exact value of the H∞-norm obtained by the γ-dependent exact discretization method is
111.9771, so the modified FSFH approximation can be seen to give accurate enough upper and
lower bounds of the H∞-norm at N = 4, while the conventional FSFH approximation (Yamamoto
et al., 1999) gives 111.9757, which is not satisfactorily accurate, even at N = 100.

Table 2 shows the computation time in seconds required for the computations about Table 1.
For the same value of N , the modified FSFH approximation method takes much more time because
the resulting discrete-time system has larger numbers of input and output than in the conventional
FSFH approximation method. However, the conventional method takes about three times as much
time (i.e., 0.32 seconds) even at N = 100 that is still small for accurate computations.

From the above arguments, we can see that the modified FSFH approximation method is a more
effective method for H∞ analysis of sampled-data systems in the sense of accuracy and efficient
computation, compared with the conventional FSFH approximation method. Our experience with
other examples also supports this observation as in the case with D11 = 0 (Hagiwara and Umeda,
2008).

5 Conclusion

In this paper, we gave a method for H∞-discretization through the fast-lifting technique, which we
call modified FSFH approximation. This method can lead to a γ-independent discretized general-

-w f+ - G(s) -
z

q

¾
y

Cr(s)u

6−
q

-

Figure 3: Continuous-time control system.

-w f+ - G(s) -
z

q

¾
y

S¾Ψ¾H
u

6−
q

-

Figure 4: Sampled-data system with controller
discretization.
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ized plant even for the case with nonzero D11, while the preceding study in Hagiwara and Umeda
(2008) only dealt with the case of D11 = 0. The method developed in this paper is a nontriv-
ial generalization of the previous result as discussed in Remark 3 and the paragraphs that follow
this remark, and special factorizations of matrices defined as operator compositions (Lemma 1)
played a crucial role in the derivation, together with other techniques such as quasi-finite-rank
approximation of an infinite-rank operator and the loop-shifting technique.

The method given in this paper still possesses similarity to the conventional FSFH approxima-
tion method (Yamamoto et al., 1999) in the structure of the resulting discretized generalized plant
and in the respect that the discretization is ensured to be asymptotically exact as the approxima-
tion parameter N is made larger. A distinctive advantage of the modified FSFH approximation
method over the conventional FSFH method, however, is that the former can give both the upper
and lower bounds of the approximation error in terms of N . Since these bounds are independent of
the discrete-time controller, the modified FSFH method is more suitable for control system design
with guaranteed performance. In this respect, some relationship of the arguments of this paper to
the recent study on control system analysis/design via noncausal linear periodically time-varying
(LPTV) scaling (Hagiwara, 2006; Hagiwara and Umeda, 2007) was also suggested. Simply speak-
ing, the discretized generalized plant derived with our modified FSFH approximation technique
allows us to apply a discrete-time scaling on it. This corresponds exactly to applying noncausal
LPTV scaling on the original sampled-data system, which leads to a technique for reducing con-
servativeness in robust stability analysis and design with respect to uncertainties, provided that
some appropriate modified error analysis is combined with it. Even though our technique leads to
increase in the number of inputs and outputs as in the conventional FSFH technique, ours leads to
such increase in such a way that we can benefit from theoretically rigorous and practically effective
results in analysis and design to a quite essential extent in the above sense. Such reduction in con-
servativeness seems quite hard to achieve without resorting to the fast-lifting approach developed
in this paper. Regarding such further theoretical benefit from the fast-lifting approach, it was also
mentioned that a key result, Lemma 1, of this paper is quite useful in different research topics such
as time-delay systems (Hagiwara, 2008).
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