Title

Multi-modal 19F NMR probe using perfluorinated cubic silsesquioxane-coated silica nanoparticles for monitoring enzymatic activity.

Author(s)

Tanaka, Kazuo; Kitamura, Narufumi; Naka, Kensuke; Chujo, Yoshiki

Citation

Issue Date

2008-12-14

URL

http://hdl.handle.net/2433/123366

Right

Chem. Commun., 2008, pp.6176-6178 - Reproduced by permission of The Royal Society of Chemistry (RSC); この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。This is not the published version. Please cite only the published version.

Type

Journal Article

Textversion

author

Kyoto University
Multi-Modal 19F NMR Probe Using Perfluorinated Cubic Silsesquioxane-Coated Silica Nanoparticles for Monitoring Enzymatic Activity

Kazuo Tanaka, a Narufumi Kitamura, a Kensuke Naka, b and Yoshiki Chujo * a

Received (in XXX, XXX) 1st January 2007, Accepted 1st January 2007
First published on the web 1st January 2007
DOI: 10.1039/b000000x

The manuscript describes the establishment of the 19F NMR signal regulation and the application of this strategy to develop the multi-modal 19F NMR probe for monitoring enzymatic activity using nanoparticles as a signal regulator. Water-soluble perfluorinated cubic silsesquioxane was synthesized and immobilized onto the silica nanoparticles for suppressing the signals. 19F NMR signals of the probes were recovered by releasing from nanoparticles.

Magnetic resonance imaging (MRI) is one of the powerful diagnostic tools as a noninvasive diagnosis method, and through the use of the contrast agents, site- and time-selective information can be received. 19F MRI using fluorinated compounds as the contrast agents has recently gathered attentions because less existence of endogenous fluorine atom gives the high signal to noise ratio in the images. In addition, several groups have reported functional 19F NMR probes which can detect the enzymatic activity or the environmental alteration by changing of their signal heights or chemical shifts. Furthermore, fusion of multiple information has been increasingly required for improving the diagnosis accuracy, thus molecular imaging probes for next generation should equip the multimodality.

The accumulation of an equal fluorine group is essential for improving the sensitivity of the 19F NMR signals, however, perfluorinated compounds would exhibit extremely poor water-solubility. One way to solve these problems is to use cubic octameric polyhedral oligomeric silsesquioxanes (POSS) as a scaffold for the accumulation of fluorine atoms. POSS are highly-water-soluble nanoblocks, and it has been reported that POSS could form the compact structure compared to the same generation of poly(amido)amine dendrimers. These characteristics can be beneficial for the accumulation of the probe molecules with high density to improve sensitivity.

Herein, we report the regulation system of 19F NMR signals for monitoring bioreactions based on the water-soluble perfluorinated POSS-coated silica nanoparticles (NPs). The enzymatic reaction can be monitored by the enhancement of 19F NMR signals. In addition, we develop the multi-modal probe with dual detection of fluorescence and 19F NMR. This is the first example that the NPs can be used for the NMR signal regulation.

The chemical structures and synthesis of the water-soluble perfluorinated POSS (F-POSS) using octaammonium POSS as a starting material are shown in Scheme 1. F-POSS has trifluoroacetyl groups as the 19F NMR signal moiety. The major product was identified with modified POSS containing POSS-TFA from MALDI-TOF-MS measurements. The solubility of F-POSS in PBS (pH = 7.5) at 25 °C was at least 10 mM (120 mM F atom concentration), and the significant peak broadening following the decrease of sensitivity was not observed by adding to BSA (1 mg/mL) or the pH altering between pH 5 to 9. In addition, the degradation of F-POSS was not observed after 24 h incubation at 37 °C in the presence of proteinase K. The detection limit was determined to be 10 μM using 19F NMR spectrometer with a 20 mm surface coil at 9.4 T. These results suggest that F-POSS could provide clear 19F NMR signals without loss of sensitivity caused by unexpected interactions in vivo.
The reaction yields were monitored with 31P NMR and calculated by the fitting on the standard curve.

Scheme 2

![Scheme 2](image)

Fig. 1 Time-course of the enzymatic reaction. F-POSS-coated silica NPs (1.5 mg) were incubated in 500 µL of the reaction solutions containing AP (5 U) (square dots) and non-containing AP (circular dots) in 50 mM sodium phosphate, 25 mM Tris–HCl, and 0.05 mM EDTA (pH = 7.0) at 37 °C. The reaction yields were monitored with 19F NMR and calculated by the fitting on the standard curve.

Fig. 2 (a) 19F NMR spectra of F-POSS-coated silica NPs in diameter of 150 nm containing fluorescein-5(6)-carboxylic acid in enzymatic hydrolysis with AP. (b) The fluorescence image was taken using a transilluminator (365 nm) through a 480-nm long pass emission filter.

Scheme 2 illustrates the strategy for the regulation of 19F NMR signals. In a solid state, the sensitivity of NMR signal was decreased by the acceleration of transverse relaxation time and the anisotropy of the spin toward the external magnetic fields. On silica NPs, the molecular rotation of the perfluorinated POSS should be highly restricted, and the NMR signals from the probe can be decreased. After releasing the probe triggered by an enzymatic reaction, the NMR signals are recovered. Therefore, the enzyme activity can be detected by the enhancement of the signal intensity of 19F NMR.

NPs in the range of 20 nm to 400 nm in diameter show tumor-selective integration known as the enhanced permeability and retention (EPR) effect. In addition, the silica NPs can be attached with the fluorophores, and these fluorescent NPs displayed good feasibility for in vivo imaging because of photo-stability and less toxicity. We prepared amino-coated silica NPs averaging 150 nm and 280 nm in diameter containing or non-containing the fluorophores with the Stöber method. Amino groups on F-POSS were covalently linked to the amino groups on the silica NPs via the phosphodiiminate linker which can be cleaved by the enzymatic digestion of alkaline phosphatase (AP). A class of AP is generally existing in the cell cytoplasm or surface in the whole body, and they can digest phosphodiester analog without specificity. Thus, in combination with the EPR effect, the monitoring system of the AP activity could be a new method for the early cancer diagnosis.

The reaction mixture containing F-POSS and triethylamine in chloroform was added to phosphorus oxychloride at room temperature, and subsequently the amino-coated silica NPs were suspended in the mixture in one pot. The reaction was monitored by ninhydrin reagents for checking the consumption of the amino groups on the NPs. After purification with centrifuges and drying, we confirmed from dynamic light scattering that unexpected aggregation of the modified NPs was not formed after modification with F-POSS, and the diameters of synthetic NPs were determined from the TEM images. From the fitting to the standard curve on 19F NMR signal intensity, it was estimated that 100 (± 20) nmol / mg of F-POSS was immobilized onto the silica NPs. Undesired decomposition of the probe less occurred by the proteinase K treatment or the pH alteration between pH 5 to 9.

The reactivity of the F-POSS-coated silica NPs with AP was investigated. Initially, the modified NPs averaging 150 nm in diameter were used. The reaction mixtures containing 3 mg / mL of the modified NPs (300 µM F-POSS) and AP in 50 mM sodium phosphate and 100 mM Tris–HCl buffer (pH = 7.0) were incubated at 37 °C, and 19F NMR signals of the mixture were monitored (Figure 1). The signal was linearly increasing and stopped after 12 h incubation ($t_{1/2} = 6.2$ h). In the absence of the enzyme, NMR signal was hardly detected even after 24 h incubation. In the case of 280 nm diameter of the NPs, the rate of the signal intensity was similar extent as those of 150 nm ($t_{50} = 6.0$ h). These results indicate that the 19F NMR signals could be obtained independently on the size of NPs. The time-scale of these reactions might be adequate to obtain the EPR effect due to the prevention from non-specific digestion of the NPs during the transportation.

We demonstrated the multimodal detection with fluorescence and 19F NMR for the enzymatic activity. Time course of 19F NMR signals of the F-POSS-modified silica NPs containing fluorescein-5(6)-carboxylic acid is shown in Figure 2a. AP activity induced a signal enhancement after 3 h incubation, and the signal intensity was saturated after 12 h incubation. This result corresponds with the data shown in Figure 1. Fluorescence emission from fluorescent silica NPs was constantly observed during reactions without...
photobleaching (Figure 2b). These data suggest that the fluorescence can be used as a reference to zero for scanning the distribution of the probes and estimating the absolute intensity of 19F NMR signal.13 Although the sensitivity of the probe for acquiring clear signals in the 19F NMR spectra was lower than that for the fluorescence image, our system could have a possibility to improve sensitivity by employing POSS-core dendrimers for incorporating the larger number of fluorine atoms into the probe.

In conclusion, we describe here a novel 19F NMR probes using perfluorinated POSS, and the enzymatic activity can be monitored by the enhancement of their 19F NMR signals. Using the fluorescent NPs, the dual detection with 19F NMR and fluorescence was accomplished potentially for the simultaneous monitoring of the enzymatic activity and the biodistribution. Though there remains room to optimize reactivity or to evaluate the toxicity and the biodistribution in living animals, our system could be applied to the sensing of not only pH via hydrolysis but also other kinds of enzymes such as nucleases and proteases by the modification with the linker. In addition, a detection modality can be added by the modulation of the material of NPs. It is expected that this strategy is helpful for designing new generation of molecular imaging probes.

This study was conducted as a part of the project, "R&D of Molecular Imaging Equipment for Malignant Tumor Therapy Support," supported by NEDO (New Energy and Industrial Technology Development Organization). We thank Prof. Y. Tsuji and Dr. T. Fujiwara for the measurement of 19F NMR. We thank Prof. M. Nagao and Ms. M. Chujo for the MTT assay. We thank Prof. I. Hamachi and Mr. S. Fujishima for taking the fluorescence images.

Notes and references

1 Department of Polymer Chemistry
Graduate School of Engineering, Kyoto University
Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)
Fax: (+81) 75-383-2605
E-mail: chujo@chujo.synchem.kyoto.ac.jp
2 Department of Chemistry and Materials Technology
Graduate School of Science and Technology
Kyoto Institute of Technology
Sakyo-ku, Kyoto 606-8585 (Japan)
3 Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x