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Abstract

A macro-mechanical cantilever array is newly proposed for experimental investiga-

tions of intrinsic localized mode (ILM). There has never reported such a macro-

system which show ILMs mechanically. The array consists of cantilevers, electro-

magnets faced on the cantilevers, elastic rods for coupling between cantilevers, and a

voice coil motor for external excitation. Nonlinearity appears in the magnetic inter-

action, that is, the restoring force of cantilever. Therefore it is tunable. In the array,

ILMs are experimentally generated by the sinusoidal forced excitation. Observed

ILMs are also identified in the model equation for the array.
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1 Introduction

Energy localization phenomena are known as soliton for continuum media and

intrinsic localized mode (ILM) for discrete media [1]. ILM, also called discrete

breather (DB), appears as a spatially localized and temporally periodic solu-

tion in coupled differential equations with nonlinearity. ILM has been studied

for various nonlinear coupled oscillators since it was analytically discovered

by Sievers and Takeno [2]. Experimental observations have been appeared

in this decade. ILM is identified in Josephson-junction arrays [3–5], optic

wave guides [6,7], photonic crystals [8], micro-mechanical cantilever array [9],

mixed-valence transition metal complexes [10,11], antiferromagnets [12], and

electronic circuits [13]. These experiments directly suggest the phenomenolog-

ical universality of ILM. In addition, it is expected to apply ILM to micro- or

nano-devices for sensing and actuating applications because of scale in length

of the experimental systems. In particular, cantilever structures are widely

used in microscopic devices [14]. Then ILM in a micro-cantilever array has a

potential to be utilized for sensors and actuators which have high sensitivity

and accuracy.

To realize such applications, detail dynamical behaviors of ILM has to be in-

vestigated. Moreover, a control scheme is necessary, especially for actuating

applications. That is, ILM has to be generated, moved, and destroyed as de-

sired. A manipulation involving position control for ILM has been realized

by M. Sato [15,16]. In the research, ILM is manipulated in a micro-cantilever

array by a localized impurity. Therefore, the position of ILM can be controlled

dynamically by adding an impurity.
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To establish the control scheme, it is necessary to clarify a mechanism of the

manipulation. In addition, experimental investigations are needed to confirm

the clarified mechanism. For the purpose, the macro-system is useful to confirm

the dynamics and the principles of the control method. Then a macro-system

is proposed as an analogous dynamical model to the micro- or nano-system,

so that the dynamical behaviors can be discussed experimentally.

One of the good analogous models is a magneto-elastic beam system [17–

19]. The experimental model has a similar equation of motion to the micro-

cantilever array in which ILMs were observed. In the model, permanent mag-

nets are placed to adjust the on-site nonlinearity. If the magnetic field is ad-

justable at each site, it will be possible to add on release an impurity. So we

designed a macro-mechanical cantilever array having tunable electro-magnets

based on the magneto-elastic beam system. In this letter, we are going to

show a model of the macro-mechanical cantilever array to investigate the

micro-cantilever array fabricated by M. Sato. In the system, ILMs are ex-

perimentally observed and the existence is also confirmed in the numerical

simulations of model. Through the experiments and numerical simulation, it

becomes possible to discuss the method of controlling ILMs for future appli-

cations.

2 Macro-mechanical cantilever array

A schematic configuration of the macro-mechanical cantilever array is shown in

Fig. 1. Eight cantilevers are arranged with an equal interval in one dimension.

Size of the array are shown in Table 1. As shown in Fig. 1, each cantilever

has a permanent magnet (PM) at its apex. An electromagnet (EM) is placed
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below the PM with an appropriate gap. The magnetic force between the PM

and the EM can approximately be described by Coulomb’s law for magnetic

charges. The interaction force shows nonlinear relationship to the displacement

of cantilever. The configuration of magnetic charges is shown in Fig. 1(c). If

the displacement of cantilever is sufficiently small relative to the length of

cantilever, Coulomb’s law for magnetic charges gives the force

F (un) =
mpme

4πµ0

un

(u2
n + d2

0)
3
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=χ(IEM)
un

(u2
n + d2

0)
3
2

,

(1)

where mp and me correspond to the magnetic charge of PM and EM, respec-

tively. The distance between PM and EM is denoted by d0 at the equilibrium

state. The magnetic permeability is represented by µ0. Because the magnitude

of me depends on the current flowing in the EM, the interaction coefficient

χ(IEM) can be represented as a function of current. In this letter, we assume

the linear relationship χ(IEM) = χ0 + χ1IEM. Because an EM has a ferro-

magnetic core, a force acting between PM and EM is attractive even if the

current is kept to be zero. Thus χ0 is always negative. On the other hand, the

current direction decides the sign of χ1IEM. We choose the current enhancing

the attractive force is positive, so that χ1 is also negative.

As for a small vibration of a single cantilever, the Euler-Bernoulli beam theory

can be applied when the cantilever is thin in thickness. The partial differential

equation gives the relationship between spatial modes and temporal frequen-

cies. However, we are going to focus on the first mode at which amplitude

at the tip is the largest in the cantilever. The frequency of the first mode is

the lowest resonant frequency of the cantilever. At the first mode oscillation,

motion of the tip is depicted by an ordinary differential equation. The motion
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of the tip is equivalent to a spring-mass system having a natural frequency,

ω0, which corresponds to the first mode frequency.

The coupling rod causes a coupling force depending on the difference of dis-

placement of adjacent cantilevers. The force linearly changes against the dif-

ference of displacement if the deformation of the rod is sufficiently small. As

shown in Fig. 1(a), the rod is attached near the support. The displacement

of cantilever at the rod is quite small relative to the amplitude of tip vibra-

tion. Thus we can assume the linearity of the coupling force. Therefore, the

equation of motion of the coupled cantilever array is depicted as follows:

ün = − ω2
0un − γu̇n + F (un) + A cos (ωt)

− C (un − un+1) − C (un − un−1) ,

n ∈ {1, . . . , 8},

(2)

where γ denotes a damping coefficient of each cantilever. The fourth term in

the right hand side of Eq. (2) represents the time-periodic external force ex-

cited by the voice coil motor. Both ends of array are fixed. Then the boundary

conditions are given by,

u0 = 0, u̇0 = 0,

u9 = 0, u̇9 = 0.

(3)

Parameters are listed in Table 2.

The experimental setup is shown in Fig. 2. The displacement of each cantilever,

un, is measured by using a strain gauge and bridge circuit. The EM is excited

by the current through the current amplifier, which input is fed by the voltage-

current converter and the D/A converter. The voice coil motor is individually

driven by sinusoidal voltage signal generated by a function generator.
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Table 1

Size of cantilever array

Length 70.0 mm Width 5.0 mm

Thickness 0.3 mm Pitch 15.0 mm

Density 8.0 × 103 kg/m3 Young’s modulus 197 GPa

Table 2

Parameter settings

Symbol Value Symbol Value

ω0 2π×35.1 rad/s γ 1.5 s−1

C 284 s−2 χ0 4.71 × 10−5 m3/s2

d0 3.0 mm χ1 9.14 × 10−3 m3/s2A

A 3.0 m/s2 ω 2π×36.1 rad/s

3 Observation of localized oscillations

3.1 Single cantilever

Restoring force of each cantilever varies in nonlinear because of the nonlin-

earity of magnetic interaction between PM and EM. Fig. 3 shows the rela-

tionship between amplitude and frequency for γ = 0, A = 0, namely skeleton

curves. The curves asymptotically approach to the line of natural frequency of

cantilever according to the increase of amplitude. Because the effect of mag-

netic interaction decreases as the amplitude becomes large against diameter

of the EM. The frequency at small amplitude strongly depends on the current

flowing in the EM. The linearization of Eq. (2) gives a resonant frequency
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Fig. 1. Schematic configuration of cantilever array. (a) Overview of the cantilever

array. Eight cantilevers are mechanically coupled by a coupling rod. The voice coil

motor vibrates the cantilever array. (b) Side view of a cantilever. A permanent

magnet is attached at the apex of the cantilever. An electromagnet is placed below

the permanent magnet. (c) Definition of magnetic charges.
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Fig. 2. Experimental setup.

ω′
0 =

√
ω2

0 − (χ0 + χ1IEM)/d3
0. In this letter, χ0 and χ1 are negative. Thus, the

resonant frequency shifts to the high frequency side as the current increases.

The curvature of the skeleton curves shows a soft-spring characteristic.

Experimental frequency responses clearly show a hysteresis response against

the external force as shown as Fig. 4. The amplitude of a cantilever rapidly

increased at 38.3 Hz in the up-scan. However, in the down-scan, the amplitude

jumped down at 35.9 Hz. It implies that the single cantilever has two stable

states for 35.9 Hz < ω/2π < 38.3 Hz. To excite a localized oscillation, the
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Fig. 3. Skeleton curves. Each curve is obtained numerically.
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Fig. 4. Frequency response for IEM = 24 mA. (a) Up scan. (b) Down scan. The

scan rate was set at 0.05 Hz/s. The damping and external force are estimated to be

γ = 1.5 s−1 and A = 3.0 m/s2, respectively.

external excitor should be vibrated at a frequency during the hysteric region.

On the basis of the analysis, the frequency is set at 36.1 Hz.

3.2 Localized oscillations

Several ILMs ware observed in the coupled cantilever array by external vibra-

tion. Figs. 5(a), (b), and (c) show wave forms of observed ILMs. One of arrayed

cantilevers has quite large amplitude with respect to the others. Amplitude

distribution obviously shows the localization.

We also observed ILMs centered at n = 2 and n = 4. However, an ILM
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standing at n = 3 could not be excited because of a disorder. The disorder

is implied by a symmetry of amplitude distribution. As shown in Fig. 5(a),

amplitude of 6th cantilever is larger than 4th cantilever. That is, the symmetry

is slightly broken. Because simulated ILMs in the homogeneous array maintain

the symmetry(see Figs. 6(a), (b), and (c)), the symmetry braking will be a

cause of the disorder. The fixed boundaries of array can also be considered

as impurities. So ILMs standing at n = 1 and n = 8 were not observed

experimentally.

4 Conclusion

In this letter, the macro-mechanical cantilever array was proposed for the

analysis of ILMs and the model was obtained. The system is analogous to

the previous micro- and nano-cantilever array which shows ILMs. In the pro-

posed system, electro magnets placed below cantilevers are tunable and give

a soft-spring characteristic. That is, it was experimentally confirmed that the

nonlinearity is adjustable by current flowing in EMs.

In experiments, several ILMs were observed experimentally. It implies that

ILM can be studied in a macroscopic cantilever arrays. The existence was

also confirmed in numerical simulation of the obtained experimental model.

Therefore, we can conclude that the proposed cantilever array seems suitable

for the study of ILM as same as other experimental systems with precise model.

Based on the results, it is possible to study the manipulation of ILM using

localized impurity, which can be introduced by EM. The proposed cantilever

array will contribute to the forth coming discussion on control of ILM.
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(a) ILM at n = 5
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(b) ILM at n = 6
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(c) ILM at n = 7
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(d) No ILM

Fig. 5. Experimentally excited ILMs. An ILM was excited at n = 5 (a), n = 6 (b),

and n = 7 (c). It was also observed that there was no ILM (d).
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