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Abstract 
 
We recently described a data analysis method for precise (~0.1 Å random error in the mean for a 
200 kV instrument with a 3 Å FWHM probe size) size measurements of small clusters of heavy 
metal atoms on supports as imaged in a scanning transmission electron microscope, including an 
experimental demonstration using clusters that were primarily triosmium or decaosmium.  The 
method is intended for low signal-to-noise ratio images of radiation-sensitive samples.  We now 
present a detailed analysis, including a generalization to address issues of particle anisotropy and 
biased orientation distributions.  In the future, this analysis should enable extraction of shape as 
well as size information, up to the noise-defined limit of information present in the image. We 
also present results from an extensive series of simulations designed to determine the method's 
range of applicability and expected performance in realistic situations. The simulations 
reproduce the experiments quite accurately, enabling a correction of systematic errors so that 
only the ~0.1 Å random error remains.  The results are very stable over a wide range of 
parameters.  We introduce a variation on the method with improved precision and stability 
relative to the original version, while also showing how simple diagnostics can test whether the 
results are reliable in any particular instance. 
 
PACS Codes: 36.40.-c, 61.16.Bg, 82.65.Jv 
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I.  Introduction 
 
 Metal nanoparticles are ubiquitous and essential components in many industrial catalysts 
[1,2].  The catalytic action of nanoparticles is usually enhanced by reducing the particle size, 
which increases the fraction of the metal atoms that are surface atoms and accessible to reactant 
molecules.  Also, for some reactions the catalytic activity per surface atom is enhanced by nano-
size effects [2,3].  Thus, there is a strong motivation for investigation of the smallest metal 
particles, stabilized on the surfaces of supports.  Investigations of such supported particles have 
been facilitated by advances in electron microscopy, especially aberration-corrected high-angle 
annular dark field (HAADF) scanning transmission electron microscopy (STEM),[4,5], which is 
capable of atomic resolution and single-atom sensitivity, especially in the case of heavy atoms on 
a low-density support. 
 Yet the high electron probe current densities enabled by aberration correction have also 
highlighted the limited stability of the sample under the influence of the electron beam.  
Although high-resolution, high signal-to-noise ratio (SNR) images can now be rapidly acquired, 
the motion of small particles and of the atoms within them can be so extreme that image 
interpretation becomes nearly impossible.  This limitation pertains especially to particles weakly 
bonded to a support, as in many catalysts.  This limitation forces the STEM operator to reduce 
the probe current, the scan resolution, and/or the dwell time in order to reduce the dose to the 
specimen.  This inevitably reduces the SNR, often to levels at which it is difficult to know 
whether a given feature is real or random noise.  Developments in biological and cryogenic TEM, 
and associated data analysis techniques, have yielded enormous progress on this problem,[6-8] 
for example by developing ways to combine data from a large number of nominally identical 
particles.  These techniques have only rarely been adapted to non-biological samples. 
 There is thus a need for straightforward image analysis techniques appropriate to low-
SNR HAADF STEM images of small particles and clusters of heavy atoms.  We recently [9] 
introduced such a technique that uses a combination of curve fitting and progressive blurring to 
produce a robust estimate of particle size distributions corrected for all known natural and 
artificial blurring effects.  Our method is similar in some mathematical respects to established 
particle-tracking algorithms [10-12], especially in the effects of SNR on the curve fits.  Yet it 
also differs in some essential ways (e.g. we are far more interested in size, mass, and morphology 
than in precise position).  The method was developed on a test case involving MgO-supported 
Os3 and Os10C clusters with associated CO ligands, measured with a 200 kV STEM with 3 Å 
FWHM probe size.  The resulting distribution of root-mean-square radii (rRMS) for isolated single 
particles agreed with independent measurements to within ~0.2Å  or better, even with a 
relatively small sample size of only 30 particles total.  The larger particles seemed to produce 
rRMS values somewhat larger than expected, but this result was of relatively low statistical 
significance (a discrepancy of 1.8 to 2.4 standard deviations, depending on the theoretical model).  
The random error in the mean was of order 0.1 Å.  The relevant quantitative results are 
summarized in the first three columns of Table 1. 
 In the present article we expand on this test case.  First, we explicitly examine the 
mathematical assumptions underlying the method and see how we may generalize the formalism, 
for example by examining the role of anisotropy.  We suggest how the method could be extended 
to estimate not just the scalar rRMS but also the full second-rank tensor equivalent for anisotropic 
particles, and we also derive constraints on the degree to which an anisotropic orientation 
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distribution can bias the results.  We also highlight what is probably the least obvious assumption 
in the derivation, namely, that a curve fit to the rRMS estimates from progressive blurring of the 
same image should produce a meaningful result.  The validity of this least-squares fit cannot be 
derived from the usual maximum-likelihood concepts, but must instead be based on empirical or 
semi-empirical tests. 
 Second, in order to supply such tests, we present results from a series of simulations—
synthetic data sets—that were designed to produce images nominally equivalent to our 
measurements.  For these synthetic images, we knew exactly what each atomic cluster truly 
looks like, so that we knew what answer should have been produced by the analysis algorithm.  
This let us address directly some questions left open in our previous work: 
 1.  For the SNR and SBR (signal-to-background ratio) of our experiments, should the 
algorithm have performed as well as it appears to have performed? 
 2.  Does the progressive-blurring curve fit perform its intended function, namely, to 
produce an optimized estimate of particle size that minimizes the effects of noise and 
background? 
 3.  Is there an alternative to the linear progressive-blurring fit that makes better use of the 
information gathered in the set of blurred images? 
 4.  Is there a systematic error introduced by the algorithm, and does this error vary in a 
predictable way with parameters such as particle size?  If so, can the estimate of actual particle 
sizes be improved? 
 5.  Can we make use of additional information, such as the estimated particle masses and 
the patterns in the progressive-blurring analysis, to understand more about the particles? 
 In light of the simulation results, we claim that all of these questions can be answered in 
the affirmative, although with some qualifications. 
 
II.  Mathematical Methods 
 
A.  Overview 
 
 The general idea and mathematical formalism of the convolution-blurring/curve-fitting 
algorithm are described in previous work [9] and summarized here.  Suppose that we have a 
HAADF STEM image with clearly identifiable bright spots representing isolated small atomic 
clusters on a relatively slowly varying background, and that those clusters are drawn from a 
statistical distribution of perhaps a few different sizes and shapes. We are interested in a precise 
measurement of the size of each kind of cluster, as well as an ability to distinguish various 
clusters on the basis of their size in order to produce population statistics of the various species. 
 To do this, we curve fit each particle image with a Gaussian peak plus a polynomial 
background to extract an estimate of its rRMS (as well as its total "mass," defined below, which 
can also be used to help classify particles into species). This estimate may be subject to bias 
arising from the background signal, from random noise peaks, from the fact that the particle 
itself is not a Gaussian distribution of mass density, and from various point spread functions that 
blur the image.  In order to try to average out the effects of some of these biases, we deliberately 
blur the image—digitally—using a Gaussian kernel with width gb.  Small values of gb may be 
more prone to random noise spikes and limited quality of the curve fit, whereas larger values 
may be more influenced by effects from the background and, eventually, from the fact that the 
measured size will be dominated by the blur.  A curve fit of the extracted rRMS

2 versus gb
2 results 
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in an estimate of what would have been measured in a noise-free measurement with zero 
artificial blurring.  This measurement is further corrected for systematic effects arising from the 
known point spread function including contributions from the probe size, vibrations, and focus 
errors.  Focus errors are minimized by taking a through-focus series and analyzing, for each 
particle, its image at the focus value for which it appeared smallest.  
 
B.  RMS size metrics 
 
 Because of its well-behaved mathematical properties, we chose the root-mean-square 
(RMS) radius rRMS, weighted by the experimentally relevant detection cross section Si for each 
atom, as an appropriate measure of particle size.  The definition is 


rRMS 
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where  = (xi, yi, zi) is the position of atom i in center-of-mass coordinates and m is the "mass" 

(i.e., total signal per molecule), defined as  
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The Si factor can be calculated from the atomic mass, TEM accelerating voltage, and angular 
range of the detector by integrating the output of freely available software packages [13]. 
 The quantity rRMS is by definition isotropic and is thus a scalar invariant property of the 
cluster.  When the cluster is actually viewed in a STEM, we will see a projection onto the x-y 
plane of the mass density for some particular orientation, convolved with various point spread 
functions (PSF).  Assuming we can correct for the PSFs, we can deduce from the image the 
contributions (which we call  objx

2  and  objy
2 ) to the squared rRMS arising from the x and y 

components.  Since rRMS
2  objx

2  obj
2

y  obj
2

z , we have to make some assumptions about the 

unmeasured  objz
2  if we want to extract the orientation-independent measure of particle size rRMS. 

In an experiment, one would measure a large number of clusters and seek to average the 
results.  Since the RMS measures of size which we are using add in quadrature (a fact which we 
use extensively throughout this work), it is most convenient to take the means in quadrature as 
well.  We define the orientation ensemble average <f> as the mean of some quantity <f> over a 
large number of measurements of independent particles drawn from some random distribution of 
orientations. In reference [9], we assumed that the ensemble of particles was statistically 
isotropic, that is, that all orientations of the particles were equally likely.  This assumption means 
that the various RMS widths could not depend on the choice of coordinate axes, so that we can 
delete the x, y, and z subscripts for each of the ensemble averaged quantities: 

 
  rRMS

2   objx
2  objy

2  objz
2   objx

2   objy
2   objz

2  3  obj
2     (3) 

 
In other words, if the sampling is isotropic, then we may take the experimentally accessible 

quantities  objx
2 1/ 2

 or  objy
2 1/ 2

 as proxies, statistically equivalent (aside from a constant factor 

of 31/2) to the desired orientation-independent measure of particle size rRMS. 
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 This leaves the problem of subtracting off the various contributions to the PSF (e.g. probe 
size, thermal vibrations, focus errors, and deliberate gaussian blurring.), which may be 
approximated as simple convolutions with various point spread functions, each of which will 
have its own RMS width Q    One of the convenient properties of RMS measures of size is that 
they always add in quadrature for any convolution effects,[14] regardless of the specific 
functional forms involved.  We thus arrive at essentially equation (2) from [9], relating the ideal 
measured RMS width to the intrinsic width from the size of the object: 
 

measx
2  objx

2  probex
2  vibx

2  focusx
2  gbx

2    (4) 

 
(and similarly for the y components).   

Thus, as long as all of these blurring effects are sufficiently precisely quantified, they 
simply contribute a systematic error that is easily corrected.  Evaluation of the contributions of 
uncertainties in these RMS widths to the final uncertainty in rRMS is an elementary exercise in 
error propagation [15] and will not be considered further in this paper, except to note that the 
relative error in rRMS is greatly magnified if any of these Q's is similar to it in magnitude.  Thus, 
unsurprisingly, the algorithm will do a poor job of measuring the sizes of particles that are 
smaller than the experimental point spread function.  We do not mean to leave the impression 
that these effects are unimportant; in fact, an accurate calibration of all of the contributions to the 
PSF is essential to obtaining good results, and precise measurements of the PSF can be 
challenging in practice. 
 
C.  Isotropy and Anisotropy 
 
 In general, neither the particles nor the ensemble will be isotropic, and we now consider 
how to extend our previous method [9] to these cases.  The RMS measures of size derive from 
the scaled second moment tensor, defined as 
 

M jk 
1

m
Siri, j ri,k

i

          (5) 

 
(again, in the center of mass frame, and defining, for example, ri,x = xi).  So, for example, 
 objx

2  Mxx

(

.  As for any symmetric, real, positive definite matrix, there will be a rotation 

x,y,z)  (x ',y',z') that diagonalizes Mjk, yielding non-negative eigenvalues A, B, and C that we 
are free to label in nondecreasing order, so that 
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,0  A  B  C ,   (6) 

 
and because the trace of a tensor is independent of orientation, it happens that  
 

rRMS
2  TrM  TrM ' A  B  C .    (7) 
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The double-projection  objx
2  of this second moment onto any x-axis must lie between A and C 

(inclusive). 
 We can now explore the assumption that the experimental ensemble average <f> is drawn 
from an isotropic distribution of particle orientations.  The worst-case scenario for this 
assumption would be when (1) one of the eigenvalues is very different from the other two, and 
(2) the particles are much more likely to lie in some orientations than others with respect to the 
electron probe.   

Consider the limiting case of a flat disk-like particle with A = 0 and B = C.  If such 
particles always lie flat on the substrate, then the user will always observe  objx

2  objy
2  C , to 

within experimental precision.  If the user then assumes that the ensemble is isotropic, this would 
be equivalent to assuming that A is also equal to C, and the resulting rRMS will be overestimated 
by a factor of (3/2)1/2 = 1.225.  At the other extreme, if these disks are always viewed on edge, 
then the user will obtain  objx

2  objy
2  C , and the assumption of isotropy will yield 

, when the correct answer is 2C, so that rRMS is now underestimated by a factor of 
(3/4)1/2 = 0.866.  Similarly, in the case of an extremely rod-like particle (A = B = 0, C > 0), the 
cases are bound by the unlikely case of all particles aligned with the electron beam (so that the 
user measures rRMS = 0), and all particles lying flat on the support (with rRMS overestimated by 
(3/2)1/2). 

rRMS
2  3C /2

 It is possible to check for these worst-case scenarios by several methods.  First, the user 
often has some a priori knowledge about the particle morphologies (e.g., whether they might be 
extremely oblate, or extremely prolate, or roughly isotropic).  The preceding paragraph gives 
examples of how to estimate the sampling bias, or at least an upper bound of the sampling bias, 
in such cases.  Second, the user is not merely passively applying an algorithm but is actually 
looking at the images and selecting each particle for analysis.  Thus, the user will notice whether 
the images of the particles are noticeably more or less isotropic on average than would be 
expected for their expected morphologies and can thereby compensate if it should be determined 
that the particles are (for example) usually lying flat.  Such a hypothesis can easily be checked by 
tilting the sample and re-imaging.  This procedure can be made more quantitative by use of curve 
fit functions that explicitly include anisotropy, such as an elliptical Gaussian characterized by 
three independent second moments xx, yy, and xy = yx.  This will also help in cases where the 
experimenter has no idea of the expected morphology.  Pronounced anisotropy will show up in 
these second moments, such that for many particles (xx - yy) and/or xy will differ significantly 
from zero. 
 Third, the experimenter can tilt the sample about two orthogonal axes and repeat the 
experiment on the very same particles, thus providing enough data to estimate the entire Mij 
tensor for each particle.  This proposed tomographic technique would give the A, B, and C for 
every particle along with an estimate of each particle's three-dimensional orientation.  This 
procedure would be most effective if the substrate supporting the particles were very thin, the 
available tilt angles very large, and the sample extremely stable.  Deriving the relevant formulae 
from the equations we have already given would be a straightforward application of linear 
algebra.  Whether the experiment itself can actually be performed to the required precision, and 
the reconstruction performed in a sufficiently noise-tolerant way, are open questions. 
 Now let us consider the best-case scenario, which comes up more often than might be 
expected:  The case in which, so far as the second moments are concerned, the particles are 
isotropic (A = B = C).  Obviously this will apply for spherical particles, but it also applies to 
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particles with cubic, tetrahedral, and icosahedral symmetry, which also includes octahedra, 
cuboctahedra, dodecahedra, and symmetrically faceted versions of any of these.  Small atomic 
clusters with such symmetry happen to be very common; one of our experimental test cases [9], 
for example, was primarily a tetrahedral cluster of 10 Os atoms.  In these situations, it does not 
matter if the experimental ensemble is isotropic, because the isotropy lies in the particles 
themselves.  In other words, if Mij is an isotropic tensor, then 
 

 objx
2   objy

2   objz
2  objx

2  objy
2  objz

2  A  B  C       (8) 

 
even if all of the particles have the same orientation.   

In this rather common best-case scenario, the isotropic-ensemble assumption plays no 
role in the analysis.  The fact that every measurement from every single particle should (within 
error) produce exactly the same value of  objx

2  also reduces the number of measurements 

required to establish a precise estimate of rRMS, because the fractional error in the estimated 
<rRMS> will be roughly equal to the fractional RMS variation of the measured  objx  values 

divided by the square root of the number of particles included in the average (we are using the 
concept of standard deviation of the mean [15], to which we return below). 
 
D.  Estimating  obj  from two-dimensional fits 

 
 We next examine the problem of extracting a best-guess  obj  from the series of two-

dimensional fits performed with different values of the artificial Gaussian blurring gb.  These 
fits result in a series of estimates of the RMS widths in the x and y directions .  When 

plotted on quadratic axes, this function appears linear with a slope close to 1.  We will refer to 
such a plot as a blur-variance plot.  We then correct this estimate for all known systematic effects, 
following Equation (7) and taking est to approximate the ideal measured value meas:

)( gbest 

 

  
rRMS

2

3
 obj

2  corr
2  est

2  probe
2  vib

2  focus
2  gb

2 ,    (9) 

 
and similarly for the y direction, and where we have introduced corr.  In this equation, we have 
taken the particles and/or the ensemble to be isotropic for the sake of simplicity, but the 
equations can be extended to the anisotropic case using the methods of the preceding section. 
 In practice, corr will not exactly equal obj and will vary with gb for each particle.  
These variations will come from all of the nonidealities in the curve fit, including random noise, 
inadequate background subtraction, and the fact that the particles themselves are not shaped like 
the idealized fit functions.  Previously, we supposed that these errors would vary with gb, and 
that a curve fit would determine an optimized estimate of what obj would have been in the 
absence of these nonidealities.  After trying various forms, we found that a linear fit of 

est 
against 

gb produced satisfactory results in our experimental test case, reproducing the expected 
particle sizes to an accuracy of order 0.1-0.2 Å.  In the present work, we revisit this procedure in 
order to understand both its efficacy and its limitations.  First we will subtract off all known 
blurring effects and also apply the factor of 3 before doing the fit (i.e., we will perform a fit of 
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the estimated = 3
corr against 

gb).  This procedure produces a mathematically equivalent 

result while revealing the gb dependence of the systematic errors. 

2
RMSr

 This progressive-blurring curve fit is difficult to justify in purely theoretical terms.  The 
variations with gb cannot be treated as independent random noise, because they all derive from 
reanalyses of a single data set.  Therefore the maximum-likelihood principle that underlies most 
curve fits does not directly apply.  For data sets with extremely high signal-to-noise ratios (SNR) 
and signal-to-background ratios (SBR), it hardly matters, and the entire Gaussian blurring 
procedure is an unnecessary complication, as the particle sizes could just be read directly off the 
images.  But what of the far more interesting case in which the SNR and/or SBR is small?  Does 
the curve fit procedure produce an improved estimate of the particle size relative to what would 
be obtained with a simpler procedure?  This question can be approached with a combination of 
simulation and experiment.  We have already presented an experimental test case showing the 
apparent effectiveness of the method [9].  In the remainder of this paper, we present results from 
synthesized data, nominally equivalent to those obtained in the experiments, in order to 
understand the artifacts that may arise from the analysis algorithm itself.   

The results suggest that the apparent success of the experimental study was not merely 
fortuitous.  Simulations of the same particles, with the same probe sizes, scan resolutions and 
approximate SNR and SBR, show statistical outcomes remarkably similar to those of the 
experiment.  The largest deviations between the experimental and the expected values probably 
arose from consistent, quantifiable systematic errors, most importantly from the deviation of the 
particle shapes from the idealized fit functions but also from imperfect background subtraction.  
This result suggests that future applications of the method could correct for such errors, 
producing estimates of mean particle sizes accurate to better than 0.1 Å.  It also shows that the 
coupling of the “blind” curve-fitting technique with simulation and with other knowledge about 
the sample is significantly better than the fitting technique alone.  Note that the experiments were 
carried out with samples synthesized specifically to incorporate predominantly clusters of 
selected sizes, and the typical catalyst sample is not nearly as uniform as our samples.  The fact 
that we expected our samples to consist of just two predominant particle morphologies, and that 
the larger of these was close to isotropic, facilitated interpretation and reduced the number of 
measurements required for a confident interpretation.  
 
III.  Synthetic Data Sets 
 
A.  Methods 
 
 Figure 1 illustrates the procedure used for the synthetic data set analysis. Figure 1(a) 
shows an atomic model of an Os10C tetrahedral cluster (the models also included CO ligands, but 
these are omitted for clarity).  To simulate an image, we first choose a random orientation for the 
cluster (molecule) (Figure 1(b)).  Rotations were chosen from a distribution that is uniform over 
the space of all three-dimensional rotations.  This procedure can be carried out, for example, by 
choosing the four elements of a rotation quaternion [16] from Gaussian distributions, then 
normalizing the quaternion to unit magnitude. 
 The algorithm for simulating the STEM image is a simple projection of the atomic signal 
strength Si, convolved with the instrumental point spread function (Figure 1(c)).  The Si were 
obtained from a standard database [13], with the differential cross section integrated over the 35 
to 90 milliradian collection annulus used in the experiments.  The point spread function was 
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taken to be a Gaussian with RMS radius 1.27 Å, which was approximately the probe size used in 
the experiments.  This simple projection method is based on the assumption that each atom 
scatters independently; cross terms from coherent scattering between pairs of atoms are 
neglected. 

We tested this assumption with simulations performed using Kirkland's STEM simulation 
code [17].  STEM images were simulated using our instrumental parameters, first with a single 
Os atom and then with a pair of Os atoms separated by 2.85 Å.  After scaling to the same peak 
intensity, the 2-atom image differed from the sum of two single-atom images by only a very 
small amount (~0.3% or less in the vicinity of the atoms).  This difference is negligible in 
comparison with the measurement noise, which was more than 10% of the peak height in the 
relatively low-dose conditions used in the experiment.  As more atoms are involved in the 
scattering, the two-atom cross terms become far more numerous than the single-atom terms, but 
the effect should still be negligible when most of the signal is coming from only 10 atoms.  The 
simple-projection approximation may have to be revisited if the same method is used on much 
larger, crystalline clusters. 
 A real STEM image of a particle on a support layer will include noise from various 
sources, as well as background signal from the support.  The support layer is simulated as a 
polynomial in x and y designed to produce a magnitude and spatial scale comparable to the actual 
background variation in the experiments (Figure 1(d)).  This model was appropriate for the thin 
MgO substrates used in our experiments, as imaged in a relatively low-resolution instrument; the 
substrate in our images looks quite smooth on the scale of a few Å.  The particle-size 
measurement algorithm is expected to work only if the particles of interest are significantly more 
localized and peaked than are the variations in the background signal, or for particles at the edge 
of the substrate.  More sophisticated background subtraction methods (e.g. carefully targeted 
Fourier filtering) will likely have to be used in cases where the image shows atomic-resolution 
information coming from the substrate, and especially in the case of crystalline substrates imaged 
in an aberration-corrected STEM.  Exploring this issue would be a significant effort in itself and 
is beyond the scope of the present report. 

Varying the degree and magnitude of the polynomial background terms allows the user to 
test the limitations of the method.  We simulated two kinds of noise:  Shot noise (also called 
counting statistics or Poisson noise) and Gaussian white noise.  For the shot noise, the user can 
specify the image intensity I0 equal to the signal from one detected electron.  The software then 
applies a Poisson distribution to determine the number of detected electrons in each pixel, scaled 
appropriately via I0.  This procedure results in an RMS noise per pixel of (I(x,y)I0)

1/2, where 
I(x,y) is the noise-free image intensity. The Gaussian white noise  of RMS magnitude IG is added 
last. We almost always set IG > I0 to minimize the effect of artificial quantization from the 
Poisson algorithm. 
 The above steps (Figures 1(b-d)) are repeated 50 times to produce a population of images, 
each with its own random cluster orientation and random noise.  Each image is then analyzed 
using progressive Gaussian blurring (Figure 1(e)) and two-dimensional curve fitting (Figure 1(f)), 
with seven different values of gb typically being used.  Thus, a full synthetic data set includes 
350 two-dimensional fits.  For each fit, 2 is minimized over the full set of parameters, using an 
uncertainty of (Ifit(x,y)I0 + IG

2)1/2 to scale the residuals [9], thus including the random 
contributions from both the shot noise and the Gaussian white noise.  The optimization uses the 
Nelder-Mead simplex direct search [18] as implemented in the MATLAB software environment.  
We found that the fit was quite robust except in some cases in which the blur was large enough 
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that the algorithm could mistake background intensity as part of the cluster.  This produces 
characteristic large jumps in the corrected blur-variance curves, as we will show. 

Although our uncertainty scaling function does overestimate the noise of the blurred 
images, we have found that this does not greatly affect the final results (the effect of using 
different noise models is shown in a later section).  As usual for this kind of curve fitting, the 
shot noise can produce a bias in the fit parameters (Chapter 12 of Bevington [15]).  The 
background function used in the fit need not be of the same polynomial order as the background 
function used in the image simulation, and we varied these parameters to gauge their effects on 
the final result.  The results are usually robust as long as the background model is of high enough 
order to reduce the background residuals essentially to random noise but not so high-order as to 
subtract out the particles along with the background. 
 
B.  Results:  Baseline simulations 
 
 We start with a baseline simulation, intended to produce results as similar as possible to 
our experiments [9].  We used models of Os3(CO)12 and [Os10C(CO)24]

2- as determined from 
EXAFS spectroscopy and X-ray diffraction crystallography and an understanding of the 
chemistry of the cluster synthesis.  For brevity, we refer to these structures as Os3 and Os10C, 
respectively, with the presence of CO ligands being understood.  Ideal rRMS values were 
calculated from these models using equations (1-3).  Very slightly revised (because of gradual 
evolution of the set of best locally available data) sensitivities Si and atomic coordinate models 
were used in comparison with our previous publication, resulting in shifts of the ideal values by a 
few hundredths of an angstrom (which reflects the precision of the theoretical ideal rRMS

 in the 
experiment).   

In the experiments we were trying to mimic, typically the pixel-to-pixel noise was on the 
order of 1030% of the peak heights, and the background varied by ~3060% of the peak 
heights over a characteristic distance scale on the order of 10-20 Å (see Figure 3 of [9] for an 
example).  The scan resolution ranged from 0.42 to 0.63 Å per pixel.  Our baseline test case 
(Figure 1(d) is an example) was chosen to lie in the middle of these ranges, with IG set equal to 
~20% of the maximum image intensity, background varying by ~4050% of the peak height 
over a lateral distance of 10 Å, and a scan resolution of 0.5 Å.  These values are rough, but 
fortunately (as shown below), the final results are not particularly sensitive to the exact SNR and 
SBR in the parameter range we were most interested in. 

In terms of relevant experimental parameters, these noise and background levels 
correspond to shot noise from detecting ~100 electrons per pixel (which can be estimated from 
the probe current, dwell time, atomic density, scattering cross sections, and annular collection 
angle range) and an effective mass-thickness (i.e. scattering density Si per unit area) for the 
substrate on the same order as that for the particle.  In our case, the Os10C clusters had 10 Os 
atoms in a cross-sectional area of ~15 Å2 lying on an MgO substrate with 0.054 MgO units per 
cubic angstrom.  If we assume a Z2 scattering dependence, we find that the SBR is ~1 for a 
substrate thickness of 340 Å.  This kind of very rough estimate will help to determine the 
experimental conditions needed to apply our methods.  In practice, shot noise is a lower-bound 
noise estimate and the actual number of detected electrons may need to be much larger.  It is the 
variation in background intensity that is most important, as opposed to its absolute value. 
 The results of the baseline simulations are shown in Table 1 (including data derived from 
our original publication [9]).  Throughout this work, we report particle sizes in the format rRMS ± 
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dist (mean), where rRMS is the root-mean-square result from the entire ensemble, dist is the 
sample standard deviation of the distribution of measured rRMS values for different particles, and 
mean is the estimated standard error of the mean (i.e., the estimated  precision to which rRMS has 
been determined [15], calculated as dist/N

1/2).
 The results are quite encouraging.  The rRMS values obtained from the experiments and 
the simulations are completely indistinguishable, the deviations being a fraction of the standard 
error for both cases.  The close match happened to be better than chance for these two test runs; 
typical precisions on the order of a few hundredths of an angstrom are more the norm, consistent 
with the calculated mean values.  The distribution widths dist are somewhat different between 
the experiment and the simulation, and the difference is significant even considering the small 
size of the set of experimental results (only 20 clusters total for the two groups).   

We speculate on possible causes for this difference.  For the (anisotropic) Os3 clusters, 
the cluster orientations in the experiment may have been biased, which could explain the larger 
variance in the simulation for this case.  Also, the SNR and SBR values for the simulation, 
although close to those in the typical experiment, were not exactly the same in detail.  Finally, all 
of the simulations in each set of 50 images were performed with the same background.  
Variations in the background are likely to cause variations in systematic error arising from 
incomplete background subtraction, which would increase the variance in the calculated radii.  It 
may be that the (more isotropic) Os10C clusters revealed this effect. 
 Note the difference in systematic errors for the two cluster sizes used here.  The smaller 
cluster yields the more accurate result, with the experimental, simulated, and ideal values 
indistinguishable within the error bars.  The larger cluster (~2.3 times the probe size) is 
consistently found by the algorithm to be ~67% larger than it really is, for both the experiments 
and the simulations.  Analysis of the normalized residuals (presented below) suggests a likely 
reason:  The Gaussian fit function does a better job of matching the target function when the 
object is not much larger than the instrumental point spread function.  Thus, the RMS size of the 
measured intensity distribution should be a closer match to the RMS size of the Gaussian fit 
function as the object gets smaller.  For larger objects, there is significant intensity variation in 
the image that is not captured by the Gaussian fit function, and the two RMS sizes tend to differ 
by a fairly consistent amount that depends on the size and shape of the particle. 
 There are two ways of correcting for this limitation.  One is to calibrate the systematic 
error by using synthetic data sets, as we have done here, so that we may correct the rRMS values 
yielded by the curve fits.  If, in our original work [9], we had performed the synthetic data 
simulations presented here, we would have expected the Os10C clusters to yield a size 
measurement that was too large by ~6%.  Thus we would have corrected the measured value of 
3.11 Å to a value of 2.92 Å, which is well within uncertainty of the "ideal" value of 2.909 Å.  
The other method would be to use a more complicated fit function to capture more of the 
variation in the measured image than is captured by either the simple or the elliptical Gaussian.   
We briefly attempted this approach and found that the particle size measurement results were not 
dramatically improved, whereas the computation time increased significantly.   

This approach may yet be useful in the "blind" case in which the likely atomic structure 
of the clusters is unknown, so that the calibration method is more difficult to perform.  It may 
also be useful for extracting information about the shape and orientation of each particle in 
addition to its isotropic rRMS size, for cases in which the SNR and SBR are high enough that the 
images do contain such information.  We introduce examples below that will help to identify 
when such information may be available.   
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C.  Improvements to the Algorithm 
 
 A crucial step in the algorithm is the extraction of an rRMS estimate for each particle from 
its blur-variance curve (Figure 2).  In our first efforts, we performed the simplest procedure, 
namely, linear extrapolation of the sampled blur-variance curve to zero blur (Figure 2(a)).  This 
procedure entails a linear curve fit to a set of data points that are not statistically independent.  
The result depends on the arbitrary choice of gb values, and low-blur data points were accorded 
more weight than they perhaps should have been accorded.  Also, our original method did not 
make use of most of the information in the blur-variance curves.  Although this first version of 
the method produced good results, we were motivated to overcome these shortcomings and 
produce a more mathematically well founded, robust, and precise version of the method.  We 
have done this, and the new technique is illustrated in Figure 2(b-d). 
 Now, instead of the uncorrected blur-variance plot in Figure 2(a), we introduce a fully 
corrected blur-variance plot in Figure 2(b), in which all known convolution effects have been 
subtracted out.  As a result, the mean slope of the corrected blur-variance curves is very nearly 
zero, and there is no reason to suppose that the extrapolation to zero blur is any better an estimate 
of rRMS than is, say, a value chosen from the middle of the curve. We have used cubic splines to 
interpolate the measured points and yield smooth curves.  Rarely (as is visible on the right-hand 
side of Figure 2(b)) at high blurs the curve jumps discontinuously, which means that the 
nonlinear two-dimensional curve fit has probably jumped from one local minimum of 2 to 
another.  But for the most part the curves seem fairly well behaved. 
 Next consider Figure 2(c), showing curves from a selected group of 10 particles along 
with a dotted horizontal line showing the ideal result (which we can calculate exactly, since these 
are simulations).  The curves separate roughly into three bands (as is more obvious when all 50 
curves are shown  in Figure 2(b)).  The middle band, which includes the majority of the particles, 
consists of mostly horizontal curves that meander through a relatively small range of values 
(roughly 811 Å2 in this example).  For most of these curves, it matters little which point we 
choose as the optimized rRMS estimate for that particle, as there is little consistent bias. 
 On the other hand, most of the curves in the upper band—i.e. those curves that give 
anomalously high rRMS values over most of the domain—have large negative initial slopes and 
positive curvatures, while the opposite is true for many of the curves in the lower band.  In both 
cases, the best estimate of rRMS is obtained for some positive gb, the zero-blur extrapolated value 
being quite far from the ideal value. 
 These observations motivated the following modification:  Instead of taking rRMS for each 
particle as the zero-blur extrapolation of its blur-variance curve, we identify a "maximally 
stationary point" for each curve, defined as the smallest blur for which the absolute value of the 
slope reaches its minimum over the sampled domain.  Ideally, this is a true stationary point—a 
point where the slope is zero, and a finite range of blurs will yield a nearly constant rRMS.  Such 
points do not always appear over the sampled domain, so when no such point exists, we take 
either an inflection point or, if none exists, the end point with the smallest absolute slope.  This 
step is done separately for the spline-interpolated corrected blur-variance curve of each particle, 
yielding both an estimate of the optimal blur 

gb and the best-guess radius r*
RMS, which are 

indicated with X's in Figure 2(c).  When this procedure is carried out for all 50 simulated 
particles (Figure 2(d)), the spread of vertical positions of the X's is, in virtually all tested cases, 
either less than or not significantly different from the spread of zero-blur intercepts.  In other 
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words, the precision of the new method is as least as good as that of the old method and often 
significantly better. 
 The new maximal-stationary-point method is intended to make a best-guess optimization 
of the systematic and random errors when the scaling of such errors with blur is complicated and 
not understood in detail.  If there were no such errors, then every curve in Figure 2(c) would be a 
straight line lying exactly on top of the ideal line.  In a real measurement, the various effects of 
noise, background, and failure of the particle to match the idealized fit function will produce an 
estimated particle size somewhat different from the real size.  Each of these effects will scale 
differently with blur.  As the blur increases, the particle will look more and more like an ideal 
Gaussian, and noise effects will be smoothed out, but it will become harder to separate the 
particle from the background.  So one would expect that there would be an intermediate value of 
blur, probably on the order of the particle size (remembering the factor of 31/2 difference between 
 and rRMS), at which the combined effects of all of these errors are minimized.  We hypothesize 
that the optimal blur usually occurs close to a crossover between one regime and another, and 
that such a crossover is likely to be marked by a feature such as a local minimum or inflection 
point.  Justifying this from first principles would be extremely difficult, so instead we tested this 
hypothesis with Monte Carlo simulation.  The results show that the new method is almost always 
either better than or not significantly different from the old method in terms of precision. 
 The new method is also more mathematically robust than the old, and it makes better use 
of all available data.  So long as the range and density of gb values is high enough to define the 
blur-variance curve, the result does not depend strongly on the exact set of blur values that 
happened to be chosen.  This is not the case for the linear-fit-intercept method, for which the 
low-blur points can dominate the result.  The shapes of the corrected blur-variance curves also 
carry additional information:  They serve as diagnostics for identifying and mitigating the 
systematic errors in any given data set and can also identify extreme cases for which the results 
cannot be trusted.  This point is explored more in the next section. 
 Finally, we discuss the thick dashed curve in Figure 2(d), which is the mean of all of the 
single-particle curves.  This curve evaluates to (3.102 Å)2 at gb = 0, which (as expected) 
corresponds almost exactly to the value reported in the "Simulated" column of Table 1.  This 
curve exhibits negligible random variation and even its systematic error varies very little as a 
function of blur (i.e., the curve is almost a horizontal line).  Such a population mean square curve 
can be very useful in cases in which every particle can be positively identified.  Unfortunately, 
outliers can sometimes produce rRMS values as much as 20% away from the ideal, and it is quite 
possible to mistake one particle size for another even in nearly ideal cases. 
 Thus, it is better to rely on methods that do not assume that any given particle can be 
positively identified, as such methods will be applicable to a broader range of samples.  The new 
maximal-stationary-point algorithm is such a method, because it produces an optimized estimate 
of rRMS independently for every single particle.  The kernel density estimator (KDE) and 
maximum-likelihood (ML) analysis in our original publication [9] (which we used for estimating 
the statistics of partially overlapping sub-populations) also adhered to this advice.  These 
calculations were performed in such a way that it was never necessary to assume that any given 
particle belonged to Group I, II, or III as previously defined.
 
D.  Tests of the algorithm under various conditions 
 

 13



 To have confidence in such a data analysis method, one must know that its output is 
stable with respect to reasonable parameter variations.  It is also important to develop diagnostics 
that can help to determine whether the results are trustworthy, and if not, what the likely causes 
are, while also being able to determine whether there might be more information in the images 
beyond the "mass" (i.e., total STEM signal) and RMS size of each particle.   

To explore these issues, we ran a series of scenarios with various parameters for both the 
image simulation and the data analysis and applied these methods to both the Os3 and the Os10C 
clusters, recording the distributions of both rRMS and m for every case, using both the linear-
extrapolation and the maximally stationary method (Tables 2 and 3).  Each scenario represents a 
change of only one or two parameters at a time relative to the "baseline" scenario (scenario 0 in 
the tables) that we have already described.  We generated the blur-variance plots and also 
examined normalized residual images (i.e., the difference between the generated image and the 
Gaussian-plus-polynomial fit function, divided by the RMS noise in each data point) for some of 
the two-dimensional curve fits performed with zero artificial blurring.   

Some examples of these diagnostic plots are shown in Figures 3 and 4.  We observed the 
following patterns: 
 1. The m and rRMS values were quite stable as the parameters were varied, with some 
exceptions that leave clear signatures in the blur-variance and normalized residual plots. 
 2. The smaller Os3 clusters suffered very little bias.  Most of the values for both m and 
rRMS were close to the ideal value or slightly above it, rarely deviating by more than 2mean. 
 3. The unblurred normalized residual images representing most of the Os3 simulations 
were hardly distinguishable from random noise except in cases for which the SNR and/or SBR 
were unrealistically high (scenarios 10 and 11) or the instrumental resolution was much smaller 
than the particle (scenario 12).  This result suggests that, for our experimental parameters, there 
is very little information present in the image beyond that already extracted from our fit 
parameters (m and rRMS), for the small molecules. 
 4. The corrected blur-variance plots for the cases of low SNR and low SBR showed only 
very weak patterns, with mostly horizontal curves meandering through a fairly well defined band 
of values.  As a result, the linear-extrapolation and maximally stationary methods produced 
almost the same results. 
 5. Notable exceptions to these patterns arose in cases of incomplete background 
subtraction (scenario 2) and Poisson noise (scenarios 8 and 9).  The blur-variance plots showed 
dramatic anomalies in both cases, with numerous outlying points that distorted the spline 
interpolations as well as consistently negative (scenario 2) or positive (scenarios 8 and 9) slopes. 
 6. The Os10C clusters, being larger and more massive than the others, had higher signal 
levels and more information on length scales above the resolution limit.  Thus the Gaussian fits 
failed to capture all of the intensity variations, leaving a typically 3-fold-symmetric pattern in the 
normalized residuals.  This same fact manifests in the blur-variance plots, such that at low blurs 
each particle was more idiosyncratic, and the curves do not maximally converge until very nearly 
the maximum gb values have been reached.  In other words, each image seems to include some 
information about the detailed shape and orientation of each particle, and this information could 
probably be partially extracted with a higher-order fit function.  The elliptical Gaussian (scenario 
1) produced similar results to the round Gaussian (scenario 0), since the ellipse could not capture 
the symmetry of the particle image. 
 7. In part because of the larger variation in blur-variance curves at smaller gb, the 
maximally stationary method outperformed the linear-intercept method in almost all cases for the 
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Os10C clusters.  Both the bias (the difference between rRMS or m and its ideal value) and the 
uncertainty were usually smaller for the maximally stationary method.  Interestingly, Poisson 
noise (scenarios 8 and 9) yielded an exception to this rule, as did the case of incomplete 
background subtraction (scenario 2).  These are the very same cases that produced clear 
anomalies in the corrected blur-variance plots. 
 8. A comparison of scenarios 0 through 6, and also separately comparing scenarios 10 
and 11, shows that the background has remarkably little effect on the final result, provided that 
the background model is of high enough order to remove it cleanly.  If the background is not 
cleanly removed, the results end up turning out very badly (scenario 2).  These cases can be 
detected by looking for patterns in the normalized residual images.  Also, a persistent negative 
slope in the corrected blur-variance curves seems to be indicative of this problem (though this 
may or may not hold in general). 
 9.  A comparison of scenarios 0, 7, and 10 shows that Gaussian white noise has little 
effect on the results except to increase the uncertainties when it is raised above a certain level. 
 10. Poisson noise, on the other hand, has a surprisingly large effect on the bias and the 
repeatability of the entire method.  It would appear (from a comparison of scenarios 8 and 9) that 
it is actually slightly counterproductive to try to model the noise precisely in the 2 minimization.  
Instead, we recommend using a Gaussian white noise model for all of the two-dimensional fits.  
Excessive Poisson noise seems to leave a signature in the corrected blur-variance plots, namely a 
consistent positive slope for almost all of the particles. 
 
IV.  Conclusions and Future Directions 
 
 We could of course multiply examples and observations such as those in the preceding 
section virtually without limit.  However, for present purposes we believe that we have both 
validated and improved upon the method reported in our previous work [9].  Let us review the 
questions raised at the start of this presentation and offer some answers: 
 
 1.  For the SNR and SBR of our experiments, should the algorithm have performed as 
well as it appears to have? 
 Answer:  Yes.  Judging from extensive Monte Carlo simulations designed to produce 
simulated STEM images statistically equivalent to the experimental images, the precision and the 
quantitative degree of bias seem to be very much what we should expect. 
 
 2. Does the progressive-blurring curve fit perform its intended function, namely, to 
produce an optimized estimate of particle size that minimizes the effects of noise and 
background? 
 Answer:  Yes, with qualifications.  For many realistic simulations, the blur-variance 
curves show that greater precision can indeed be obtained by including values from nonzero 
values of blur.  However, our previous method may not have made optimal use of this 
information. 
 
 3. Is there an alternative to the linear progressive-blurring fit that makes better use of the 
information gathered in the set of blurred images? 
 Answer:  Yes.  We have introduced a maximal-stationary-point variation on our previous 
method that gives results either superior to or practically indistinguishable from the results of the 
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previous method in almost all realistic cases.  This method is also more robust and more firmly 
grounded mathematically than is the previous method.  Moreover, we have found that many of 
the normalized-residual and blur-variance plots show that there is information in some of the 
images beyond the mass and the RMS radius.  We have offered some brief suggestions for 
identifying such cases and for extracting additional information using more complicated curve-fit 
functions and tilt-series acquisitions. 
 
 4.  Is there a systematic error introduced by the algorithm, and does this error vary in a 
predictable way with parameters such as particle size?  If so, can the estimate of actual particle 
sizes be improved? 
 Answer:  Yes, and by correcting our previous measurements by using our current 
estimates of the bias we find that the match between theory and experiment is well within the 
bounds of random error.  "Blind" application of this calibration to cases in which the particle 
morphologies are completely unknown is yet to be investigated. 
 
 5.  Can we make use of additional information, such as the estimated particle masses and 
the patterns in the progressive-blurring analysis, to understand more about the particles? 
  Answer:  Yes.  We have found that the "mass" (actually total signal strength) 
measurements can be measured with high precision along with the RMS radii.  With a 
sufficiently large and homogeneous sample and some correction for the bias using synthetic data 
sets, it should be possible to determine the number of heavy atoms per average cluster to a 
precision of less than one atom.  However, the precision is not high enough to allow us to 
confidently distinguish individual clusters that differ by only one heavy atom, except perhaps in 
the case of very small clusters with fewer than ~5 heavy atoms.  We have also found that certain 
patterns in the analysis (revealed in corrected blur-variance plots) can reveal whether Poisson 
noise or incomplete background subtraction may be poisoning the results. 
 
 The choice of data analysis methods should always follow the maxim to make things as 
simple as possible, but no simpler.  For data sets with large SNR and SBR, particle sizes can be 
easily measured directly from the images (or from simple curve fits) and corrected for 
instrumental point spread functions; complicated data analysis procedures are unnecessary in 
such cases.  For more challenging data sets, the “blind” procedure with the new maximal-
stationary-point method can help in both identifying and quantifying sources of error in the size 
determination, frequently producing errors of less than 0.2 Å (and sometimes much better) with 
high confidence.  In cases for which the data sets are challenging and very high precision is 
required, calibration of the systematic errors should be performed, for example through the use 
of synthetic data sets as we have used in the present work.  We have shown that this procedure 
can yield a precision of ~0.1 Å in the mean value of rRMS, even in the presence of significant 
noise and background, provided a reasonable number (at least ~10, preferably more) of 
nominally identical particles can be measured.  Most important, this measurement can be 
performed at levels of electron dose that will provide little or no modification of the sample 
during acquisition. 
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Figure Captions 
 
Figure 1.  Illustrating the synthetic data generation and analysis procedure.  (a) Atomic model of 
the cluster of interest.  (b)-(f) Generating and analyzing an ensemble of 50 simulated images.  (b) 
Unbiased random rotation.  (c) 2D projection and application of point spread function.  (d) 
Addition of background and noise consistent with those of actual STEM images.  (e) Progressive 
(7 steps for each of the 50 simulated images) artificial Gaussian blurring followed by (f) 2D 
curve fitting to Gaussian + polynomial background for each of the 350 resulting images.  
Resulting data are analyzed as in Figure 2. 
 
Figure 2.  Example blur-variance plots (from the Os10C-based baseline run) illustrating the old 
and new algorithms.  (a) Plotting the squared width of the fit peak against the square of the blur, 
with a linear fit to each particle, as in our previous publication [9].  The slopes are all close to 1, 
and the intercepts are used in calculation of the mean particle size.  (b) After correcting for all 
known blurring effects and applying the factor of 3 to obtain the mean square radius.  Curvature 
is now apparent, and the points for each particle are now interpolated with a cubic spline.  (c) 
Example curves from 10 of the 50 particles, marking the maximally stationary point on each 
curve with an X.  The theoretical ideal answer is shown as a horizontal dotted line.  (d) The same, 
applied to all 50 particles in the simulation, with an added thick dashed curve which is the 
average for all of the particles. 
 

Figure 3.  Example raw (left entry in each pair) and normalized residual (right entry in each pair) 
images for various scenarios, providing examples of the points made in the text.  See Tables 2 
and 3 for quantitative results.  (a) Scenario 0, Os3.  The Gaussian fit has reduced the residuals 
practically to random noise. (b)  Scenario 0, Os10C.  Note the weakly apparent (but statistically 
significant) 3-fold pattern in the residuals corresponding to the corners of the particle in the raw 
image.  (c) Scenario 2, Os10C.  Note the quadrupole moment in the background region of the 
residual plot:  The upper left and lower right corners are significantly greater than zero, while the 
other two corners are significantly less.  This amount of residual background is enough to skew 
the results.  (d)  Scenario 10, Os3.  The round Gaussian fails to capture much information about 
the particle apart from its rough size, leaving very strong residual patterns. 
 
Figure 4.  Example corrected blur-variance plots for various scenarios, illustrating some of the 
points made in the text.  Left column is from Os3, right from Os10C.  (a) Scenario 0.  Scenarios 1, 
3, 4, 5, 6, 7, and 12 looked qualitatively similar, but with varying degrees of systematic and 
random contributions to the patterns.  (b)  Scenario 2.  The incomplete background subtraction 
produced enormous anomalies at higher blurs.  (c) Scenario 8.  Poisson noise has a surprisingly 
strong detrimental effect on the analysis of the smaller cluster, but this seems to leave a 
characteristic signature in the blur-variance graphs (a persistent positive slope) that can be used 
as a diagnostic.
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Tables 
 
Table 1.  Results from the baseline simulation, designed to be as similar as possible to the 
experiments.  The fit functions were round Gaussians with quadratic backgrounds.  Ensemble 
distributions are characterized by entries of the format rRMS ± dist (mean), as discussed in the text.  
Groups I and II from the experimental study [9] (final results reproduced here, with recalculated 
ideal values) are presumed to represent the Os3- and Os10C-based clusters.  These groups 
contained 6 and 14 particles, respectively.  All quantities are in angstroms.  Ideal values are 
derived from independent EXAFS measurements of the atomic structures, with appropriate 
weightings Si for the various atoms.  The final column compares the means of the distributions, 
with uncertainty set by error propagation from mean. 
 

Cluster Ideal rRMS Experimental Simulated rRMS
Expt  rRMS

Sim  
Os3-based 2.015 2.01 ± 0.21 (0.09) 2.005 ± 0.41 (0.058) 0.005 ± 0.11 

Os10C-based 2.909 3.11 ± 0.31 (0.085) 3.097 ± 0.19 (0.027) 0.013 ± 0.09 
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Table 2.  Results from variations on the baseline simulations on the Os3-based clusters.  Entries 
are of the format mean ± dist (mean), as discussed in the text, with all rRMS values in angstroms.  
"Mass" values (actually total signal strength) are in arbitrary units, with Os set to 10, C to 0.15, 
and O to 0.26 (proportional to the Si values).  The ideal values are 2.015 angstroms and 34.02 
mass units.  "Linear" indicates the result obtained with the old algorithm (linear extrapolation to 
zero blur), while "Stationary" indicates the result obtained by evaluating each particle's spline-
interpolated curve at the maximally-stationary point for rRMS

2 ( gb
2 ) .

 
Scenario Linear rRMS Stationary rRMS Linear mass Stationary mass
0.  Baseline 2.005 ± 0.41 (0.058) 2.008 ± 0.40 (0.056) 33.9 ± 3.3 (0.5) 33.9 ± 2.9 (0.4) 
1.  Elliptical Gaussian 2.113 ± 0.35 (0.050) 2.103 ± 0.36 (0.050) 35.2 ± 3.1 (0.4) 34.9 ± 3.1 (0.4) 
2.  Linear fit to quadratic background Failed (r2

RMS < 0) 1.693 ± 0.33 (0.047) 31.1 ± 1.7 (0.2) 32 ± 26 (4) 
3.  Cubic fit to quadratic background 2.084 ± 0.43 (0.061) 2.095 ± 0.38 (0.053) 34.5 ± 3.4 (0.5) 34.4 ± 2.8 (0.4) 
4.  Different background shape 
(similar magnitude) 

2.132 ± 0.44 (0.063) 2.099 ± 0.41 (0.059) 34.8 ± 3.0 (0.4) 34.2 ± 2.7 (0.4) 

5.  No background 2.112 ± 0.43 (0.061) 2.089 ± 0.40 (0.056) 34.9 ± 2.8 (0.4) 34.6 ± 2.6 (0.4) 
6.  2X background 2.076 ± 0.41 (0.058) 2.056 ± 0.42 (0.059) 34.4 ± 3.1 (0.4) 34.1 ± 2.8 (0.4) 
7.  2X Gaussian noise 2.097 ± 0.44 (0.062) 2.114 ± 0.48 (0.068) 34.3 ± 4.5 (0.6) 35.1 ± 5.4 (0.8) 
8.  Poisson noise added to Gaussian of 
similar magnitude ("mixed noise") 

1.829 ± 0.71 (0.101) 2.097 ± 0.50 (0.071) 35.4 ± 3.5 (0.5) 36.0 ± 4.1 (0.6) 

9.  Simulate with mixed noise, fit with 
Gaussian noise model 

2.058 ± 0.64 (0.090) 2.229 ± 0.40 (0.057) 36.4 ± 3.3 (0.5) 36.7 ± 3.2 (0.5) 

10.  No noise 2.009 ± 0.32 (0.045) 1.977 ± 0.25 (0.035) 34.3 ± 1.6 (0.2) 33.9 ± 0.5 (0.1) 
11.  No noise and no background 2.133 ± 0.36 (0.051) 2.080 ± 0.27 (0.038) 34.8 ± 1.9 (0.3) 34.1 ± 0.5 (0.1) 
12.  0.5X probe diameter 2.035 ± 0.52 (0.074) 2.039 ± 0.32 (0.045) 32.9 ± 7.2 (1.0) 34.1 ± 2.0 (0.3) 

 
Table 3.  Exactly as table 2, but for the Os10C-based clusters.  The ideal rRMS and m values are 
2.909 angstroms and 110.0 units, respectively.
 
Scenario Linear rRMS Stationary rRMS Linear mass Stationary mass 
0.  Baseline 3.097 ± 0.19 (0.027) 3.057 ± 0.13 (0.018) 116.6 ± 8.5 (1.2) 114.2 ± 4.5 (0.6) 
1.  Elliptical Gaussian 3.190 ± 0.19 (0.028) 3.154 ± 0.19 (0.027) 119.3 ± 7.8 (1.1) 116.9 ± 6.6 (0.9) 
2.  Linear fit to quadratic background 2.994 ± 0.14 (0.020) 2.916 ± 0.16 (0.022) 108.3 ± 2.8 (0.4) 106.1 ± 4.0 (0.6) 
3.  Cubic fit to quadratic background 3.165 ± 0.25 (0.035) 3.114 ± 0.22 (0.032) 119.4 ± 10.7 (1.5) 116.0 ± 8.5 (1.2) 
4.  Different background shape 
(similar magnitude) 

3.125 ± 0.25 (0.035) 3.077 ± 0.20 (0.028) 116.7 ± 9.8 (1.4) 114.0 ± 6.5 (0.9) 

5.  No background 3.135 ± 0.21 (0.030) 3.084 ± 0.19 (0.026) 119.1 ± 8.0 (1.1) 115.8 ± 6.3 (0.9) 
6.  2X background 3.133 ± 0.23 (0.033) 3.066 ± 0.19 (0.026) 117.6 ± 9.0 (1.3) 113.8 ± 5.7 (0.8) 
7.  2X Gaussian noise 3.104 ± 0.41 (0.058) 3.091 ± 0.22 (0.032) 119.6 ± 13.9 (2.0) 115.7 ± 10 (1.4) 
8.  Poisson noise added to Gaussian 3.173 ± 0.24 (0.034) 3.213 ± 0.20 (0.028) 125.1 ± 8.6 (1.2) 123.4 ± 6.9 (1.0) 
9.  Simulate with mixed noise, fit with 
Gaussian noise model 

3.112 ± 0.40 (0.056) 3.175 ± 0.18 (0.025) 122.6 ± 8.6 (1.2) 121.8 ± 7.0 (1.0) 

10.  No noise 3.141 ± 0.19 (0.027) 3.054 ± 0.12 (0.017) 118.0 ± 6.8 (1.0) 113.1 ± 2.7 (0.4) 
11.  No noise and no background 3.167 ± 0.18 (0.025) 3.072 ± 0.11 (0.016) 118.5 ± 5.9 (0.8) 113.3 ± 2.3 (0.3) 
12.  0.5X probe diameter 3.197 ± 0.26 (0.037) 3.102 ± 0.22 (0.031) 121.7 ± 12 (1.7) 115.7 ± 8.0 (1.1) 
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